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Abstract—Massive Internet of Things (mIoT) is a major use
case of the fifth generation (5G) wireless systems. mIoT aims
to support a large number of connection requests from IoT
devices. However, the conventional Long Term Evolution (LTE)
random access procedure hinders the support of mIoT due
to the limited number of available preambles. In this paper,
we propose to aggregate two Zadoff-Chu preamble sequences
from two different roots to obtain a larger set of preambles by
considering all possible combinations of preamble sequence pairs.
Decoding the aggregate preambles is challenging because the
receiver needs to decode two preamble sequences where each one
is allocated half of the transmit power. We propose two receiver
architectures for preamble decoding. The first one is a threshold-
based receiver which only requires minor changes to the LTE
preamble receiver architecture. The second proposed preamble
decoder architecture exploits a deep neural network. Simulations
show that the proposed aggregate preamble design results in
a lower service time for backlogged IoT devices compared to
existing collision avoidance techniques. Moreover, the proposed
receiver architectures can decode the aggregate preambles with
low probabilities of misdetection and false alarm (less than 11%),
especially in the high signal-to-noise ratio (SNR) regime.

Index Terms—Massive Internet of Things (mIoT), preamble
sequence design, random access, deep neural networks.

I. INTRODUCTION

The number of connected Internet of Things (IoT) devices is
expected to reach 14.7 billion by 2023 [2]. The fifth generation
(5G) wireless technologies, such as New Radio [3], aim at
supporting the massive IoT (mIoT) use case [4]. For mIoT,
connectivity for a large number of low-cost low-power IoT
devices has to be provided within a given area. IoT devices
communicate with their servers and among each other with
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minimal human intervention [5]. High connection density
and low energy consumption are the main requirements of
the mIoT use case, where typical applications include smart
home, smart cities, wearables, and environmental sensing. The
number of simultaneous connections can reach one million per
km2 [6]. In addition, the battery lifetime of IoT devices is
required to be at least 10 years due to potential difficulties in
battery replacement in some IoT applications.

Enhancing the random access design of 5G networks is a
major challenge towards supporting mIoT [7]. An IoT device
initiates the random access procedure to establish a cellular
network connection by sending a randomly selected preamble
sequence [8]. This procedure takes place before data packets
are sent. In Long Term Evolution (LTE), only 64 orthogonal
preambles generated from Zadoff-Chu sequences are available
as specified in [9]. Preamble collision occurs when multiple
devices select the same preamble within a single random
access opportunity. Given the limited number of preambles
and the massive number of concurrent random access requests,
there is a high probability of preamble collision. In case
of preamble collision, the IoT devices have to backoff and
attempt to retransmit the preambles later. When preamble col-
lisions occur frequently, the random access procedure becomes
inefficient as the IoT devices have to wait for a longer time to
start data transmission, especially when multiple preamble re-
transmissions are required. In addition, retransmissions cause
the power consumption of the battery-powered IoT devices to
increase. Thus, it is desirable to improve the random access
design of 5G networks to meet the requirements of mIoT.

Several random access schemes have been proposed to
alleviate the random access contention. Access class barring
(ACB) assigns a higher access probability to high priority
devices in order to reduce the random access contention [10].
This is achieved by assigning an ACB factor to each quality of
service (QoS) class. Then, each IoT device sends a preamble
with a probability that is equal to the ACB factor associated
with its QoS class. This reduces the number of contending
devices in the random access procedure during each random
access opportunity. In [11], the random access contention is
reduced by optimizing the ACB factor based on the knowledge
of the number of backlogged IoT devices. In [12], an algorithm
is proposed to adjust the ACB factor so as to maximize
the number of successfully served IoT devices using timing
advance information. Primary and secondary ACB factors are
used in [13] to reduce the random access delay by allowing
the secondary devices to bypass the preamble transmission
step in the random access procedure based on information



from the base station regarding the preambles occupied by
those primary devices which transmitted preambles earlier.
The schemes in [11]–[13] require prior knowledge of the
number of backlogged IoT devices, which may not be available
in all scenarios. To address this issue, pseudo-Bayesian ACB
is proposed in [14], where the ACB factor depends on the
estimated number of IoT devices given the number of unused
preambles. However, ACB requires the IoT devices to have
different priorities, which may not be the case in mIoT.
Another random access contention alleviation approach is to
divide the IoT devices into clusters based on their geographical
locations. Each cluster has a cluster head that is responsible
for transmitting one preamble for all devices in its cluster
[15]. Clustering reduces preamble transmissions but entails the
additional complexities of cluster formation and cluster head
selection. The authors in [16] propose a scheme that combines
transmit power ramping (i.e., increasing the transmit power
for each failed random access attempt) and backoff, and is
shown to outperform ACB in heavy traffic scenarios. However,
power ramping and multiple random access attempts may not
be energy efficient for mIoT devices.

The authors in [17] propose a non-orthogonal random access
(NORA) scheme which can detect the colliding preambles
of multiple IoT devices based on the differences in their
time of arrival. In particular, NORA resolves the preamble
collision problem by allowing power-domain multiplexing of
access request messages from multiple IoT devices. On the
other hand, code-domain multiplexing is employed in [18]–
[20], where sparse code multiple access (SCMA) and repeated
preamble transmissions over multiple time slots are used to
resolve preamble collisions. Other works, such as [21]–[23],
use the concept of grant-free multiple access, which eliminates
the random access procedure and allows devices to send
data directly without waiting for the granting of the radio
resources by the base station. For example, successive decod-
ing is employed in [21] to decode superimposed messages
in collision time slots by using the decoded messages from
singleton time slots (i.e., slots without collisions). In addition,
some unlicensed band technologies for enabling IoT, such as
SigFox and long-range wide access network (LoRaWAN), use
unslotted Aloha-like data transmission [24]. However, grant-
free transmission is more suitable for ultra-reliable and low
latency communications (URLLC) applications with stringent
deadlines. On the other hand, the majority of mIoT applica-
tions are delay-tolerant, and hence, grant-based transmission
may be better suited.

Furthermore, another random access enhancement option
is to modify the preamble sequence design so that a larger
set of preambles is available to facilitate random access and
accommodate the expected large number of IoT devices. The
preambles generated from Zadoff-Chu sequences are cyclic
shifted versions of a basic sequence referred to as the root
sequence [9]. A naive approach to generate more preambles is
to reduce the cyclic shift value, but this may cause ambiguity
at the receiver when the distance between the device and the
base station is large. In general, a smaller cyclic shift leads
to a smaller coverage area for the base station, which makes
it an inefficient solution for macrocells. Hence, to obtain a

larger set of preambles, the design of the Zadoff-Chu-based
random access preambles has to be modified. In [25], multiple
preamble transmissions are performed, where each IoT device
can either transmit the same preamble multiple times or trans-
mit a subset of different preambles consecutively. However,
this scheme introduces extra overhead to the physical random
access channel (PRACH). In [26], the addition of Zadoff-Chu
sequences to cover sequences is proposed in order to increase
the number of preambles and reduce random access collisions.
The concept of virtual preambles is introduced in [27], where
an IoT device transmits a PRACH preamble over a specific
narrowband channel to reduce the probability of preamble
collision.

To enable efficient random access for mIoT, new preamble
sequence designs, which can provide a larger number of
preamble sequences, are a promising approach. Although some
existing techniques, such as ACB and backoff, can mitigate
random access contention and collisions, they incur a long
random access delay. Consequently, the IoT devices need to
stay in the active mode for a longer time, which results in
a higher energy consumption. On the other hand, savings
in data transmission latency with grant-free multiple access
may not be essential for delay-tolerant mIoT applications. For
seamless integration with 5G standards, it is desirable that
new preamble sequence designs can utilize similar building
blocks at the transmitter side as the conventional Zadoff-
Chu preamble sequences in LTE. In [28], an extended set of
preambles is generated via element-by-element multiplication
of Zadoff-Chu sequences and cover sequences. An enhanced
preamble detection technique is developed in [29], where
additional iterations are used to exclude preambles that are de-
tected incorrectly due to channel impairments (e.g., frequency
offset). In [30], a preamble detection technique is proposed
for detection of non-orthogonal preambles in order to enable
the use of a larger set of preambles in each cell.

In our previous work [1], we propose a preamble design
where two preamble Zadoff-Chu sequences are aggregated to
generate up to

(
64
2

)
= 2,016 preambles instead of the 64

preambles for one Zadoff-Chu root sequence. This scheme
enlarges the set of preamble sequences. It only requires minor
changes to the conventional PRACH transmitter and receiver,
which facilitate the integration of the proposed scheme in
the 5G standard. However, the design in [1] imposes several
challenges. As the IoT devices divide their transmit power
over two preambles, the probability of preamble misdetection
increases, especially when the received signal-to-noise ratio
(SNR) is low. In addition, reducing the received power thresh-
old for preamble detection in the low SNR regime results in a
higher probability of false alarm (i.e., a higher probability of
detecting preambles that have not been actually transmitted).
In addition, the false alarm probability is expected to increase
further as the number of preamble transmissions by the IoT
devices increases.

In this paper, we propose to aggregate two preamble Zadoff-
Chu sequences with two different roots to generate up to 642

= 4,096 preambles. Similar to [1], the proposed aggregate
preamble design reduces the probability of preamble collision
and enables 5G systems to support the mIoT use case. The



new preamble sequences can be generated and decoded by
applying minor changes to the conventional LTE PRACH
transmitter and receiver, respectively. We also propose to select
a subset of the aggregate preambles with low peak-to-average
power ratio (PAPR) to reduce the energy consumption of the
IoT devices. Moreover, generating the aggregate preambles
using Zadoff-Chu sequences with two different roots enables
preamble detection with a low probability of false alarm (less
than 11%). We enhance the aggregate preamble detection
performance by proposing a novel receiver architecture based
on training a deep neural network (DNN) [31]. DNN is a
powerful supervised machine learning tool that can learn the
input-output relation of a system to predict the output for a
given input in an autonomous manner [32]. Recently, machine
learning techniques, and DNNs in particular, have been used to
solve various problems in communication systems, including
interference management [33], power control for interfering
links [34], user clustering in millimeter wave non-orthogonal
multiple access networks [35], joint transmitter and receiver
design optimization [36], [37], and data sequence detection in
optical and molecular communications [38]. In this paper, we
utilize the correlation vector obtained from the first stage of the
PRACH receiver, which represents the correlation between the
received signal and the Zadoff-Chu preamble sequences, as the
input of a DNN for aggregate preamble detection. We generate
labelled datasets via simulations to train the DNNs (i.e., obtain
the DNN parameters). Each sample in the dataset has a vector
of correlation values as input features and a vector of binary
labels that indicate the correct aggregate preambles to be
detected for this sample. The same approach can also be used
for training DNNs to detect the conventional single preambles.
Moreover, the resulting DNNs are found to correctly detect
the aggregate preambles with a high probability in the high
SNR regime. The main contributions of this paper can be
summarized as follows:

• We propose a new preamble sequence design for mIoT by
aggregating two different Zadoff-Chu sequence pream-
bles generated from two different roots to increase the
number of available random access preambles.

• We present a threshold-based receiver architecture, which
only requires minor changes to the conventional PRACH
receiver.

• We propose a novel PRACH receiver architecture by
training a DNN, where the decoding of the aggregate
Zadoff-Chu preambles is a multi-label classification prob-
lem. We train the DNN (i.e., obtain the DNN parameters)
by generating labelled datasets via simulations.

• Simulation results show that the proposed preamble de-
sign reduces the probability of preamble collision to less
than 10−4, which is lower than that of the conventional
LTE PRACH. The proposed preamble design also reduces
the average total service time compared to ACB. In
addition, both the threshold-based and the DNN-based
receiver architectures can decode the aggregate preambles
with low probabilities of misdetection and false alarm,
especially when the SNR is high.

The remainder of this paper is organized as follows. In
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Fig. 1. Contention-based random access procedure in LTE systems [8].

Section II, we present an overview of the random access proce-
dure, the new preamble sequence design and the corresponding
transmitter structure, and the threshold-based receiver struc-
ture. In Section III, we propose a novel PRACH receiver
architecture for preamble detection which is based on a set of
DNNs. In Section IV, we first analyze the outage probability
and verify it by simulations. Then, based on simulations, we
evaluate the PAPR, the probability of preamble collision, the
total service time, and the probability of preamble detection
at the receiver. Section V concludes the paper.

II. NEW PREAMBLE SEQUENCE DESIGN

In this section, we first review the random access procedure
in LTE. We then present the proposed new preamble sequence
design as well as the transmitter and receiver structures
that generate and decode the proposed preamble sequences,
respectively.

A. Random Access Procedure in LTE

In LTE, each IoT device is required to establish a connection
with the base station before transmitting data packets by initi-
ating a contention-based random access procedure, as shown in
Fig. 1 [8]. In particular, the IoT device first sends a randomly
selected preamble during a random access opportunity (Step 1)
and waits for a random access response (RAR) message from
the base station (Step 2). After receiving the RAR message, the
IoT device extracts the control information (e.g., the preamble
identifier, the timing advance information, and an initial uplink
resource grant) and transmits a radio resource connection
(RRC) request (Step 3). Finally, the IoT device waits for an
uplink radio resource grant for data transmission from the base
station (Step 4). There are 64 orthogonal preambles generated
from the Zadoff-Chu sequences as specified in [9]. Due to the
orthogonality, different preambles transmitted by multiple IoT
devices can be decoded by the base station at the same time.
However, a collision occurs when two or more IoT devices
select the same preamble and transmit simultaneously (i.e., in
the same random access opportunity), which is very probable
in mIoT scenarios.

In LTE, orthogonal preamble sequences of length Nzc are
generated using Zadoff-Chu sequences for a given cyclic shift
Ncs and root index l that is selected from a set of available
roots L = {1, . . . , Nzc − 1} [9]. Given a set of preamble
indices M = {1, . . . ,M}, each preamble has a unique index
m ∈ M. We denote the preamble with index m that is



generated using root index l ∈ L as slm. The first preamble
sl1 is the root sequence. The other preambles are generated
by cyclically shifting the root sequence by multiples of Ncs.
Hence, the number of orthogonal preambles per root M is
equal to bNzc/Ncsc, where b·c denotes the floor function.
Taking the LTE preamble formats 0 − 3 [9] as an example,
when Nzc is equal to 839 and Ncs is equal to 13, there are 64
preambles per root. Note that the preambles can take different
formats that differ in the length of the preamble sequence and
in the length of cyclic prefix. For channels with deep fading,
longer sequences and longer cyclic prefixes (e.g., format 3) can
be used to enhance the reliability of preamble transmission and
combat channel fading.

B. Preamble Aggregation
We propose to enlarge the set of preambles by adding two

preamble sequences, e.g., sla and sl
′

b , that have the same length
Nzc for given root indices l, l′ ∈ L, where a, b ∈ M,
and l 6= l′. A one-to-one mapping function g is used for
selecting l′ for given a, i.e., l′ = g(a). This means that each
possible value of the preamble index a corresponds to a unique
root index l′ to generate the second preamble sl

′

b . Here, l is
referred to as the primary root and all possible values of l′

are referred to as secondary roots. The rationale behind this
design is to facilitate the association of pairs of preambles in a
given aggregate preamble. For example, when preamble sl

′

b is
detected, it can be easily associated with sla since l′ = g(a) and
l is fixed for a given base station. Further details are provided
in Section II.D. An example mapping function is given by
l′ = (l + Aa), where A is a positive integer that satisfies
inequality AM ≤ Nzc− 1. The resulting aggregate preamble,
denoted by ql,l

′

a,b , is given by

ql,l
′

a,b [n] = αas
l
a[n] + αbs

l′

b [n], ∀ l, l′ ∈ L, l′ = g(a),

a, b ∈M, 0 ≤ n < Nzc, (1)

where n is the discrete time index. αa and αb denote the power
scaling coefficients of preambles sla and sl

′

b , respectively,
such that α2

a + α2
b = 1. Hence, the number of preambles

generated can be increased from M = 64 to M2 = 642 =
4,096. With a larger number of preambles, the probability
of preamble collision in the random access procedure can
be reduced significantly. Moreover, the proposed aggregate
preamble design can easily be implemented and be considered
for adoption in future standards as only minimal upgrades of
the conventional LTE transmitter and receiver are required.
Specifically, the transmitter only needs to average two pream-
ble sequences, while the receiver only needs to handle the
detection of two preamble sequences to decode the aggregate
preamble. Throughout this paper, we refer to the conventional
Zadoff-Chu preamble sequences (e.g., sla) as single preambles
and to the preamble sequences resulting from aggregating
two Zadoff-Chu preamble sequences (e.g., ql,l

′

a,b) as aggregate
preambles.

C. Transmitter Architecture
The transmitted signal is generated as follows. First, two

preamble sequences sla and sl
′

b are randomly selected and

αa

αb

x

sla

sl'b

ql,l’ Ql,l’ X Cyclic Prefix 

Insertion

Subcarrier 

Mapping
DFT IDFT

qql,ll l’
a,b

QQQl,ll l’
a,b

Fig. 2. Illustration of the transmitter architecture that generates the aggregate
preambles. Preambles sla and sl

′
b are scaled by αa and αb, respectively, and

aggregated. The resulting preamble sequence ql,l
′

a,b is processed by the stages
of DFT, subcarrier mapping, IDFT, and cyclic prefix insertion.

aggregated with power scaling coefficients αa and αb, respec-
tively, to obtain ql,l

′

a,b , as in (1). Then, the aggregate preamble
ql,l
′

a,b is input to the processing of a conventional LTE PRACH
transmitter, as shown in Fig. 2. The required changes with
respect to the conventional PRACH transmitter are confined
to the blue dashed box. Next, a discrete Fourier transform
(DFT) of size Nzc is applied to the aggregate preamble ql,l

′

a,b

to obtain the frequency domain representation Ql,l
′

a,b, which is
given by

Ql,l
′

a,b[k] =

Nzc−1∑
n=0

ql,l
′

a,b [n] exp

(
−j2πnk
Nzc

)
, 0 ≤ k < Nzc, (2)

where k is the index in the discrete frequency domain. Then,
after subcarrier mapping, we obtain the transmitted signal in
the frequency domain, denoted by X in Fig. 2. This step is
followed by an inverse discrete Fourier transform (IDFT) of
size (1/(∆fRATs)), where ∆fRA is the preamble subcarrier
spacing and Ts is the LTE basic time unit. In LTE, ∆fRA =
1.25 kHz and 1/Ts = 30.72 MHz for preamble formats 0−3,
which results in an IDFT size of 24,576 [9]. After adding the
cyclic prefix, the transmitted signal in the time domain x[t] is
given by

x[t] = βPRACH

Nzc−1∑
k=0

Qla,b[k]

× exp
(
−j2π(k + ϕ+K(k0 + 0.5))∆fRA(t− TCP)

)
,

0 ≤ t < TCP + TSEQ, (3)

where βPRACH is the PRACH amplitude scaling factor [9]. TCP
and TSEQ are the cyclic prefix length and sequence length,
respectively. ϕ, K, and k0 are constant PRACH parameters
that are used to map the transmitted signal to the proper
subcarriers based on the preamble format as specified in
[9]. The received signal y[t] at the base station, assuming a
frequency-selective fading channel with impulse response h[j]
with J + 1 taps, can be expressed as

y[t] =

J∑
j=0

h[j]x[t− j] + z[t], 0 ≤ t < TCP + TSEQ, (4)

where z[t] is the complex additive white Gaussian noise
(AWGN).

D. Threshold-based Receiver Architecture

Given the received signal y at the base station, the estimates
of the transmitted preamble pairs of the different devices
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′
1 (l′ = g(m)) to obtain the preamble(s) paired with ŝlm, i.e., ŝ′.

can be obtained by directly correlating the received signal
with all possible preamble pairs ql,l

′

a,b , a, b ∈ M. However,
this requires the calculation of the correlation with all 4,096
possible preamble pairs, which entails a high complexity.

To circumvent this, we propose an alternate receiver archi-
tecture that requires only one additional stage compared to
the conventional PRACH receiver, which is contained in the
blue dashed box in Fig. 3. This additional stage correlates
the received signal with the root sequence of the candidate
secondary roots to identify the paired preamble. In particular,
the received signal y is processed by the stages of cyclic
prefix removal, DFT, and subcarrier demapping. The frequency
domain representation of the received signal, denoted as Y [k],
is multiplied by the complex conjugate of the frequency
domain representation of the root sequence of the primary
root l, denoted as Sl1. The resulting time correlation c[n] can
be expressed as

c[n] =
1

NIDFT

NIDFT−1∑
k=0

Y [k](Sl1[k])∗ exp

(
j2πkn

NIDFT

)
,

0 ≤ n < NIDFT, (5)

where NIDFT is the IDFT size, and (·)∗ denotes complex
conjugation. Since the other preamble sequences sl2, . . . , s

l
M

are cyclically shifted versions of sl1, c[n] represents the cor-
relation with all preambles slm, m ∈ M. The range of n,
i.e., [0, NIDFT), is divided into M partitions. Each partition
corresponds to one preamble sequence slm. Let nm denote
the set of consecutive values of n in the partition associ-
ated with preamble slm. For example, n1 = {nst, . . . , nend},
0≤ nst, nend< NIDFT, denotes the set of the values of n in the
partition associated with root sequence sl1. Then, n2 can be
defined as {(nend + 1) mod NIDFT, . . . , (n

end + bNIDFT/Mc)
mod NIDFT}, and so on for all m ∈M. The maximum value

of c[n] in a given partition m, i.e., maxn∈nm
c[n], is the

correlation between the received signal and the corresponding
preamble slm. Hence, having an impulse at index n that
exceeds a certain threshold indicates that the corresponding
preamble was transmitted. The signature detection stage in
Fig. 3 determines the set of estimated transmitted preambles
ŝ based on the following rule

ŝ = {ŝlm | max
n∈nm

c[n] > C, m ∈M}, (6)

where C is a threshold value that is chosen to meet a
certain detection requirement. Note that we cannot employ
equalization since the channel state information (CSI) is not
available at the base station because the preamble transmission
is the first communication between the IoT device and the
base station before any data transmission or channel estimation
takes place.

In Fig. 4, examples of correlation vectors c[n] are shown
for the case of two devices sending two aggregate preambles
with primary root index l = 129 to the base station. In these
examples, we focus on the upper branch of the receiver in
Fig. 3, where we only detect preambles using the primary
root. In Fig. 4 (a), the received preambles ŝ = {ŝ129

53 , ŝ
129
39 } can

easily be identified in the absence of delay, channel noise, and
fading since c[n] has impulses at values of n that correspond
to these two preambles. Fig. 4 (b) shows a case where false
alarms may occur in the presence of AWGN and the extended
typical urban (ETU) fading channel [39]. When the detection
threshold C is set to 0.06, we have ŝ = {ŝ129

53 , ŝ
129
39 }. However,

when C = 0.04, we have ŝ = {ŝ129
53 , ŝ

129
39 , ŝ

129
a , ŝ129

b }, where
s129
a and s129

b are detected although they were not transmitted
by any device. This can be avoided by tuning the threshold C
to meet certain detection or false alarm criteria.

Furthermore, for each estimated preamble ŝlm using the
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Fig. 4. Examples of correlation vectors c[n]. (a) In the absence of delay,
noise, and channel fading, the transmitted preambles are detected successfully
without any false alarms. (b) With AWGN and for the ETU fading channel,
the receiver may suffer from false alarms (red circles).

root sequence of the primary root, we obtain the correlation
between Y and the frequency domain representation of the root
sequence of the secondary root l′ = g(m), i.e., Sg(m)

1 = Sl
′

1 ,
which can be expressed as

c′[n] =
1

NIDFT

NIDFT−1∑
k=0

Y [k](S
g(m)
1 [k])∗ exp

(
j2πkn

NIDFT

)
,

ŝlm ∈ ŝ, 0 ≤ n < NIDFT. (7)

Similarly, the preamble transmitted using the secondary root
is detected according to a correlation threshold C ′

ŝ′ = {ŝ′ l
′

m′ | max
n∈nm′

c′[n] > C ′, m′ ∈M}. (8)

Hence, given an estimated preamble slm using the root se-
quence of the primary root sl1 and an estimated preamble sl

′

m′

using the root sequence of the secondary root sl
′

1 , l′ = g(m),
we estimate that the aggregate preamble ql,l

′

m,m′ is received by
the base station. We define qe as the set of all received ag-
gregate preambles. The algorithm for detecting the aggregate
preamble sequences is given in Algorithm 1. In Steps 3−4,
the preambles generated using the primary root are estimated.
In Steps 5−11, the set of received aggregate preambles are
estimated by determining the preambles transmitted using the
secondary roots that correspond to the estimated preambles in
Steps 3−4.

The proposed transmitter and receiver architectures require
only minor changes to the conventional PRACH transmitter
and receiver. This makes the proposed preamble sequence de-
sign a promising candidate to support mIoT without significant
changes to the 5G standard.

III. DNN-BASED PRACH RECEIVER ARCHITECTURE

In this section, we present the proposed DNN-based
PRACH receiver architecture, where we replace the signature
detection stage in Fig. 3 with a DNN-based detection module,
as shown in Fig. 5. The DNN-based detection stage takes the
correlation vector c[n] (or c′[n]) as input to determine the sets

Algorithm 1: Aggregate Preamble Sequence Detection
Algorithm

1 Input: Y , C, C′, sl1
2 qe := ∅
3 Evaluate c[n] according to (5)
4 Determine the set of estimated preambles ŝ, which are

generated using the primary root sl1 according to (6)
5 for slm ∈ ŝ do
6 Evaluate c′[n] according to (7)
7 Determine the set of estimated preambles ŝ′, which are

generated using the secondary root sl
′
1 , where l′ = g(m),

according to (8)
8 for sl

′
m′ ∈ ŝ′ do

9 qe := qe ∪ {ql,l
′

m,m′}
10 end
11 end
12 Output: qe

of estimated preambles ŝ and ŝ′. Note that the DNN-based
detection stage can also be used for detecting the conventional
single preambles by suitably modifying the DNN parameters.

A. DNN-based Detection

1) Problem Modelling: The detection of the received
preambles at the base station can be modelled as a multi-
label classification problem [40] since multiple classes (i.e.,
preambles) can be detected in a single received PRACH signal.
Multi-label classification problems can be solved by using
one-vs-all classification [40], where one classifier is trained
for each class (i.e., preamble) to decide whether this class is
present in a given sample (i.e., received PRACH signal at the
base station) or not. We need one classifier per single preamble
since multiple classes can be detected simultaneously as mul-
tiple preambles can be detected within a single received signal
instance (i.e., random access opportunity). Hence, the DNN-
based detection stage consists of a number of DNN classifiers
as shown in Fig. 5. Each classifier takes the values in the
correlation vector c[n], 0 ≤ n < NIDFT (or c′[n]) as input
features and generates a binary output θlm ∈ {0, 1}, m ∈M,
for a given root index l ∈ L. The output θlm is set to 1 if the
aggregate preamble slm is detected, and is set to 0 otherwise.
The DNN classifier that detects slm can be employed to detect
the same preamble generated using other root sequences as
well (i.e., for sl

′

m, where l′ 6= l) with the same weights since
the root index does not impact the form of the correlation
vector c[n] (or c′[n]). Hence, for the proposed DNN-based
receiver architecture, we need to train M DNN classifiers (e.g.,
M = 64).

An advantage of the proposed preamble sequence design is
that we only need M DNN classifiers although there are M2

aggregate preambles in total. In addition, training M2 one-vs-
all classifiers is expected to result in a very high false alarm
rate even if each DNN module produce a very small number
of false alarms as the false alarms will accumulate from M2

modules. Similar to the threshold-based receiver in Section
II.D, if preamble slm is detected, then we look for the paired
preamble by correlating the frequency domain representation
of the received signal Y with the root sequence sl

′

1 , l′ = g(m).
We follow the same steps as in Algorithm 1 but we replace
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the signature detection stage with the DNN-based detection
stage (i.e., a group of DNN classifiers) to determine ŝ and ŝ′

in Steps 4 and 7, respectively.

2) DNN Architecture: Each DNN classifier consists of an
input layer, D hidden layers, and an output layer as shown
in Fig. 6. The input layer takes the input features, i.e., the
correlation vector c[n], 0 ≤ n < NIDFT (or c′[n]), and
forwards them to the first hidden layer in the DNN. Each
hidden layer d, 1 ≤ d ≤ D, consists of Id neurons and
takes the output of the preceding layer d − 1 as input. We
denote the input layer as layer 0 and the output layer as layer
D + 1. The output vid of neuron i, 1 ≤ i ≤ Id, in hidden
layer d is the value of the activation function φid(·) obtained
for the weighted sum of the outputs of the preceding layer
vi
′

d−1, 1 ≤ i′ ≤ Id−1,

vid = φid

Id−1∑
i′=1

wi,i
′

d vi
′

d−1 + wi,0d

, 1 ≤ i ≤ Id, 1 ≤ d ≤ D,

(9)
where wi,i

′

d is the weight associated with vi
′

d−1 at neuron i of
hidden layer d and wi,0d is a bias variable. The output layer
D+ 1 consists of a single neuron that estimates θlm based on

the output of the last hidden layer D as follows:

θlm = φ1
D+1

(
ID∑
i′=1

w1,i′

D+1v
i′

D + w1,0
D+1

)
, l ∈ L, m ∈M,

(10)
where θlm ∈ {0, 1}. Note that the preamble and root indices
are removed from the subscripts and superscripts of the DNN
variables for ease of notation. In our DNN, we use the
rectified linear unit (ReLU) function as activation function for
all neurons in the hidden layers and a sigmoid function as
activation function for the output layer neuron. For an arbitrary
variable ν, we have

φid(ν) =

{
max(0, ν), 1 ≤ d ≤ D, 1 ≤ i ≤ Id,

1
1 + exp(−ν) , d = D + 1, i = 1.

(11)

3) Loss Function: To construct a DNN that predicts the
output from the input with the minimum number of classi-
fication errors, the DNN has to be trained to determine the
weights for the neurons in all layers. To train the DNNs, we
use training sets where the output θlm is known for a given
sample of correlation vector input c[n]. In the beginning of
the training phase, the weights are randomly initialized and
then iteratively updated using the backpropagation algorithm
[41]. In the iterations of the backpropagation algorithm, the
RMSprop optimizer [42] is used for optimizing the weights in
each iteration such that the loss defined by the binary cross-
entropy is minimized:

LossBinary Cross-entropy = −θlm log(θ̂lm)− (1− θlm) log(1− θ̂lm),

l ∈ L, m ∈M,
(12)

where θ̂lm is the estimate of θlm for given DNN weights.

4) DNN Architecture Choice Rationale: Determining the
appropriate DNN hyperparameters (e.g., the number of hidden



layers, the number of neurons per layer) requires evaluating
the performance of the DNN after training with a validation
set that is not used for training or testing, and the selection of
the values of the hyperparameters that minimize the validation
loss or error [32, Ch. 1]. However, in this preamble detection
problem, we can give a higher priority to other metrics
when selecting the DNN hyperparameters. In the DNN-based
receiver, we need to achieve a balance between two different
objectives, which are minimizing the probability of false
alarm and minimizing the probability of misdetection. Hence,
for example, we may choose a DNN architecture (or DNN
weights) that may yield a higher loss or error but maintains
the probability of false alarm below a certain threshold.

B. Training Procedure

In this subsection, we describe in details the process of
generating the training datasets that are used to train the
modules of the DNN-based receiver. To generate the training
samples, we first generate the PRACH signals for the IoT
devices with SNR values chosen from a specific SNR range. In
particular, the PRACH signals are generated according to (3)
after randomly selecting a preamble for each IoT device. After
propagating through independent channels, all the PRACH
signals are added at the receiver along with AWGN. Finally,
the received signal is passed through the first five stages of the
DNN-based receiver (i.e., until the IDFT module in Fig. 5) to
obtain the correlation input vector(s) c[n]. The output labels
{θlm} are stored according to the preambles selected by the
IoT devices.

1) Generating Training Samples (Transmitter Side): We
generate the training samples by mimicking realistic scenarios,
where multiple IoT devices, with independent channel condi-
tions, transmit random access preambles to the base station. In
particular, the training samples are generated using simulations
where the number of IoT devices is randomly chosen between
0 and Nmax

Dev . This enables training the DNN-based receiver
to detect multiple preambles at the same time. Each device
randomly selects an aggregate preamble for a given root index
l ∈ L. The transmitted signal of each device is generated
according to (3) using the MATLAB function "ltePRACH"
and propagates through an independent ETU fading channel
with a Doppler frequency of 70 Hz as described in [39]. The
received SNR of each signal is randomly determined according
to a uniform distribution with maximum and minimum SNR
values.

2) Generating Training Samples (Receiver Side): The sig-
nals received from all devices are added along with AWGN,
where each received signal has its own SNR. We assume that
the base station is equipped with four antennas so that the
correlations resulting from the four versions of the received
signal can be added to increase the detection capability. Then,
the received signal is input to the first stages of the receiver
in Fig. 5 (until the IDFT module) to obtain the correlation
vector c[n] using the MATLAB function "ltePRACHDetect".
c[n] represents the input features of the training samples. The
output labels are obtained by setting θlm to 1 if preamble
slm has been selected by any of the devices for preamble
transmission. Similarly, we obtain c′[n] after correlation with

the secondary root sequences and save the corresponding
labels θl

′

m, l′ = g(m). For example, if two IoT devices transmit
the aggregate preambles ql,l

′

a1,b1
and ql,l

′′

a2,b2
, we save three

training entries in our training set. The first entry contains the
correlation vector c[n] obtained from correlating the received
signal with sl1 as a vector of features and the labels θla1 and θla2
are set to 1. The second entry contains the correlation vector
c′[n] obtained from correlating the received signal with sl

′

1 ,
l′ = g(a1), as a vector of features and the label θl

′

b1
is set to 1.

The third entry contains the correlation vector c′′[n] obtained
from correlating the received signal with sl

′′

1 , l′′ = g(a2), as
a vector of features and the label θl

′′

b2
is set to 1.

3) Training Set per DNN Module: In order to train a DNN
that detects a specific preamble sla, we need to generate a
training dataset with a sufficient number of training samples
that include this specific preamble. Hence, we generate a
specific dataset where at least one device transmits this specific
preamble (i.e., θla = 1) with a probability of 0.5 in each
training sample. This setting enables us to have a more
balanced training set and the DNN receiver does not become
biased towards not detecting preambles during training since
they are only present in a few samples if a uniform probability
distribution is considered.

4) Training SNR Selection: Training the DNN-based re-
ceiver using samples within a certain SNR range still allows it
to operate over a wider SNR range. In particular, a DNN-based
receiver can still operate at SNR values that are greater than the
maximum training SNR as preamble detection becomes easier.
Moreover, the receiver can also operate for SNR values that
are lower than the minimum training SNR but with degraded
performance. However, training the DNN-based receiver using
very low SNR values is not advisable since it causes the
receiver to lose its ability to generalize in the high SNR regime
[37] as the receiver tends to detect preambles that are not
present more often (i.e., higher numbers of false alarms) due to
confusing low correlations resulting from low SNR preambles
with low correlations resulting from noise. For training the
DNN classifiers to detect the preambles that form the proposed
aggregate preambles, we set the maximum SNR value to 0 dB
and the minimum SNR value to 0, −3, or −6 dB.

C. Testing Procedure

We consider different types of validation and testing sets
that are described in the following:

1) Validation Set: This set is similar to the training set but
it is not used to train the DNN parameters (i.e., weights).
However, it is used to decide the DNN parameters with
minimum classification errors (or minimum number of false
alarms) for a given a given preamble to avoid overfitting the
training data. We evaluate multiple DNN models for each
preamble and choose the model that achieves the lowest
number of false alarms, i.e., the model with the lowest number
of detection errors caused by the detection of a preamble that
has not been transmitted by any device. If multiple models
achieve the same performance in terms of the false alarms, we
select the model with the lowest number of misdetections, i.e.,
the model with the lowest number of detection errors caused



by not detecting a preamble that has been transmitted by a
device.

2) Fixed SNR Test Sets: Each set consists of test samples
that are generated in a similar manner as the training samples.
However, all preambles are selected by the devices with equal
probability, and all devices have the same SNR value. For a
given test set, there are multiple devices with the same fixed
SNR. Multiple test sets are used to evaluate the performance
of the DNN-based PRACH receiver at different SNR values.
This allows us to plot the probability of misdetection or the
probability of false alarm versus SNR.

IV. PERFORMANCE EVALUATION

In this section, we first analyze the outage probability
of a single device for the transmission of a single or an
aggregate preamble, respectively. Then, based on simulations,
we evaluate the PAPR, the probability of preamble collision,
and the total service time for a group of backlogged IoT
devices when using the proposed preamble sequence design.
We also evaluate the performance of the proposed receiver
architectures in terms of the probabilities of misdetection and
false alarm. Throughout this section, equal power allocation
is assumed, i.e., αa = αb = 1√

2
. First, equal power allocation

ensures that each of the two preambles forming the aggregate
preamble is detected with equal probability at the receiver
without prior knowledge of the preamble selection at the
transmitter. Second, the IoT devices cannot optimize the power
allocation since they do not have CSI before performing the
random access procedure.

A. Analysis of Outage Probability

We perform an outage probability analysis in order to
illustrate the impact of aggregating two preambles on the
probability of preamble misdetection. Consider a typical IoT
device that transmits a random access preamble to the base
station with transmit power P over a Rayleigh fading channel
with gain h and propagation loss Υ. If a single preamble
is transmitted, the entire transmit power is allocated to that
preamble. The received SNR at the base station is given by
γ = PΥ|h|2

σ2 = γ|h|2, where σ2 is the noise power and γ = PΥ
σ2

is the average SNR of the typical device. To detect a single
preamble, the received SNR γ should be greater than a certain
threshold γs [16]. Hence, the outage probability in case of
transmitting a single preamble can be expressed as

P s
out =Pr[γ|h|2 ≤ γs]=Pr

[
|h|2 ≤ γs

γ

]
=1− exp

(
−γs

γ

)
.

(13)
On the other hand, if the aggregate preamble ql,l

′

a,b is trans-
mitted, the transmit power P is divided between the two
aggregated preambles, where transmit powers α2

aP and α2
bP

are allocated to preambles sla and sl
′

b , respectively. Throughout
this analysis, we assume equal power allocation, i.e., α2

a =
α2
b = 1

2 . To detect an aggregate preamble, the received SNR
of each preamble should be greater than a certain threshold
γagg, i.e., α2

aγ|h|2 ≥ γagg and α2
bγ|h|2 ≥ γagg. The correlation

between sla and sl
′

b is small (1/
√
Nzc) and neglected. Hence,
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Fig. 7. Average outage probability for the single and aggregate preambles
versus the average SNR of a typical device γ at different minimum SNR
detection threshold γs.
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Fig. 8. Average outage probability for the single and aggregate preambles
versus different values of the minimum SNR detection threshold γs.

if an aggregate preamble is transmitted, the outage probability
is given by

P agg
out = Pr[min{α2

aγ|h|2, α2
bγ|h|2} ≤ γagg]

= Pr[min{0.5γ|h|2, 0.5γ|h|2} ≤ γagg]

= Pr

[
|h|2 ≤

2γagg

γ

]
= 1− exp

(−2γagg

γ

)
. (14)

Note that choosing γagg to be equal to γs makes the base
station less capable of detecting the aggregate preambles since
the received power from each component of the preamble
pair is less than that of the single preamble. To make the
outage probability for the aggregate preambles equal to that
for the conventional single preambles, we have to set the SNR
threshold as γagg = 1

2γs. However, this would increase the
probability of false alarm, i.e., the detection of a preamble
that is not actually transmitted by any device.

We consider an average SNR γ with a range from −20 dB to
10 dB for the IoT device. We evaluate the outage probabilities
for single and aggregate preamble detection for different
values of the detection thresholds γs and γagg, respectively. As
shown in Fig. 7, the outage probability in case of aggregate
preamble transmission becomes closer to that of the single
preamble transmission for smaller γagg. Moreover, Fig. 8



shows that the outage probability for aggregate preamble trans-
mission increases as the detection threshold value increases,
which makes detecting aggregate preambles more difficult at
the base station. In both figures, the simulation (Sim) results
match well with the analytical (Ana) results.

B. PAPR Performance

We use the PAPR of the transmitted PRACH signals as a
metric to evaluate the energy consumption of the IoT devices.
Since most IoT devices are battery-powered, transmitting a
signal with a high PAPR implies more energy consumption
[43]. The PAPR of the transmitted signal x[t], denoted as
ταa,αb

a,b , is defined as the ratio between its maximum power
and its average power, given that the preamble pair ql,l

′

a,b is
selected and power scaling coefficients αa and αb are used.
Hence, we have

ταa,αb

a,b =(TCP+TSEQ)
max{|x[0]|2, . . . , |x[TCP + TSEQ − 1]|2}∑TCP+TSEQ−1

t=0 |x[t]|2
,

(15)
where TCP + TSEQ is the length of the transmitted signal x[t].

Our goal is to find a set of aggregate preambles for each
primary root index l ∈ L, denoted as Λl, that includes only
the aggregate preambles whose PAPR is less than a threshold
value τmax + β. We define τmax as the maximum PAPR of all
preambles slm for all m ∈M and l ∈ L, and β is the tolerance
threshold. Then, Λl can be defined as

Λl = {ql,l
′

a,b | l
′ = g(a), 10 log10(ταa,αb

a,b ) ≤ τmax+β}, ∀ l ∈ L.
(16)

When β is equal to 0 dB, we select only the aggregate
preambles whose PAPR does not exceed the maximum PAPR
of conventional LTE preambles. Hence, the number of ran-
dom access preambles available for the proposed aggregate
preamble sequence design is reduced, which results in a higher
probability of preamble collisions. On the other hand, setting
β > 0 dB enables Λl to include the aggregate preambles
whose PAPR is less than τmax +β, which leads to the inclusion
of more aggregate preambles in set Λl compared to the case
of β = 0 dB. If β is set to ∞, then all 4,096 aggregate
preambles are included without any PAPR constraint. Hence, β
can be set to balance the PAPR and the probability of preamble
collisions.

In Fig. 9, we show the cumulative distribution function
(CDF) of the PAPR of the proposed aggregate preamble
sequence design for preamble format 0 [9]. Here, τmax is equal
to 7.5 dB, and we vary the PAPR tolerance threshold β which
affects the number of aggregate preambles that satisfy the
PAPR threshold criterion. As β decreases, Λl contains fewer
aggregate preambles that can be used but the maximum and
median PAPR decrease which reduces the energy consump-
tion. The average number of available aggregate preambles at
primary root l is equal to card(Λl), where card(·) denotes
the cardinality of a set. For example, if β is equal to 0 dB and
0.2 dB, the average number of available aggregate preambles
is 1,992 and 3,600, respectively, rather than 4,096 when
β ≥ 0.6 dB. In Fig. 10, the ratio between the average number
of available preambles per root and the number of single
preambles M (where M = 64) is shown for different values
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Fig. 9. CDF of the PAPR for different values of tolerance threshold β. As β
decreases, we select aggregate preambles with lower PAPRs which enhances
the PAPR performance but reduces the number of available aggregate
preambles.
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Fig. 10. Ratio between the average number of available preambles per root
card(Λl) and the number of single preambles M versus different values
of tolerance threshold β.

of tolerance threshold β. This ratio shown on the vertical
axis represents the number of times by which the number
of available preambles increases when using the aggregate
preambles. This result shows that the number of available
preambles increases by up to a factor of 31.3− 64 depending
on the affordable PAPR, when the proposed preamble design
is used.

C. Random Access Performance
We evaluate the random access performance based on three

metrics, namely the probability of preamble collision, the
average total service time, and the probability of random
access success. The probability of preamble collision is the
ratio between the number of preamble collision occurrences
and the total number of preamble transmissions. This indicates
the capability of the proposed aggregate preamble sequence
design to support a larger number of devices by increasing
the number of preambles from 64 to 4,096. We evaluate the
probability of preamble collision in a simulation setup where
the number of devices NDev varies from 1,000 to 30,000
devices. These devices follow a uniform arrival process over
a period of 10 sec. Preamble retransmissions are allowed for
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Fig. 12. Average total service time versus the number of devices NDev for
different values of PAPR tolerance threshold β.

up to 10 times. The backoff, RAR message, and contention
window delays are taken into account and set to be 20 ms, 5
ms, and 48 ms, respectively [44]. Each device has a random
access opportunity to start its random access procedure every 5
ms. In this simulation, the probability of preamble detection in
case of no collision is modelled according to [44] and is equal
to (1−1/ exp(transmission attempt index)). For the proposed
aggregate preamble sequence design, we consider β = 0
dB (i.e., a subset of only 1,992 preambles is considered to
maintain a PAPR less that τmax = 7.5 dB) and β =∞ dB (i.e.,
all 4,096 preambles are considered). We compare the proposed
preamble sequence design with conventional LTE PRACH
(i.e., 64 preambles). Fig. 11 shows the impact of the number
of IoT devices on the probability of preamble collision. It
can be observed that the proposed preamble sequence design
can be used to support mIoT with a probability of preamble
collision that is less than 10−4. Furthermore, setting a PAPR
threshold (i.e., using fewer preambles per root) reduces the
PAPR without incurring a significant increase in the collision
probability.

The second considered performance metric is the average
total service time, which is defined as the time needed
until all the backlogged IoT devices successfully transmit
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Fig. 13. Probability of preamble collision in a single random access
opportunity versus the number of devices NDev for the single and aggregate
preamble cases.

a preamble without encountering a collision. In the first
random access opportunity slot, there are 1,000 to 30,000
devices that transmit randomly selected preambles. If a device
encounters a preamble collision, it will backoff randomly for
1 to 4 random access opportunity slots (each random access
opportunity slot is 5 ms long). We compare the performance of
the proposed aggregate preamble sequence design with β = 0
dB and β =∞ dB and the ACB scheme [11] in terms of the
average total service time. In ACB, there are 64 preambles and
the ACB probability of transmission is optimized, i.e., pACB =
min{1,Number of preambles/Number of backlogged devices}
[11]. It is assumed that the base station knows the total
number of backlogged devices in the system. Fig. 12 shows
the average total service time as a function of the number of
IoT devices. The results show that the proposed aggregate
preamble sequence design outperforms the ACB scheme
and reduces the total service time by up to 97%. Note that,
without ACB, having only 64 preambles may not be sufficient
to serve devices with a finite delay constraint due to the very
large number of preamble collisions.

To evaluate the probability of random access success,
we consider a network of NDev IoT devices that transmit
preambles during the same random access opportunity. The
probability of random access success for a given IoT device
is defined as the probability that this device can successfully
transmit a preamble without collision, i.e., the preamble is suc-
cessfully decoded by the base station and the same preamble
is not selected by any other device. We assume that the RAR
message in the second step of the random access procedure
is always received successfully. The probability of preamble
collision for a typical device in the single and aggregate
preamble cases, denoted as P s

col and P agg
col , respectively, can

be expressed as follows:

P s
col = 1−

(
M − 1

M

)NDev−1

, (17)

P agg
col = 1−

(
M2 − 1

M2

)NDev−1

. (18)

Fig. 13 shows the probability of preamble collision for the
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minimum SNR detection threshold γs when NDev = 100.
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Fig. 15. Probability of random access success versus the number of devices
NDev when γs = −20 dB.

single and aggregate preamble cases for different values of
NDev.

Then, we can obtain the probability of random access
success for the typical device using the outage probability
expression obtained in Section IV.A as follows:

P s
success = (1− P s

col)(1− P s
out), (19)

P agg
success = (1− P agg

col )(1− P agg
out ). (20)

Equations (19) and (20) show the tradeoff between outages
and preamble collisions. The outage probability for the single
preamble case is lower than that for the aggregate preamble
case. However, the proposed aggregate preamble design helps
reduce the collision probability due to the increase in the
number of available preambles. To obtain numerical and
simulation results, γagg is set to be equal to γs. As shown
in Fig. 14, when the number of devices NDev is equal to 100,
aggregate preambles become more essential for the success
of the random access process despite their higher outage
probability. This is due to the significant increase in the
collision probability for single preambles. Furthermore, Fig.
15 reveals that, when the number of devices increases, the
probability of random access success in the single preamble
case decreases at a faster rate compared to the aggregate
preamble case for a given SNR detection threshold γs.

D. Preamble Detection Performance

In this subsection, we evaluate the preamble detection per-
formance of both the threshold-based receiver (shown in Fig.
3) and the DNN-based receiver (shown in Fig. 5). We consider
the case where each IoT device randomly selects a preamble
pair to transmit. We consider up to Nmax

Dev = 10 devices
per sample. All aggregate preambles are chosen with equal
probability. The preambles are transmitted over an ETU fading
channel with a Doppler frequency of 70 Hz [39]. A uniform
random delay of up to ten samples is applied to the transmitted
preamble signal. We consider a sampling rate of 1.92 MHz and
a frequency offset of 270 Hz when generating the training and
testing samples [39]. Preamble sequences are generated based
on preamble format 0 [9]. Hence, Nzc is set to 839 and Ncs is

TABLE I
LAYOUT OF THE DNN CLASSIFIERS OF THE AGGREGATE PREAMBLE

PRACH RECEIVER.

Layer Activation Function Output Dimensions
Input Layer −− NIDFT

(Layer 0)
Hidden Layers ReLU 512, 256, 128, 64, 32, 8

(Layers 1− 6)
Output Layer sigmoid 1

(Layer 7)

set to 13 generating M = 64 Zadoff-Chu single preamble se-
quences, which are aggregated to generate the 4, 096 aggregate
preambles. We vary the received SNR from −12 dB to 0 dB.
The proposed receiver architecture is evaluated in terms of the
probabilities of misdetection and false alarm. The probability
of misdetection is the ratio between the number of undetected
transmitted preambles and the total number of transmitted
preambles, i.e., Number of False Negatives

Number of True Positives+Number of False Negatives . The
probability of false alarm is the ratio between the number of
detected preambles that were not actually transmitted (e.g.,
incorrect detection decisions) and the total number of trans-
mitted preambles, which is given by Number of False Positives

Number of Testing Samples .

The layout of the DNN classifiers for detecting the ag-
gregate preambles is presented in Table I. We consider a
layout with six hidden layers (i.e., D = 6), which have
512, 256, 128, 64, 32, 8 neurons, respectively. ReLU is used
as an activation function in the neurons of all the hidden
layers. The output layer uses a sigmoid activation function
to determine θla.

To obtain the DNN weights wi,i
′

d , the backpropagation
algorithm is invoked multiple times since the final values of
these weights are sensitive to their random initialization. We
choose the weights wi,i

′

d that achieve the lowest probability
of false alarm for the validation set as long as the probability
of misdetection is less than 10% when SNR = 0 dB. For
each run of the backpropagation algorithm, a batch size of 64
samples is used and 20 epochs (i.e., iterations) are applied.
The detection of the aggregate preambles requires that both
preambles are successfully detected while allocating half of the
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Fig. 16. (a) The probability of misdetection for the DNN-based and the
threshold-based receiver structures versus SNR in the aggregate preambles
case. (b) The probability of false alarm of the DNN-based and the threshold-
based receiver structures versus SNR in the aggregate preambles case.

transmit power to each one of them. As a result, the proposed
receiver architecture is expected to have a higher probability
of misdetection than the conventional LTE PRACH. However,
the aggregate preamble sequence design provides a larger set
of preambles to support the random access procedure in mIoT
networks.

Fig. 16 (a) shows the probability of misdetection versus the
SNR. These results are obtained by testing the DNN-based
PRACH receiver using a test set with multiple devices and a
fixed SNR. As the SNR increases, all the preamble detection
receivers achieve a lower probability of misdetection. The
threshold-based receiver has a lower probability of misdetec-
tion than the DNN-based receiver when the SNR is less than
−6 dB. However, the DNN-based receiver outperforms the
threshold-based receiver when the SNR is greater than −3 dB.
Note that, in small cell deployments, the SNR is expected to
be high due to the low propagation loss. Hence, the proposed
aggregate preamble sequence design can be used for random
access in small cell deployments supporting a massive number
of IoT devices to make use of the reduced collision probability

and the improved average total service time.
Fig. 16 (b) shows that the DNN-based PRACH receiver

achieves a probability of false alarm that is less than 0.11
over the considered SNR range from −12 dB to 0 dB
when detecting the aggregate preambles. An advantage of the
proposed preamble sequence design compared to that in [1]
is that it maintains a lower false alarm probability as the
number of the simultaneous IoT devices increases. For the
DNN-based PRACH receiver in the aggregate preambles case,
a high probability of false alarm occurs at 0 dB, and this
probability decreases as the SNR becomes lower.

E. Impact of Training SNR on Preamble Detection Perfor-
mance

In this subsection, we investigate the impact of the value
of SNR that is used for generating the training data sets
on the preamble detection performance. We train the DNN-
based receiver for detecting the proposed aggregate preambles
using: (a) training samples generated assuming that all the
IoT devices have a received SNR of 0 dB (similar to Section
IV.D); (b) training samples generated assuming that the IoT
devices have a received SNR that ranges from −3 dB to 0 dB;
(c) training samples generated assuming that the IoT devices
have a received SNR that ranges from −6 dB to 0 dB. Figs.
17 (a) and 17 (b) show the probability of misdetection and
the probability of false alarm for the aforementioned training
strategies, respectively.

We observe from Fig. 17 (a) that the training strategies
that use an SNR range for training the DNN-based PRACH
receiver (e.g., strategies (b) and (c)) can achieve a lower proba-
bility of misdetection than the strategy that uses samples from
a single SNR value (e.g., strategy (a)). This can be explained
by the fact that if the DNN classifiers are trained with samples
from different SNR values, they achieve better performance in
detecting testing samples with lower SNR. However, strategy
(a) still achieves the lowest probability of misdetection at
SNR = 0 dB. In addition, we note that the DNN-based
receiver achieves a lower probability of misdetection than the
threshold-based receiver at SNR values greater than −3 dB.

On the other hand, training with higher SNR samples (e.g.,
strategy (a)) causes the DNN classifiers to not learn to predict
preambles at low SNR (i.e., low values of correlation) which
enables the DNN classifiers to avoid false alarms as shown
in Fig. 17 (b). In contrast, training with low SNR samples
(e.g., strategies (b) and (c)) teaches the DNN classifiers to
predict more preambles at lower SNR values causing more
false alarms compared to training with higher SNR (e.g.,
strategy (a)).

F. Computational Complexity

We evaluate the computational complexity of the detection
stages of both the threshold-based receiver and the DNN-
based receiver after the correlation vectors c[n] and c′[n]
have been obtained. For the threshold-based receiver, we need
to compare NIDFT inputs with a certain threshold C or C ′,
which has a complexity of O(NIDFT). These comparisons are
carried out at most M + 1 times to detect all the primary and
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Fig. 17. (a) The probability of misdetection versus SNR for the DNN-based
PRACH receiver in the aggregate preambles case with different training SNR
ranges. (b) The probability of false alarm versus SNR for the DNN-based
PRACH receiver in the aggregate preambles case with different training SNR
ranges.

secondary preambles. This results in an overall complexity of
O(MNIDFT).

For the DNN-based receiver, although the training process
may incur a higher computational complexity due to the
application of backpropagation algorithm, the training process
can be performed offline and it does not impact the computa-
tional complexity of the online preamble detection. Hence,
the complexity of the DNN-based detection is due to the
processing of the input correlation vectors in the trained DNN
modules, i.e., the complexity of the forward propagation. For
a given DNN module, propagation of the inputs from layer
d with Id neurons to layer d + 1 with Id+1 neurons requires
multiplying a 1×Id vector by an Id×Id+1 matrix, which has
a computational complexity of O(IdId+1). Also, the compu-
tational complexity of applying the activation function at any
layer d ∈ [1, D + 1] is O(Id). Hence, forward propagation
from layer d to layer d+ 1 has a computational complexity of
O(IdId+1 + Id+1) = O(IdId+1). For worst-case complexity
evaluation, we assume Id = max{NIDFT, I1, . . . , ID, 1} =
NIDFT (where I0 = NIDFT). Since the DNN has D hidden

layers, the computational complexity of a single DNN module
is O(DN2

IDFT). Given M DNN modules that can be used
at most M + 1 times to detect all primary and secondary
preambles, the overall complexity of the DNN-based detection
stage is O(M2DN2

IDFT).

G. Discussion

The proposed preamble sequence design can increase the
number of available preambles (i.e., reduce the probability of
preamble collision), which is essential for supporting mIoT
applications. Moreover, the preambles can easily be detected
using the threshold-based receiver. However, there are poten-
tial tradeoffs which require further study and are highlighted
in this subsection.

1) Preamble Sequence Planning: The proposed preamble
sequence design consumes more roots per cell as we need one
primary root and M secondary roots compared to 1− 5 roots
per cell for most LTE PRACH planning schemes. However, the
secondary roots are much less utilized than the primary root.
Avoiding the allocation of the secondary roots in the neigh-
bouring cells can mitigate the impact of PRACH interference
between cells.

2) DNN-based Receiver Performance: Overall, the
threshold-based receiver achieves a balance between the
probability of false alarm and the probability of misdetection.
However, the DNN-based receiver has the potential to achieve
good performance in multi-label classification problems with
multiple classes. The DNN-based receiver with training
strategy (c) (where the training samples are generated with
received SNR values ranging from −6 dB to 0 dB) has a lower
probability of misdetection than that of the threshold-based
receiver in the SNR regions from −12 dB to −9 dB and from
−3 dB to 0 dB. In addition, the DNN-based receiver with
training strategies (a) and (b) (where the training samples are
generated with received SNR values of 0 dB and received
SNR values ranging from −3 dB to 0 dB, respectively) has
a lower probability of misdetection than the threshold-based
receiver in the high SNR region from −3 dB to 0 dB.

3) Training SNR Range: If the training set includes samples
with a wide range of SNR values (including low SNR values),
this will falsely bias the DNN-based receiver towards assuming
that random access preambles are received (i.e., more false
alarms) at high SNR values. Training with high SNR samples
would overcome the aforementioned problem, but it would
also result in a performance degradation at low SNR values.

4) Practical Considerations: The proposed aggregate
preamble sequence design is a good candidate for adoption
in future standards as it only requires minor changes to the
conventional PRACH transmitter and receiver design. For the
deployment of the proposed DNN-based receiver in practical
systems, sufficient training data should be collected from the
real environment before online operation. The real datasets
can be obtained by transmitting multiple aggregate preamble
sequences from different locations in the cell and storing the
resulting correlation vector information after the first stages
of the PRACH receiver. If a limited range of SNR values is
required for training the DNN-based receiver, then the devices



in the cellular network can transmit aggregate preambles after
establishing connections with the base station. In this case,
the received SNR range is known for each training sample.
The training data obtained from the real environment can be
used to either train the DNN modules or tune DNN modules
that have been pre-trained with simulation-based data using
the concept of transfer learning [45]. We note that the DNN
weights of the DNN-based receiver can differ from cell to cell
due to differences in the real environment, i.e., the DNN-based
receiver can be customized for each cell and environment type
(e.g., urban, suburban, or rural).

5) Aggregate Preambles in New Radio (NR): LTE PRACH
[9] and New Radio (NR) PRACH [46] have many similarities.
First, a similar contention-based random access procedure is
used as shown in Fig. 1. The preambles in both LTE PRACH
and NR PRACH are generated by applying cyclic shifts to
a Zadoff-Chu sequence. In addition, the supported preamble
formats in LTE PRACH (i.e., formats 0, 1, 2, and 3) are still
supported in NR PRACH. NR PRACH supports many short
preamble formats with preamble repetition (e.g., formats A1–
A3, B1–B4, C0, and C2), mainly for indoor environments and
small cells. The new short preamble formats are generated
using Zadoff-Chu sequences of length Nzc = 139 instead
of 839 for the longer formats. The NR PRACH signals are
generated in a way that is similar to LTE PRACH [46]. Hence,
the aggregate preambles and the proposed receiver design
(i.e., threshold-based receiver and DNN-based receiver) can
be used for decoding the aggregate preambles resulting from
aggregating two short format preambles. For the DNN-based
receiver, the DNN modules may require a different architecture
with different number of neurons and hidden layers according
to the dimension of the correlation vector c[n].

V. CONCLUSION

In this paper, we proposed a preamble sequence design
to support the mIoT use case by aggregating two Zadoff-
Chu preamble sequences to enlarge the set of available ran-
dom access preambles. We proposed corresponding transmitter
and receiver architectures that require only minor changes
compared to the conventional LTE PRACH architecture. The
proposed preamble sequence design reduced the probability
of preamble collision to less than 10−4. We found that
selecting a subset of preambles that meet a certain PAPR
threshold criterion can reduce the energy consumption of
battery-powered IoT devices without considerably increasing
the preamble collision probability.

In addition, we proposed a new DNN-based PRACH re-
ceiver architecture, which can detect if a specific preamble
sequence is received given the correlation vector between the
received signal and possible preamble sequences. Furthermore,
the threshold-based and the DNN-based PRACH receiver
architectures successfully decoded the new aggregate preamble
sequences with a low probability of misdetection at high SNR
(e.g., SNR ≥ −6 dB) and a low probability of false alarm
of less than 0.11. We also investigated the impact of the
SNR range used for training the DNN-based receiver on the
detection performance.

For future work, it is an interesting direction to study the
preamble sequence planning (i.e., assigning primary roots to
cells) and its impact on aggregate preamble detection in multi-
cell scenarios. In addition, the transition from training with
simulation-based data to real environment-based data is an
interesting topic for future research.
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