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Abstract—In this paper, we study downlink scheduling
with transmission strategy selection in multi-cell multiple-input
multiple-output (MIMO) systems. Depending on the level of
inter-cell interference experienced by a user, the scheduler can
choose between two MIMO transmission strategies, namely,
spatial multiplexing and interference alignment. We formulate
an optimization problem which aims to jointly select a user and
the corresponding transmission strategy for each base station
in order to maximize the overall system utility while stabilizing
all transmission queues. We first develop a centralized dynamic
scheduling scheme with transmission strategy selection by using
a stochastic network optimization approach. To reduce the com-
munication overhead, we then propose a distributed scheduling
algorithm which only requires limited message exchange between
the base stations. We also consider the impact of imperfect
channel state information on the scheduling schemes and propose
an efficient rate adjustment method to improve the performance
for this case. Simulation results show that the performance of
the proposed distributed scheduling scheme is close to that of
the centralized scheduling scheme, and both schemes achieve a
better performance than schemes employing a single transmission
strategy.

Index Terms—Scheduling, spatial multiplexing, interference
alignment, stochastic network optimization.

I. INTRODUCTION

NEXT generation wireless communication systems, such
as the 3rd Generation Partnership Project (3GPP) Long

Term Evolution Advanced (LTE-Advanced) system [2], aim to
provide high speed data services with limited radio resources.
Multi-cell processing combined with multiple-input multiple-
output (MIMO) transmission has been proposed as a promising
solution to improve spectral efficiency and system throughput
[3]. The conventional spatial multiplexing MIMO transmission
strategy can achieve high data rates by transmitting multiple
data streams simultaneously [4]. However, in multi-cell sys-
tems where the same carrier frequency is reused by several ad-
jacent cells, the performance of spatial multiplexing is limited
due to inter-cell interference [5]. Specifically, the performance
degradation for the cell-edge users who experience significant
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inter-cell interference is severe, which may limit the overall
system performance.

Recently, interference alignment has emerged as an effec-
tive technique to suppress inter-cell interference in multi-cell
MIMO systems [6]. The main idea is that base stations jointly
design precoding and decoding matrices based on the channel
state information (CSI) of all individual links such that the
signals transmitted from interfering base stations are aligned
onto the same spatial dimension at each user so that the
desired signal can be separated and successfully decoded. In
the literature, several interference alignment strategies have
been proposed for multi-cell MIMO systems [7]–[9], and
progress has been made in designing efficient interference
alignment algorithms [10], [11]. With interference alignment,
multiple concurrent interference-free transmissions are achiev-
able and the performance of cell-edge users can be improved.
However, since an additional spatial dimension is sacrificed
for accommodating interference rather than transmitting user
data, interference alignment may be outperformed by spatial
multiplexing when the inter-cell interference is insignificant.
Therefore, in a multi-cell system with users who experience
various levels of inter-cell interference, the performance can
be improved by allowing the base stations to choose between
different MIMO transmission strategies.

In addition to choosing the transmission strategy, scheduling
plays an important role in improving the system performance
[12], [13]. For time slotted systems, where the time frame is
divided into slots, in each time slot, the downlink schedul-
ing scheme selects a set of users to be served with the
objective to optimize certain performance metrics such as
stability, throughput, and fairness [14]–[16]. In the literature,
several scheduling schemes have been proposed for MIMO
systems under different queueing models, such as the infinitely
backlogged model. The scheduling objective is to maximize
the throughput or a utility function which reflects a certain
fairness criterion [17], [18]. However, most existing scheduling
schemes are designed for a single-cell scenario where inter-cell
interference is not considered. The scheme in [19] considers
scheduling in the presence of inter-cell interference, but only
studies a non-cooperative scenario where base stations sched-
ule their transmissions independently without any interference
mitigation technique. Joint scheduling, power allocation, and
precoder design has been studied for multi-cell systems in
[20]. However, the scheme proposed in [20] considers only
spatial multiplexing transmission for the infinitely backlogged
model.

In our previous work [1], we proposed to use two MIMO



transmission strategies, spatial multiplexing and interference
alignment, to optimize the system performance, and designed
a centralized scheduling scheme based on a two-cell infinitely
backlogged queueing model. In this paper, we consider a
multi-cell system where each base station maintains a finite
data buffer and users experience different levels of inter-cell
interference. We first focus on the design and analysis of
scheduling schemes with perfect CSI at the base stations,
and then describe their extension to the realistic scenario
of imperfect CSI. The major contributions of this work are
summarized as follows.
• We formulate a discrete-time stochastic optimization

problem which aims to jointly select a user and the
corresponding transmission strategy for each base station
in order to maximize the overall system utility while
stabilizing all data queues. Based on a stochastic op-
timization approach, we develop a centralized dynamic
scheduling scheme with transmission strategy selection
for multi-cell MIMO systems.

• To reduce the communication overhead, we propose a
distributed scheduling scheme which only requires lim-
ited message exchange among the base stations. In this
scheme, each base station first determines the optimal
scheduling decisions for a fixed transmission strategy.
Then, to arrive at the final scheduling decisions, the base
stations coordinate with each other by exchanging the
value of one variable.

• When the CSI is imperfect at the base stations, the data
rate calculated assuming perfect CSI is not accurate and
outages may occur during the transmission. To address
this issue, we propose a rate adjustment scheme to
improve the transmission success probability. We show
that this approach improves the performance significantly
compared to the case without rate adjustment.

• Simulation results show that the proposed scheduling
schemes are superior compared to scheduling schemes
with a single transmission strategy. The proposed dis-
tributed scheduling scheme achieves a performance that
is close to that of the centralized scheduling scheme, and
both schemes achieve a better performance than weighted
sum-rate maximization scheduling.

The rest of this paper is organized as follows. In Section
II, we describe the system model and formulate the joint
scheduling and transmission strategy selection problem. In
Section III, we develop the centralized and distributed dynamic
scheduling schemes, and discuss the impact of imperfect CSI.
Simulation results are presented in Section IV, and conclusions
are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model, and
then we formulate a dynamic scheduling problem considering
transmission strategy selection, system stability, and fairness
among users.

A. System Model
We consider the downlink of a MIMO system with M > 1

cells (i.e., a cluster of adjacent cells in wireless cellular
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(a) A two-cell MIMO System.
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(b) A three-cell MIMO System.

Fig. 1. Multi-cell MIMO systems. (a) Two-cell case; (b) Three-cell case.
Each cell i ∈ I has Ki users.

systems), where the same carrier frequency is used in all
cells. Examples of such systems with M = 2 and M = 3
are shown in Figs. 1 (a) and (b), respectively. In each cell, a
base station equipped with NT transmit antennas is located at
the cell center and serves a number of users, each of which
is equipped with NR receive antennas. The base stations are
connected with each other (or connected to a central controller)
via backhaul links with limited capacity. We assume that the
base stations can exchange control messages such as CSI
and scheduling decisions but do not share user data. We
consider a time slotted system, where each time frame is
divided into slots of equal length. Each base station serves
at most one user in a time slot. We assume a frequency flat
block fading channel model, where the channel gain remains
constant during a time slot and is independent and identically
distributed (i.i.d.) in different time slots1. We denote the set
of cells as I = {1, 2, . . . ,M}, and the number of users in cell
i ∈ I as Ki. The set of users in cell i is denoted as Ki. The
signal received at user k ∈ Ki can be represented as

yik =
√
gik Hikxi+

∑
j 6=i, j∈I

√
gjk Hjkxj+nik, i ∈ I, (1)

where xi is the signal transmitted by the ith base station,
Hik ∈ CNR×NT is the channel matrix from the ith base
station to user k, whose elements are i.i.d. and follow a com-
plex Gaussian distribution with zero mean and unit variance
(CN (0, 1)), gik is the distance-dependent average path gain
from the ith base station to user k, and nik is the additive white
Gaussian noise (AWGN) with complex Gaussian distribution
CN (0, 1). The first term on the right hand side in (1) represents
the desired signal and the second term corresponds to the inter-
cell interference.

Similar to some previous works (e.g., [12], [16]), we assume
that mobile devices are able to perfectly estimate the desired

1This i.i.d. channel model has been widely adopted for performance analysis
in the literature [12], [19], [20]. However, the proposed scheduling scheme
in this paper can also be extended to non-i.i.d. channel models, which is an
interesting topic for future work.



channel and the interference channel, and this perfect CSI is
available to the base station via feedback (or estimation via
the uplink in time-division duplexing systems) at the beginning
of each time slot. The base stations can exchange the CSI to
make scheduling decisions. In practice, a mobile device can
estimate the CSI of each of its links based on the pilot signal
received from the corresponding base stations, i.e., we can
use existing approaches such as linear minimum mean square
error (LMMSE) estimation [21] with successive interference
cancellation (SIC) [22] to estimate the CSI of each link. Since
the CSI is obtained via estimation and may be erroneous, we
discuss the impact of imperfect CSI in Section III-C.

B. System Stability

We consider the scenario where the data to be transmitted
arrive at their associated base station according to a stationary
process. The base station maintains a transmission queue for
each of its intended users. Let Qik[t] represent the queue
backlog for user k at the ith base station at the beginning of
time slot t. We denote the corresponding data arrival rate and
service rate for user k during time slot t as Aik[t] and Rik[t],
respectively. Then, the system queues evolve according to the
following stochastic difference equation

Qik[t+ 1] = max{Qik[t]−Rik[t], 0}+Aik[t],
∀ k ∈ Ki, i ∈ I. (2)

We define stability of the above queueing system as follows
[23, p. 19].

Definition 1: A discrete-time queue Qik is strongly stable
if lim supt→∞

1
t

∑t−1
τ=0 E[Qik[τ ]] < ∞. The system is stable

if all queues in the system are strongly stable.
The above definition implies that the system is stable when

the average backlog of each queue is bounded. It has been
shown in [23, p. 19] that to guarantee the stability of the
system, the average data arrival rate of each queue should
be no larger than the corresponding average service rate. That
is, Aik ≤ Rik, ∀ k ∈ Ki, i ∈ I, where

Aik = lim
t→∞

1

t

t−1∑
τ=0

Aik[τ ] and Rik = lim
t→∞

1

t

t−1∑
τ=0

Rik[τ ].

(3)
System stability is important since the total buffer size of
a base station is finite in practice. Therefore, the downlink
scheduling scheme should guarantee that all queues in the
system are strongly stable.

C. MIMO Transmission Strategies

To achieve high data rates in MIMO systems, we consider
two physical layer transmission strategies, namely, spatial
multiplexing and interference alignment, which are described
below.

i) Spatial multiplexing: For a MIMO link without inter-
ference, the transmitter can deliver multiple data streams to
the receiver using spatial multiplexing [4, p. 334]. For an
NT × NR MIMO link from the ith base station to user k,
N = min{NT , NR} data streams are multiplexed by using a
precoding matrix Vik at the transmitter and are reconstructed

with a decoding matrix Uik at the receiver. The matrices Vik
and Uik are obtained from the singular value decomposition
(SVD) of the channel matrix Hik,

Hik = UH
ikΛikVik, (4)

where Uik ∈ CNR×NR and Vik ∈ CNT×NT are unitary
matrices, Λik ∈ RNR×NT is a rectangular matrix with non-
negative main diagonal elements {λik,1, . . . , λik,N} and all
other elements equal to zero. By applying the above precoding
and decoding matrices, the MIMO link is transformed into
several parallel Gaussian channels, which can support mul-
tiple data streams. The total power P is distributed among
the data streams using waterfilling to maximize the achiev-
able rate (assuming there is no interference). The power
allocated to the mth data stream for user k in cell i is
Pik,m = max

{
µ− 1

λ2
ik,m

, 0
}

, where µ is chosen to satisfy∑N
m=1 Pik,m = PT .
The achievable data rate using spatial multiplexing in the

presence of inter-cell interference can be derived for the multi-
cell MIMO system. In particular, the data rate for user k in
cell i is [8]

RSM
ik = log2 det

(
INR

+
(
gikHikΦSM,iHH

ik

)
·
(

INR
+
∑
j 6=i

gjkHjkΦSM,jHH
jk

)−1)
, (5)

where INR
is the NR × NR identity matrix, ΦSM,i =

VikQikVH
ik is the covariance matrix of the transmitted signal

at the ith base station, and Qik is an NT × NT diagonal
matrix with allocated power Pik,m (m ∈ {1, . . . , N}) as main
diagonal elements.

ii) Interference alignment: When users experience signif-
icant inter-cell interference, the performance of spatial mul-
tiplexing is limited [5]. To combat interference and improve
the data rate, interference alignment can be used. It allows
interference-free concurrent transmissions at the expense of
sacrificing some degrees of freedom. Interference alignment
requires cooperation of the base stations to jointly design the
transmit and receive matrices such that the interference and the
desired signal lie in orthogonal subspaces at the receiver [6].
Specifically, the ith base station may transmit di (di ≤ N−1)
data streams to user k by designing precoding matrix Ṽik and
decoding matrix Ũik such that

Ũ
H
ikHjkṼjk = 0, ∀ j ∈ I, j 6= i, (6)

and
rank

(
Ũ

H
ikHikṼik

)
= di, (7)

where Ũik ∈ CNR×di , Ṽik ∈ CNT×di are truncated unitary
matrices, and 0 is a di × di all-zero matrix. If we can find
Ũik and Ṽik, ∀ i ∈ I, k ∈ Ki that satisfy (6) and (7),
then interference can be suppressed at the desired receiver. By
employing the interference alignment strategy, the achievable
rate for user k in cell i is

RIA
ik = log2 det

(
Idi + gikĤikΦIA,iĤ

H
ik

)
, (8)



where Ĥik = Ũ
H
ikHikṼik, and ΦIA,i = (PT /di)Idi is the co-

variance matrix of the data symbols to be transmitted (without
precoding) at the ith base station (with equal power allocation
for all data streams). For example, in a three-cell MIMO
system with NT = NR = 2, we can design 2 × 1 precoding
vectors (vi, i = 1, 2, 3) and decoding vectors (ui, i = 1, 2, 3)
with di = 1 such that each base station can transmit one
data stream successfully to its intended receiver without any
interference. Specifically, we can choose v1 to be one of the
eigenvectors of Hv1 = H−112 H32H−131 H21H−123 H13, and choose
v2 = H−123 H13v1 and v3 = H−131 H21H−123 H13v1. It can be
shown that these precoding vectors satisfy H13v1 = H23v2,
H31v3 = H21v2, and H12v1 = H32v3, which implies that
the interference at each receiver can be aligned in the same
subspace and the desired signal can be successfully decoded
by choosing a decoding vector orthogonal to that subspace. A
more detailed explanation of this design can be found in [10].
Note that in this paper, we do not consider optimization of
the power allocation for interference alignment. To simplify
the analysis, we assume equal power allocation for all data
streams. This assumption has also been widely used in other
works (e.g. [7], [8]).

Although interference alignment can suppress the inter-cell
interference, the signal power that lies in the interference
subspace is lost. When the interference is not significant,
spatial multiplexing may achieve a better performance [1].
Therefore, for a system with users who experience different
levels of inter-cell interference, a proper transmission strategy
selection is desirable for each user when scheduling the
transmission.

D. Problem Formulation

In the above system, the downlink scheduling problem is
to maximize a utility function by selecting in each cell a
user to be served and a corresponding MIMO transmission
strategy. The utility function is usually chosen as a concave,
non-decreasing function of the service rates and should reflect
a certain fairness criterion. In this paper, we consider the pro-
portional fair utility [24], which is a function of the long term
average service rates (Rik) of all users (k ∈ Ki, i ∈ I) in the
system. Let vector R = (Rik, k ∈ Ki, i ∈ I). The considered
utility function is denoted as φ(R) =

∑
k∈Ki,i∈I log(Rik).

Since the data rate for a user that is served by one base
station depends on the interference coming from other base
stations, in order to optimize the system performance, coor-
dination among the base stations is necessary to determine
the scheduling decision. To simplify the analysis, in this
paper, we propose to use the same transmission strategy at all
base stations. This is reasonable since interference alignment
requires all base stations to cooperate, i.e., each base station
transmits only one data stream during a time slot. Nevertheless,
we note that the analysis can be extended to scenarios where
different transmission strategies are used by different base
stations. We introduce s[t] as the indicator of the transmission
strategy that is selected in time slot t, where

s[t] =

{
1, if spatial multiplexing is used,
0, if interference alignment is used, (9)

and define S = {0, 1}. We further introduce lk[t] to denote
whether user k is selected in time slot t, where lk[t] = 1
if user k is selected and lk[t] = 0 otherwise. Then, the joint
scheduling and transmission strategy selection problem can be
formulated as

maximize
lk[t]∈S,s[t]∈S

φ(R)

subject to
∑
k∈Ki

lk[t] = 1, ∀ i ∈ I, t ∈ {1, 2, . . .}

Rik ≥ Aik, ∀ k ∈ Ki, i ∈ I,
(10)

where Rik = limt→∞
1
t

∑t−1
τ=0 lk[τ ](s[τ ]RSM

ik [τ ] + (1 −
s[τ ])RIA

ik [τ ]). The last constraint in problem (10) implies that
all queues in the system should be stable. In general, it is
difficult to find an optimal solution R∗ for this problem,
since solving problem (10) requires CSI for all time slots,
which is not possible in practice. However, it has been shown
in previous work [23, p. 99] that near optimal dynamic
scheduling is possible for problems with a structure similar
to that of (10) by using a stochastic network optimization
approach, which will be discussed in the following section.

III. DYNAMIC SCHEDULING SCHEMES

In this section, we develop a dynamic scheduling framework
with transmission strategy selection based on a stochastic
network optimization approach, and propose centralized and
distributed scheduling schemes under perfect CSI. We also
discuss the impact of imperfect CSI at the base stations and
propose a rate adjustment scheme to improve the performance.

A. Centralized Dynamic Scheduling Scheme

We first consider the scenario where global CSI and queue
backlog information are available at the scheduler (either a
base station or a central controller). Note that problem (10)
involves optimizing a concave function of time average rates
by making scheduling decisions in each time slot, which has
a similar structure to the problem discussed in [23, p. 99].
Therefore, we can apply a stochastic network optimization
approach to the system considered in Section II. The main
idea to solve problem (10) is to use a weighted sum-rate
maximization algorithm which operates in each time slot
with causal CSI. The weight of each user’s rate is updated
according to the user’s actual queue backlog and the virtual
queue backlog of an auxiliary variable in order to satisfy
the stability and fairness criteria. Based on this approach,
we obtain a dynamic scheduling framework with transmission
strategy selection as follows. We first introduce an auxiliary
variable γik[t] for each user k in cell i at time slot t, and
let Wik[t] represent the virtual queue backlog associated with
γik[t]. The virtual queues evolve according to the following
stochastic difference equation

Wik[t+ 1] = max{Wik[t]−Rik[t] + γik[t], 0},
∀ k ∈ Ki, i ∈ I. (11)

Then, at the beginning of time slot t (t = 0, 1, . . .), the pro-
posed dynamic scheduling framework involves the following
steps.



(i) The first step is to determine the values of auxiliary
variables γik[t] (k ∈ Ki, i ∈ I) by solving the following
problem:

maximize
γ[t],i∈I

βφ(γ[t])−
∑
i∈I

∑
k∈Ki

γik[t]Wik[t]

subject to 0 ≤ γik[t] ≤ γmax, ∀ k ∈ Ki, i ∈ I,
(12)

where β, γmax > 0 are predetermined system parameters,
Wik[t] is the corresponding virtual queue backlog known at
the scheduler, and vector γ[t] = (γik[t], k ∈ Ki, i ∈ I).
(ii) The next step is to apply a weighted sum rate maximization
scheduling policy to the system with actual and virtual queues.
Specifically, given the queue backlog information Qik[t] and
Wik[t] for all users, we select the users ki[t] ∈ Ki,∀ i ∈ I and
the corresponding transmission strategy s[t] ∈ S by solving
the following optimization problem

maximize
ki[t],s[t]

∑
i∈I(Qiki[t][t] +Wiki[t][t])Riki[t][t]. (13)

(iii) Finally, we update all the actual queues Qik[t + 1]
and virtual queues Wik[t + 1] according to (2) and (11),
respectively.

By applying the above scheduling framework, the following
results can be obtained.

Proposition 1: Assume the data arrival rate and the service
rate are upper bounded by Amax and Rmax, respectively. For
given constants β, γmax, and a concave and entry-wise non-
decreasing utility function φ(·), if there exists at least one
feasible scheduling policy, then we have

lim
t→∞

inf φ

(
1

t

t−1∑
τ=0

E{R[τ ]}

)
≥ φ(R∗(γmax))−D/β, (14)

where D is a constant that satisfies

D ≥ E{
∑
i∈I

∑
k∈Ki

1

2
(Aik[t]2 + γik[t]2 + 2Rik[t]2)},

R[τ ] is the vector containing the service rates for all users in
time slot τ , the expectation E[·] is with respect to the joint
probability distribution of the channel matrix and schedul-
ing decisions under the proposed scheduling scheme, and
R∗(γmax) is the solution to problem (10) with the additional
constraint 0 ≤ Rik ≤ γmax, ∀ k ∈ Ki, i ∈ I. If
there is an ε ≥ 0 and a feasible scheduling policy ν that
gives rates Rν [t] = {Rνik[t],∀ k ∈ Ki, i ∈ I} which
satisfy E{Aik[t] − Rνik[t]} ≤ −ε, 0 ≤ E{Rνik[t]} ≤ γmax,
∀ k ∈ Ki, i ∈ I and φ(E{Rν [t]}) = φε, then we have

lim
t→∞

sup
1

t

t−1∑
τ=0

∑
i∈I

∑
k∈Ki

E{Qik[τ ]}

≤ D + β[φ(R∗(γmax))− φε]
ε

. (15)

The proof of Proposition 1 follows [23, Chapter 5], and a
sketch of the proof is provided in Appendix A. The result
in (14) implies that, when γmax is sufficiently large (such
that R∗(γmax) = R∗), the proposed dynamic scheduling
framework can achieve a utility that is arbitrarily close to the
optimal value φ(R∗) by increasing β. As a tradeoff, the actual

queue backlog of the system grows linearly with β, which can
be seen from (15). Based on the above framework, we propose
a centralized scheduling scheme as shown in Algorithm 1.

Algorithm 1 Centralized dynamic scheduling algorithm.
1: Initialization
2: Initialize β, γmax, and Wik[0], ∀ k ∈ Ki, i ∈ I.
3: repeat
4: if t ∈ {0, 1, 2, . . .} then
5: Each BS collects the CSI from its subscribed users.
6: The scheduler obtains global CSI and queue backlog

information via backhaul links.
7: The scheduler finds γik[t], ∀ k ∈ Ki, i ∈ I by solving

(12).
8: The scheduler finds k∗i [t] ∈ Ki, i ∈ I and s∗[t] by

solving (13).
9: The scheduler updates Wik[t+ 1], ∀ k ∈ Ki, i ∈ I

according to (11).
10: The scheduler sends out the scheduling decision to

each base station.
11: Each BS updates Qik[t+1], ∀ k ∈ Ki, i ∈ I according

to (2) at the end of the time slot.
12: until system stops operation.

In Algorithm 1, the scheduler first initializes all system pa-
rameters before the scheduling process begins. The scheduler
can be either one of the base stations or a central controller that
connects to all base stations. Then, at the beginning of each
time slot, each base station collects the CSI of all direct links
(from the base station to its subscribed users) and interference
links (from other base stations to these users), and passes the
CSI and queue backlog information of its subscribed users to
the scheduler. Next, the scheduler numerically computes the
values of auxiliary variables according to (12) in Line 7 and
selects the desired users and the corresponding transmission
strategy by searching for the optimal solution to (13) in Line
8. Then, the scheduler updates the virtual queue backlogs and
sends the scheduling decision to each base station in Lines
9 and 10, respectively. Finally, at the end of the time slot,
both base stations update their actual queues according to (2).
This scheduling process will be repeated until the end of the
transmission session.

B. Distributed Dynamic Scheduling Scheme

The centralized dynamic scheduling scheme requires global
CSI and queue backlog information at the scheduler to
make scheduling decisions. However, in practical systems, the
backhaul links are capacity-limited and exchanging extensive
amounts of information may incur a large communication
overhead. For instance, in the considered system, the ith base
station needs to send information regarding MKi channel
matrices and Ki queue backlogs to the scheduler in each
time slot. Therefore, it is attractive to develop distributed
scheduling schemes. In this section, we propose an efficient
distributed dynamic scheduling scheme which only requires
limited message exchanges between the base stations. Note



that designing precoding and decoding matrices for interfer-
ence alignment becomes more complicated as the number
of cells increases. To simplify the analysis, we focus on
the design of a distributed scheduling scheme for a two-cell
system.

From the discussion in Section III, it can be seen that
the desired distributed scheduling scheme requires distributed
solutions to (12) and (13) that can be found at each base
station. We first consider solving problem (12) distributively.
Intuitively, if the utility function φ(·) can be decomposed at
each base station independently, then problem (12) can be
solved distributively. In this paper, since we adopt the propor-
tional fair utility φ(γ) =

∑
k∈K1

log(γ1k)+
∑
k′∈K2

log(γ2k′)
for a two-cell system, a distributed solution for (12) can be
obtained by solving the following optimization problem at the
ith base station (for simplicity, we omit the time index [t] in
this subsection):

maximize
γik

∑
k∈Ki

(β log(γik)−Wikγik)

subject to 0 ≤ γik ≤ γmax, ∀ k ∈ Ki.
(16)

The optimal solution of problem (16) is given by γik =
min{β/Wik, γmax},∀ k ∈ Ki, i ∈ I.

Next, we develop a distributed algorithm to solve problem
(13). The major challenge to solve the problem distributively
is that the objective function is not decomposable, since the
achievable rate of a user in one cell depends on the scheduling
decision in the other cell. Specifically, when calculating the
achievable rate for spatial multiplexing independently at a
base station, the covariance matrix of the interference in (5)
is not known. Moreover, the rate in (6) can only be achieved
when both base stations choose to use interference alignment,
and therefore, coordination is needed when determining the
transmission strategy. To address the above challenges, we
propose a two-step approach. In the first step, we relax
the constraints in (13) and find distributed solutions to the
resulting subproblems with a fixed transmission strategy. In
the second step, we design a coordination scheme such that
the base stations make final scheduling decisions with limited
message exchange based on the results obtained in the first
step.
Step 1: We introduce ϕi(ki, s) = (Qiki + Wiki)R

s
iki

, where
Rsiki represents the transmission rate at the ith base station for
user ki with strategy s. Since s only takes binary values from
S, for a fixed s, (13) is reduced to the following optimization
problem:

maximize
k1∈K1,k2∈K2

ϕ1(k1, s) + ϕ2(k2, s) (17)

To solve (13) distributively, we first find the distributed solu-
tion for (17) for different values of s.
Case 1: When s = 0, both base stations employ the spatial
multiplexing transmission strategy. Note that each base station
only has local CSI (including the CSI of the desired links
and the CSI of the links between the intended users and
the interfering base stations) obtained via feedback from its
intended users. To solve (17) distributively at each base station,
we adopt the following approximation. When computing the
achievable rate for the users in cell i using (5), we use the

average value of the interference covariance matrix E[ΦSM,j ]
instead of the instantaneous value ΦSM,j since the scheduling
decision of the other cell is not known. Based on this approx-
imation, the objective function in (17) can be decomposed
into two independent functions with respect to different base
stations, and the distributed solution is to let base station i find
the user k0i that satisfies ϕi(k0i , 0) = maxki∈Ki ϕi(ki, 0).
Case 2: When s = 1, the base stations use the interference
alignment transmission strategy simultaneously. In this paper,
for the two-cell case, we use a fixed precoding vector with
equal power allocation at the base stations for interference
alignment. Then, the inter-cell interference can be canceled
at the users by designing decoding matrices with local CSI,
and the achievable data rate can be calculated independently at
each base station. Therefore, problem (17) can also be solved
distributively by letting base station i select the user k1i that
satisfies ϕi(k1i , 1) = maxki∈Ki

ϕi(ki, 1).
Step 2: After solving the relaxed optimization problem (17) in
Step 1, each base station obtains two scheduling decisions with
respect to different transmission strategies, i.e., the decisions
at the ith base station are (ksi , s) ∀s ∈ S . The next step
is to design an efficient coordination scheme which finds
the optimal scheduling decision that maximizes the overall
system utility. Based on the distributed solution in Step 1, it
can be easily verified that the optimal value of the objective
function in (13) is max{

∑
i∈I ϕi(k

0
i , 0),

∑
i∈I ϕi(k

1
i , 1)}. We

introduce a coordination variable δi for the ith base station,
where δi = ϕi(k

0
i , 0)−ϕi(k1i , 1). Then, after exchanging this

variable with the other base station, the ith base station obtains∑
i∈I δi =

∑
i∈I ϕi(k

0
i , 0) −

∑
i∈I ϕi(k

1
i , 1). It can be seen

that when
∑
i∈I δi > 0, the scheduling decision with spatial

multiplexing is desired, otherwise the scheduling decision
with interference alignment is preferable. Therefore, the base
stations can find their scheduling decisions by exchanging
only the value of the coordination variable δi, and the optimal
decision for the ith base station is given by

(k∗i , s
∗) =

{
(k0i , 0), if

∑
i∈I δi > 0,

(k1i , 1), if
∑
i∈I δi ≤ 0.

(18)

Based on the above discussion, we propose the distributed
scheduling scheme described in Algorithm 2. Different from
Algorithm 1, in Line 7 of Algorithm 2, the base stations
find their potential scheduling decisions based on local CSI
and queue backlog information using the proposed the two-
step approach. Then, they compute and exchange the value
of the coordination variable in Line 8, and make the final
scheduling decisions according to (18) in Line 9. The rest
of the algorithm is similar to Algorithm 1. In Algorithm 2,
the scheduling problem is solved distributively at each base
station with limited information exchange (only the value
of one variable is exchanged). Therefore, the communication
overhead is reduced, with the trade-off that the scheduling
decisions are suboptimal since an approximation is used when
solving problem (17). Although Algorithm 2 is designed for
a two-cell system, it can be extended to systems with more
cells with proper adjustment. For example, for a three-cell
system, when solving the distributed scheduling problem with
s = 1 in Line 7 of Algorithm 2, we may use average data



rate under different channel realizations as an approximation
of the instantaneous data rate for each user, i.e., we simulate
different global CSI at a base station and numerically compute
the average data rate for its intended user assuming centralized
design for interference alignment (as shown in Section II-C).
Other steps remain the same as those in Algorithm 2. Note
that the objective of the distributed scheduling algorithm is to
determine the desired user to be served and the corresponding
transmission strategy for each base station. Once these deci-
sions are made, base stations can cooperate with each other to
transmit their data, i.e., interference alignment with local CSI
can be achieved by using existing distributed algorithms such
as those in [25] and [26].

Algorithm 2 Distributed scheduling algorithm executed at the
ith base station.

1: Initialization
2: Initialize β, γmax, and Wik[0], ∀ k ∈ Ki.
3: repeat
4: if t ∈ {0, 1, 2, . . .} then
5: Obtain all the CSI from subscribed users.
6: Find γik[t], ∀ k ∈ Ki by solving(12).
7: Find (k0i [t], ϕi(k

0
i [t], 0)) and (k1i [t], ϕi(k

1
i , 1)) by

solving (17) with s = 0 and s = 1, respectively.
8: Compute δi[t] and exchange it with the other base

station to obtain
∑
i∈I δi[t].

9: Obtain the scheduling decision according to (18).
10: Update Wik[t+ 1], ∀ k ∈ Ki according to (11).
11: Update Qik[t+ 1], ∀ k ∈ Ki according to (2) at the

end of the time slot.
12: until system stops operation.

C. Scheduling with Imperfect CSI

The dynamic scheduling schemes proposed in the previous
subsections assume perfect CSI at the base stations. However,
in practice, the channel matrices at the base stations may
not be perfect (due to delayed or erroneous feedback from
the user terminals). Therefore, it is of great importance to
analyze the impact of imperfect CSI on the performance of
the proposed scheduling schemes. We adopt the CSI model
for MIMO systems from [27] and [28], where we assume the
CSI is perfect at the user terminals but is imperfect at the
base stations. This model is realistic as the user terminal can
update its channel estimate frequently exploiting the pilots sent
by the base stations. On the other hand, the channel estimate at
the base station may be updated less frequently to reduce the
feedback and computational cost. The imperfect CSI at the ith
base station (for user k) is modeled as Ĥik = Hik+eΨ, where
Hik is the true channel matrix and eΨ is the error incurred
during feedback which is statistically independent from Hik.
The elements of Ψ are i.i.d. zero mean complex Gaussian
variables with unit variance, and e (where 0 ≤ e ≤ 1) is
a scalar that characterizes how accurate the feedback is. In
this scenario, since the precoding and decoding matrices are
designed at the scheduler (or the base stations) based on the
imperfect CSI, the achievable rates obtained from (5) and (8)
are inaccurate. For user k in cell i, we denote the precoding

and decoding matrices with spatial multiplexing under imper-
fect CSI as V̂ik and Ûik, respectively, and the corresponding
precoding and decoding matrices with interference alignment
as ̂̃Vik and ̂̃Uik, respectively. We further denote R̂sik as the
corresponding estimated data rate under transmission strategy
s, which is calculated according to (5) with V̂ik and Ûik (or
(8) with ̂̃Vik and ̂̃Uik), and let R̂s†ik be the corresponding actual
achievable rate. Then, we have

R̂sik =


log2 det

(
INR

+ (gikĤikΦ̂SM,iĤ
H
ik)

· (INR
+
∑
j 6=i gjkĤjkΦ̂SM,jĤ

H
jk)−1

)
, s = 0,

log2 det
(

Idi + gikH′ikΦ̂IA,i(H′ik)H
)
, s = 1,

(19)
and

R̂s†ik =



log2 det
(

INR
+ (gikHikΦ̂SM,iHH

ik)

· (INR
+
∑
j 6=i gjkHjkΦ̂SM,jHH

jk)−1
)
, s = 0,

log2 det
(

Idi + gikH†ikΦ̂IA,i(H†ik)H

· (Idi +
∑
j 6=i gjkH†jkΦ̂IA,j(H†jk)H)−1

)
, s = 1,

(20)
where Φ̂SM,i and Φ̂IA,i are transmit covariance matrices de-

signed according to the imperfect channel, H′ik =
̂̃UikĤik

̂̃Vik,
and H†ik =

̂̃UikHik
̂̃Vik. According to Shannon’s channel

coding, when R̂sik > R̂s†ik , the receiver cannot successfully
decode the data and an outage event occurs. Therefore, the
effective data rate with imperfect CSI for any s ∈ S is

Rs∗ik =

{
R̂sik, if R̂sik ≤ R̂

s†
ik ,

0, otherwise.
(21)

We denote the corresponding transmission outage probability
as ξsik = Pr{R̂sik > R̂s†ik}. Intuitively, when ξsik is large,
scheduling based on R̂sik is inefficient and the system per-
formance may degrade severely. To address this problem,
we extend the proposed scheduling schemes by introducing
a weighting factor to adjust the transmission rate for each
user. Specifically, when searching for the optimal scheduling
decision, we use psikR̂

s
ik instead of R̂sik as the transmission

rate, where psik > 0 is a weighting factor for user k in
cell i when transmission strategy s is employed. We find
psik by running simulations over different channel realizations,
and select the value such that the average outage probability
with adjusted service rate is smaller than a certain value ξ0.
For example, for a particular user k, we search by gradually
increasing psik from 0 with a step size of ∆p. For each psik, we
simulate Ns channel realizations, and count the total number
of outage events Nout (where psikR̂

s
ik > R̂s†ik). We select the

largest value of psik such that Nout/Ns < ξ0. By adjusting the
data rate with the weighting factor, the system performance
is improved since the average outage probability for a user is
limited to a small value and the transmission becomes more
efficient.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed dynamic
scheduling schemes via simulations. We first consider a two-
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Proposed centralized scheme
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Scheduling with spatial multiplexing

Fig. 2. Two-cell model: the average utility versus transmission power PT

with d = 1 km and Ne = 3.

cell MIMO system, where the radius of each cell is 500
m and the distance between the two base stations is d. In
each cell, 10 users are randomly deployed and at least Ne
of them are located in the cell-edge region. For any position
in the cell-edge region of the ith cell, the distance from this
position to base station i is between 450 m and 500 m, and
the angle between the direction from base station i to this
position and the direction from base station i to the other base
station is no more than 30◦. The base stations and the users
are equipped with two omni-directional antennas. All wireless
links experience Rayleigh fading and path loss, and the 3GPP
urban-micro path loss model is used [29]. The transmission
power at a base station is PT . The common channel has a
bandwidth of 200 kHz with noise variance −130 dBm. The
duration of a time slot is 100 ms. The data packet size is
8 kbits. We consider Poisson arrival processes with different
average data rates for users, where the average arrival data
rate for a user is randomly selected from the set {3, 4, 5, 6}
(packets per time slot). The base stations store 50 packets
for each user before transmission starts. Other parameters are
Rmax = γmax = 100 bit/s/Hz.

We first evaluate the performance of the proposed schedul-
ing schemes for perfect CSI. We implement the proposed
centralized scheduling scheme according to Algorithm 1. We
compare its performance of scheduling schemes where a single
transmission strategy is adopted. Fig. 2 shows the average
utility obtained by different scheduling schemes under varying
transmission power (PT ), where d = 1 km and Ne = 3
cell edge users. It is shown that the average utility of all
the scheduling schemes increase as PT increases, and the
proposed scheduling scheme outperforms the schemes with a
single transmission strategy. As PT decreases, the performance
of the proposed scheduling scheme approaches that of the
scheme with spatial multiplexing. The reason is that, when the
transmission power decreases, the interference power becomes
insignificant and noise dominates the performance. Therefore,
the spatial multiplexing transmission strategy is preferable for
almost all the users. On the other hand, as the transmis-
sion power increases, the interference power becomes larger
while the noise power becomes comparably insignificant, and
eliminating interference becomes critical. Hence, interference
alignment has superior performance for almost all the users,
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Proposed centralized scheme

Scheduling with interference alignment

Scheduling with spatial multiplexing

Fig. 3. Two-cell model: the average utility versus the distance d for PT =
20 dBm and Ne = 3.

and the performance of the proposed scheduling scheme
approaches that of the scheme with interference alignment.

Fig. 3 shows the average utility for different distances
between the base stations (d), where PT = 20 dBm and
Ne = 3. It can be seen that the average utility of the scheduling
scheme using interference alignment remains almost constant,
while the average utility of the other scheduling schemes
increase as d increases. In addition, the performance of the
proposed scheduling scheme is close to that of the scheme
with interference alignment when d is small and it approaches
that of the scheme with spatial multiplexing as d increases.
The reasons for this behavior are as follows. First, since
the transmission power is fixed, the inter-cell interference
becomes stronger as the base stations get closer, which de-
grades the performance of spatial multiplexing. However, since
the performance of interference alignment only depends on
the transmission power of the desired signal (but not on
the interference power), the average utility of the scheduling
scheme with interference alignment remains almost constant.
Second, when the base stations are close to each other (d is
small), the inter-cell interference dominates the performance,
and the interference alignment strategy is preferable for most
of the users. On the contrary, when the two base stations
are far apart from each other (d is large), the impact of the
inter-cell interference becomes insignificant compared to the
noise, and spatial multiplexing becomes superior for most of
the users in the system. The performance of the proposed
scheduling scheme for different numbers of cell-edge users
(Ne) is shown in Fig. 4, where PT = 20 dBm and d = 1 km.
As can be observed, the performance of all scheduling schemes
degrades as Ne increases. Specifically, the performance of the
proposed scheduling scheme is close to that of the scheme with
spatial multiplexing when Ne is small, while it approaches
the performance of the scheme with interference alignment
when Ne is large. This is because on average interference
alignment outperforms spatial multiplexing for users in the
cell-edge region. Therefore, when there are few cell-edge
users, the proposed scheduling scheme will choose to use
spatial multiplexing most of the time. On the other hand,
when the system is dominated by cell-edge users, the proposed
scheduling scheme tends to use interference alignment.

Next, we compare the performance of the proposed schedul-
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Fig. 4. Two-cell model: the average utility versus the number of cell-edge
users Ne for PT = 20 dBm and d = 1 km.
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Proposed distributed scheme

Weighted sum−rate maximization scheme

Ne = 3

Ne = 5

Fig. 5. Two-cell model: the average utility versus transmission power PT

for d = 1 km and Ne = 3, 5.

ing scheme with a weighted sum-rate maximization (WSRM)
scheduling scheme. The WSRM scheduling scheme aims to
maximize the weighted sum of all users’ rates in each time
slot, where the weight for a user is chosen as its corresponding
queue backlog. It is shown in [30] that this scheduling scheme
guarantees the system stability when the average data arrival
rates are in the feasible region. In Fig. 5, we show the
average utility for the proposed centralized and distributed
scheduling schemes, as well as the WSRM scheme for which
the transmission strategy selection was implemented in a
centralized manner. As can be seen, the proposed distributed
scheduling scheme achieves almost the same performance as
the centralized scheduling scheme, which demonstrates its ef-
fectiveness. Both the proposed schemes achieve a higher utility
than the WSRM scheme, which implies that the proposed
schemes are superior in fairly allocating the resources to the
users while stabilizing the system.

We also evaluate the performance of the proposed schedul-
ing schemes for imperfect CSI. We adopt the imperfect CSI
model in Section III-C, and set e = 0.05. The other simulation
parameters are identical to those in Fig. 2. Fig. 6 shows the
average utility of the proposed schemes with and without rate
adjustment for different transmission powers (PT ), where we
set ξ0 = 0.05. The scheduling schemes with rate adjustment
achieve significant performance improvement compared to
those without rate adjustment. Fig. 7 shows the average utility
of the proposed schemes with rate adjustment for different
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Fig. 6. Two-cell model: the average utility versus transmission power PT

for ξ0 = 0.05.
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Fig. 7. Two-cell model: the average utility versus ξ0 for PT = 20, 30 dBm.

ξ0 values. It is shown that the average utility first increases
with ξ0 and then decreases when ξ0 exceeds some value. The
reason for this behavior is as follows. According to Section
III-C, a larger ξ0 implies a larger weighting factor (psik), which
tends to increase the effective service rate. Increasing ξ0 may
also increase the outage probability, which tends to degrade
the effective service rate. When ξ0 is small, increasing the
weighting factor has a greater impact and the average effec-
tive service rate becomes larger. However, when ξ0 exceeds
some values, the impact of increasing the outage probability
becomes significant and the average effective service rate starts
to decrease.

Finally, we evaluate the performance of the proposed
scheduling schemes for a three-cell model. The system model
is shown in Fig. 1 (b), where the distance between any two
base stations is 1 km and 10 users are randomly deployed
in each cell. Other system parameters are identical to those
of the two-cell model. The three-cell interference alignment
scheme is implemented according to [9]. We evaluate the
performance for both perfect and imperfect CSI. Fig. 8 shows
the performance for different transmission powers at the base
stations, where the proposed scheduling scheme achieves a
better performance compared to schemes without transmission
strategy selection. Fig. 9 shows the results for an imperfect
CSI scenario with e = 0.03 and ξ0 = 0.05, where the pro-
posed centralized and distributed schemes with rate adjustment
achieve superior performance compared to those without rate
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Fig. 8. Three-cell model: the average utility versus transmission power PT

for perfect CSI.

adjustment. Note that the results in Figs. 8 and 9 are consistent
with those for the two-cell model, which demonstrates the
effectiveness of the proposed strategy.

V. CONCLUSION

In this paper, we designed scheduling schemes with trans-
mission strategy selection for the downlink of MIMO systems.
We employed two MIMO transmission strategies, spatial mul-
tiplexing and interference alignment, to improve the system
performance. Based on a stochastic optimization technique,
we proposed a centralized dynamic scheduling scheme which
jointly selects a user and the corresponding transmission strat-
egy for each base station to maximize the overall system utility
while keeping the system stable. To reduce the communication
overhead, we proposed a distributed scheduling algorithm
which only requires limited message exchanges between the
base stations. We also discussed the impact of imperfect CSI
on the performance of the proposed scheduling schemes and
introduced a rate adjustment approach to improve the system
performance for imperfect CSI. Simulation results showed that
the performance of the proposed distributed scheduling scheme
is close to that of the centralized scheduling scheme, and both
schemes achieved a better performance than schemes with
a single transmission strategy, especially for the case where
inter-cell interference dominates the performance of some
users. While this work studied the multi-cell system where
base stations have a common interest, it is also interesting to
consider systems with selfish base stations and design energy
efficient scheduling schemes. These are interesting topics for
future work.

APPENDIX A : PROOF OF PROPOSITION 1
Proof: First, with the auxiliary variables γ[t] =

(γik[t], k ∈ Ki, i ∈ I), we introduce the following problem:

maximize
lk[t]∈S,s[t]∈S

φ(γ)

subject to
∑
k∈Ki

lk[t] = 1, ∀ i ∈ I, t ∈ {1, 2, . . .},

Rik ≥ Aik, ∀ k ∈ Ki, i ∈ I,
γik ≤ Rik, ∀ k ∈ Ki, i ∈ I,
0 ≤ γik ≤ γmax, ∀ k ∈ Ki. i ∈ I,

(22)
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Fig. 9. Three-cell model: the average utility versus transmission power PT

for imperfect CSI for ξ0 = 0.05.

where φ(γ) = limt→∞
1
t

∑t−1
τ=0 φ(γ) and γik =

limt→∞
1
t

∑t−1
τ=0 γik[τ ]. According to [23, Chapter 5], it can

be proved that designing a policy to solve problem (22)
ensures all the desired constraints of the original problem are
satisfied while providing a utility that is at least as good as
φ(R∗(γmax)), where R∗(γmax) is the solution to the original
problem (10) with the additional constraint 0 ≤ Rik ≤
γmax, ∀ k ∈ Ki, i ∈ I.
We denote Θ[t] = [Q[t],W[t]], and define a Lyapunov
function:

L(Θ[t])
4
=

1

2

(∑
i∈I

∑
k∈Ki

Qik[t]2 +
∑
i∈I

∑
k∈Ki

Wik[t]2

)
. (23)

Then, we have

L(Θ[t+ 1])− L(Θ[t])

=
1

2

∑
i∈I

∑
k∈Ki

(
Qik[t+ 1]2 −Qik[t]2

)
+

1

2

∑
i∈I

∑
k∈Ki

(
Wik[t+ 1]2 −Wik[t]2

)
=

1

2

∑
i∈I

∑
k∈Ki

(
(max[Qik[t]−Rik[t], 0] +Aik[t])2

− Qik[t]2
)

+
1

2

∑
i∈I

∑
k∈Ki

(
(max[Wik[t]−Rik[t], 0]

+ γik[t])2 −Wik[t]2
)

≤
∑
i∈I

∑
k∈Ki

1

2

(
Aik[t]2 + γik[t]2 + 2Rik[t]2

)
+
∑
i∈I

∑
k∈Ki

Qik[t](Aik[t]−Rik[t])

+
∑
i∈I

∑
k∈Ki

Wik[t](γik[t]−Rik[t]). (24)

We define a Lyapunov drift as

∆(Θ[t])
4
=E

{
L(Θ[t+ 1])− L(Θ[t])

∣∣ Θ[t]
}
.

It can be shown that

∆(Θ[t])



≤ E

{∑
i∈I

∑
k∈Ki

1

2

(
Aik[t]2 + γik[t]2 + 2Rik[t]2

) ∣∣ Θ[t]

}

+ E

{∑
i∈I

∑
k∈Ki

Qik[t](Aik[t]−Rik[t])
∣∣ Θ[t]

}

+ E

{∑
i∈I

∑
k∈Ki

Wik[t](γik[t]−Rik[t])
∣∣ Θ[t]

}
. (25)

Now, we define D as a finite constant that bounds the first
term on the right-hand-side of the above drift inequality, so
that for all t, all possible Θ[t], and all possible control actions
that can be taken, we have

E

{∑
i∈I

∑
k∈Ki

1

2

(
Aik[t]2 + γik[t]2 + 2Rik[t]2

) ∣∣ Θ[t]

}
≤ D.

(26)
Assuming i.i.d. channels, from (25), we have

∆(Θ[t])− βE{φ(γ[t])
∣∣ Θ[t]}

≤ D − βE
{
φ(γ[t])

∣∣ Θ[t]
}

+ E

{∑
i∈I

∑
k∈Ki

Qik[t](Aik[t]−Rik[t])
∣∣ Θ[t]

}

+ E

{∑
i∈I

∑
k∈Ki

Wik[t](γik[t]−Rik[t])
∣∣ Θ[t]

}
.

(27)

The proposed stochastic optimization steps (i)-(iii) in Section
III-A aim to minimize the right-hand-side of the above in-
equality given any realization of Θ[t], which leads to

∆(Θ[t])− βE
{
φ(γ[t])

∣∣ Θ[t]
}

≤ D − βφ(γ∗)

+ E

{∑
i∈I

∑
k∈Ki

Qik[t](A∗ik[t]−R∗ik[t])
∣∣ Θ[t]

}

+ E

{∑
i∈I

∑
k∈Ki

Wik[t](γ∗ik −R∗ik[t])
∣∣ Θ[t]

}
, (28)

where γ∗ = (γ∗ik, k ∈ Ki, i ∈ I) is any vector in the feasible
region, A∗ik is any arrival rate, and R∗ik is derived from any
feasible scheduling policy. It has been shown in [23, Chapter
5] that if a feasible solution of the original problem exists, for
any δ > 0, there is a feasible scheduling policy and a vector
γ∗ such that

−φ(γ∗) ≤ −φ(R∗(γmax)) + δ
E {A∗ik[t]−R∗ik[t]} ≤ δ, ∀ k ∈ Ki, i ∈ I,
E {(γ∗ik[t]−R∗ik[t])} ≤ δ, ∀ k ∈ Ki. i ∈ I.

(29)

Taking δ → 0, together with (28), we have

∆(Θ[t])− βE
{
φ(γ[t])

∣∣Θ[t]
}
≤ D − βφ(R∗(γmax)). (30)

By applying the telescoping sums in the above inequality
(where we take the value of t in (30) from 0 to t − 1 and
take the summation of both sides of all the inequalities), for
all t > 0, we have

1

t

t−1∑
τ=0

E{φ(γ[t])
∣∣Θ[t]} ≥ φ(R∗(γmax))−D/β−E{L(Θ(0))}

βt
.

(31)

According to Jensen’s inequality for the concave function φ(·),
we have

lim
t→∞

inf φ (γ) ≥ φ(R∗(γmax))−D/β. (32)

On the other hand, rearranging (30) yields

∆(Θ[t]) ≤ D + β
(
E
{
φ(γ[t])

∣∣ Θ[t]
}
− φ(R∗(γmax))

)
.

(33)
According to the Lyapunov Drift Theorem in [23, Chapter 1],
(33) implies that all the queues are mean rate stable, which
means γik − Rik ≤ 0. Using this along with the continuity
and entrywise non-decreasing properties of φ(·), we have

lim
t→∞

inf φ

(
1

t

t−1∑
τ=0

E[R[τ ]]

)
≥ lim

t→∞
inf φ (γ) ≥ φ(R∗(γmax))−D/β. (34)

Note that we assume there exists a feasible scheduling scheme
ν which leads to 0 ≤ E{Rνik[t]} ≤ γmax, E{Aik[t]−Rνik[t]} ≤
−ε, and φ(E{Rνik[t]}) = φε. From (28), we have

∆(Θ[t]) ≤ D+β
(
E
{
φ(γ[t])

∣∣Θ[t]
}
− φε

)
−ε
∑
i∈I

∑
k∈Ki

Qik[t].

(35)
By rearranging the above inequality and taking iterated expec-
tations and telescoping sums, we obtain

1

t

t−1∑
τ=0

∑
i∈I

∑
k∈Ki

E{Qik[τ ]}

≤
D + β( 1

t

∑t−1
τ=0 E{φ(γ[τ ])} − φε)

ε
− E{L(Θ(0))}

εt
.

(36)

Since limt→∞
1
t

∑t−1
τ=0 E{φ(γ[τ ])} ≤ φ(R∗(γmax)), taking

limt→∞ sup at both sides of (36), we have

lim
t→∞

sup
1

t

t−1∑
τ=0

∑
i∈I

∑
k∈Ki

E{Qik[τ ]}

≤ D + β(φ(R∗(γmax))− φε)
ε

. (37)

This completes the proof.
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