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Abstract—Federated learning (FL) is a distributed learning
framework where clients jointly train a global model without
sharing their local datasets. In each communication round of
FL, a subset of clients are scheduled to participate in training.
Recent research has shown that diversity-based FL can improve
the convergence performance of FL, especially when the client
datasets are not independent and identically distributed (non-
IID). In this paper, we show that by considering the channel
state information and age of information (AoI) of each client,
the convergence of FL can further be improved. We formulate
a channel-aware joint AoI and diversity-based client scheduling
problem as a constrained Markov decision process (CMDP). By
using Lagrangian index and one-step lookahead approaches, we
develop a two-stage online algorithm which is scalable and has a
low computational complexity. For FL tasks with non-IID client
datasets, our results show that the proposed algorithm can speed
up the convergence of FL by up to 71%, through reducing the
duration of uplink transmission, when compared with three state-
of-the-art FL algorithms.

Index Terms—Age of information (AoI), constrained Markov
decision process (CMDP), diversity, federated learning, index
policy, Lagrangian index.

I. INTRODUCTION

Federated learning (FL) [2] is a distributed learning frame-
work, where multiple mobile clients are orchestrated by a
parameter server (PS) to train a deep learning model. For
the federated averaging (FedAvg) algorithm proposed in [2],
multiple clients are connected to the PS through wireless links.
The training phase of FL involves multiple communication
rounds. At the beginning of each communication round, the
PS broadcasts the updated model and schedules a subset
of clients to participate in training (step ① in Fig. 1). The
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Fig. 1: (a) Illustration of a federated learning (FL) system with one parameter
server (PS) and four clients. In communication round t, two clients are sched-
uled to participate in FL training. The solid arrows represent the downlink
broadcasting of the model parameters. The red dashed lines represent the
wireless channels of the clients. (b) Plots of the evolution of two clients’ age
of information (AoI).

scheduled clients perform gradient-based learning using their
local datasets (step ② in Fig. 1) and transmit the updated model
back to the PS (step ③ in Fig. 1). Finally, the PS aggregates the
received model updates by averaging them (step ④ in Fig. 1).
In FL, client privacy is preserved since local datasets are not
revealed to the PS. FL is also communication-efficient since
only a subset of clients are scheduled to transmit over the
wireless links in each communication round.

Client scheduling is crucial for the convergence of FL.
Some of the previous works on FL use probability-based client
scheduling. In the FedAvg algorithm [2], a subset of clients
are selected uniformly at random from the set of clients in
each communication round. In the multinomial distribution
(MD) sampling scheme [3], the probability of a client be-
ing selected is proportional to the size of its local dataset.
However, probability-based client scheduling has two potential
limitations: (a) the channel conditions of the clients are not
considered, which may lead to a long uplink communication
duration for clients with poor channel conditions; (b) the speed
of convergence of the training may be slow, when the local
datasets are not independent and identically distributed (non-
IID).

To address the first limitation, recent works have shown
that channel-aware scheduling can reduce the duration of
uplink transmission in each communication round, which in
turn improves convergence. A Lyapunov optimization-based
algorithm using the instantaneous channel state information
(CSI) of the clients has been proposed in [4]. For the case
when the data distributions of the local client datasets are



known, a client scheduling algorithm exploiting both the CSI
and the total data distribution distance is proposed in [5].
In [6], a client scheduling algorithm based on each client’s
local gradient and instantaneous CSI is proposed. However,
due to the temporal and spatial correlation of wireless chan-
nels, scheduling algorithms based on CSI and the distribution
of the local datasets may lead to the same subset of clients
being chosen multiple times in a short time interval, which
can degrade the convergence performance of FL.

To address the second limitation, recent research has con-
sidered client scheduling based on the model updates received
from all clients [7]–[9]. The premise is that clients with
similar datasets will render similar model updates in each
communication round. Although the data distribution for each
client dataset is unknown due to privacy concerns, it can be
inferred from the model update received from each client. In
this way, sampling a subset of clients that possess similar
datasets in each communication round can be avoided and
the convergence of the learning toward the optimal global
model can be ensured. In the clustered sampling approach [8],
different clusters of clients are formed based on their recent
model updates, and clients from different clusters are sched-
uled in each communication round. In [7], an algorithm called
federated averaging with diverse client selection (DivFL) is
proposed to schedule a diverse subset of clients that can
approximate the model update from the full client partic-
ipation scenario. Deep reinforcement learning [9] has also
been employed to perform gradient information-based client
scheduling. Since the PS does not have information on clients
that did not participate in FL in the previous communication
round, recent works in [7] and [8] have proposed to store
the most recent model update from each client, which is
called the representative gradient, and used this information
for client scheduling. Since the aforementioned works aim
to schedule a diverse subset of clients in the representative
gradient space in each communication round, we will refer
to them as diversity-based FL. In this work, we theoretically
prove that stale versions of the representative gradients of the
clients affect the convergence rate of FL, and hence the PS
needs to ensure the freshness of the representative gradients.
To the best of our knowledge, none of the existing works on
client scheduling algorithm design has considered this aspect.

In this paper, we show that by considering the age of
information (AoI) of each client for client scheduling, the
convergence speed of diversity-based and channel-aware FL
can further be improved. In the context of client scheduling
in FL, the AoI of a client represents the time that has
elapsed since the last time the client has been chosen to
participate in FL. In [10], the average AoI of all clients is
proposed as a regularization term to avoid scheduling a subset
of clients exclusively in channel-aware FL. In the literature
(e.g., [11]–[14]), AoI has been used as an objective function
or performance metric for scheduling algorithm design for
different use cases and applications. These works consider
multiuser scheduling problems with AoI as the optimization
objective under resource constraints. In [15], the age of update
is proposed as a metric to accelerate FL training. However,
the diversity information of the clients’ local datasets is not

considered in [15].
In this work, we consider the case where the client data

distribution is not known a priori, and the diversity informa-
tion is inferred from the representative gradients of all clients.
We formulate the client scheduling problem as a finite-horizon
constrained Markov decision process (CMDP), which jointly
optimizes the AoI, diversity, and uplink transmission duration
of the scheduled clients. This is a hard problem to solve, for
two main reasons:

• First, due to the temporal dependencies of the decisions
made in different time instants, optimization problems
with AoI as part of the objective function or constraints
are sequential decision problems, which are often for-
mulated as CMDPs. When the number of clients is large,
the computational complexity for determining the optimal
CMDP policy becomes high. Some recent works have
proposed scalable suboptimal scheduling algorithms (e.g.,
[16], [17]) based on the Whittle index approach [18],
which has been proven to be asymptotically optimal
when the number of clients approaches infinity and the
percentage of scheduled clients remains constant. How-
ever, only a special class of problems (known as Whittle
indexable) can be solved by the Whittle index approach.
Even for a problem that can be proven to be Whittle
indexable, deriving the Whittle index is still hard, and is
often impossible for practical problems with large state
space [19].

• Second, the inclusion of the diversity term in the opti-
mization objective, i.e., as part of the reward/cost function
of the CMDP, introduces two challenges. The part of the
reward/cost related to diversity can only be computed for
a group of clients, and the cost/reward function cannot be
decomposed into individual cost/reward functions of the
clients1. Therefore, it is not straightforward to decompose
the formulated CMDP into subproblems, where each
individual cost/reward is a function of the local state
and action of a client, which is a necessary condition to
obtain a solution based on Whittle index. A new scalable
solution approach needs to be developed to handle this
cost/reward structure.

To address the first issue, in this paper, we propose a
Lagrangian index-based solution [21], [22] to solve a diversity-
agnostic version of the formulated CMDP, which jointly
minimizes the weighted AoI and uplink transmission duration
of all clients. The proposed Lagrangian index-based approach
is proven to be asymptotically optimal [21], enjoys similar
scalability as the Whittle index-based approach, and does
not require the underlying CMDP problem to satisfy any
special property. To address the second issue, we propose a
two-stage online algorithm to tackle the cost function that
includes diversity. In the first stage, the Lagrangian indices
of all clients are determined for a diversity-agnostic variant
of the formulated CMDP problem. In the second stage, we
select a subset of clients to participate in FL in each time
instant by jointly considering the diversity information and

1This problem is also referred to as the credit assignment problem [20] in
the reinforcement learning literature.



the Lagrangian indices of all clients in an online manner. The
contributions of this paper are as follows:

• We study the impact of the AoI of the representative
gradients of the clients on the convergence performance
of diversity-based FL. We show that a small AoI can
improve the convergence speed of diversity-based FL
algorithms.

• We formulate a channel-aware joint AoI and diversity-
based client scheduling problem in FL as a CMDP,
and refer to it as the diversity-based client scheduling
problem.

• We propose a Lagrangian index-based approach to solve
the diversity-agnostic variant of the client scheduling
problem. The proposed Lagrangian index-based approach
achieves asymptotically optimal performance.

• We also propose a two-stage online algorithm to solve
the CMDP problem. In the first stage, the Lagrangian
index policy for the diversity-agnostic client scheduling
problem is used as the base policy. In the second stage,
a one-step lookahead policy improvement [23] enables
us to obtain a suboptimal solution to the diversity-based
client scheduling problem.

• We evaluate the performance of the proposed two-stage
online algorithm in large-scale FL experiments with 100
clients using MNIST and CIFAR-10 datasets. Simula-
tion results show that the proposed two-stage algorithm
outperforms MD sampling [3], clustered sampling [8],
and DivFL [7] algorithms by up to 71% in terms of the
average uplink transmission duration, achieving a better
convergence performance.

The rest of this paper is organized as follows. In Section II,
we introduce the FL system model and formulate the channel-
aware joint AoI and diversity-based client scheduling prob-
lem as a CMDP. In Section III, we propose a Lagrangian
index-based algorithm for the diversity-agnostic variant of
the problem. In Section IV, we propose a two-stage online
algorithm for solving the formulated CMDP. In Section V,
we present numerical results and performance comparisons.
Section VI concludes the paper. The analytical results related
to the AoI and diversity on the convergence performance of
FL are presented in the Appendix.

Notations: We use C, R, and N+ to denote the set of com-
plex numbers, real numbers, and positive integers, respectively.
We use (·)T to denote the transpose of a vector or matrix,
E[·] to denote the expectation of a random variable, and 1(·)
to denote the indicator function. ∥·∥ denotes the norm of a
vector. | · | denotes the cardinality of a set. O(·) denotes the
big-O notation for algorithmic complexity analysis.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a system with a PS and N clients, cf. Fig. 1.
The set of clients is denoted by N = {1, 2, . . . , N}. Each
client has its own local dataset. We consider a time-slotted
system with a finite time horizon, where the set of communi-
cation rounds is denoted by T = {1, 2, . . . , T}.

1) Scheduling Decision Vector: In communication round
t ∈ T , let ut = (u1t , . . . , u

N
t ) ∈ {0, 1}N denote the

scheduling decision vector determined by a decision-making
module located in the PS, where

C1: unt ∈ Un
∆
= {0, 1}, n ∈ N , t ∈ T . (1)

Client n participates in training when unt is equal to one and
does not participate in training when unt is equal to zero. The
PS has limited capacity and can aggregate parameters of the
neural network from at most M clients in each communication
round. Thus, the scheduling decision vector has to be chosen
from the following feasible set:

C2: ut ∈ U
∆
=
{
u =(u1, . . . , uN ) ∈ {0, 1}N |

N∑
n=1

un ≤M
}
, t ∈ T . (2)

To simplify the notation, we define Mt
∆
= {n ∈ N | unt = 1}

as the subset of clients that are scheduled to participate in
FL in communication round t ∈ T . We will use Mt and ut
interchangeably in the rest of the paper.

2) Federated Learning Model: We follow the notations
adopted in [3]. Let Xn denote the set of training data samples
in the local dataset of client n ∈ N . Let θ denote the model
being trained by the FL system and |θ| denote the number
of parameters. We use vector w ∈ W ∆

= R|θ| to denote the
weights or parameters in model θ. The goal of FL is to find
the optimal weights to the optimization problem

minimize
w

F (w)
∆
=

N∑
n=1

pnFn(w), (3)

where pn
∆
= |Xn|∑

i∈N |Xi| , n ∈ N . The function Fn(·) denotes
the local objective of client n, which is defined as

Fn(w)
∆
=

1

|Xn|
∑

xn∈Xn

L(w | xn), n ∈ N , (4)

where L(·) denotes the loss function of a client.

Before the first communication round, the weight vector is
initialized to w0. Then, at the beginning of communication
round t ∈ T , the PS schedules a subset of clients Mt ⊆ N
to participate in FL and broadcasts the current global model
to these clients. After obtaining the current global model,
the participating clients perform E ∈ N+ local stochastic
gradient descent (SGD) steps, and then forward the updated
model to the PS. That is, in communication round t ∈ T , the
PS first broadcasts the global model w(t−1)E . When client
n ∈Mt has received the global model, it sets its local model
to wn

(t−1)E = w(t−1)E , and performs SGD as follows

wn
(t−1)E+i+1 ←− wn

(t−1)E+i − η(t−1)E+i (5)

×∇Fn(wn
(t−1)E+i | Ξ

n
(t−1)E+i), i ∈ 0, . . . , E − 1,

where ηk denotes the learning rate for the k-th SGD step,
k ∈ K ∆

= {0, 1, 2, . . . , TE} and Ξnk is a data sample uniformly
sampled from local dataset Xn. After training, each client n ∈



Mt sends its model update

qnt
∆
= −(wn

tE −wn
(t−1)E), t ∈ T , (6)

to the PS over a wireless link. When the PS has received the
model updates from all scheduled clients, it updates the global
model as follows

wtE ← w(t−1)E −
N

|Mt|
∑
n∈Mt

pnq
n
t , t ∈ T . (7)

3) Update of Clients’ AoI: In communication round t ∈ T ,
let ant denote the AoI of client n ∈ N . It represents the number
of communication rounds that have elapsed since client n sent
its updated model to the PS. That is,

ant = min{i | n ∈Mt−i, i ∈ {1, . . . , t}}, (8)

for n ∈ N , t ∈ T , where we additionally define M0
∆
= N .

4) Client Sampling based on Diversity: Similar to [7],
[8], [24], we perform client selection based on the recent
model updates received from the clients. Following [7], we
define the diversity of a subset of clients as how well can
the average of their model updates approximate the average
model update from the full participation scenario. To explain
this term properly, for all k ∈ K, t ∈ T , we define the gradient
approximation error ϵk(Mt) as

ϵk(Mt)
∆
=

∥∥∥∥∥∑
n∈N

pn∇Fn(wn
k )−

1

|Mt|
∑
n∈Mt

∇Fn(wn
k )

∥∥∥∥∥ .
(9)

The gradient approximation error is small when the mean
1

|Mt|
∑
n∈Mt

∇Fn(wn
k ) of the sampled clients is close to the

weighted mean
∑
n∈N pn∇Fn(wn

k ) of all clients. Note that
ϵk(Mt) is generally unknown in practical FL systems, since
∇Fn(wn

k ) represents the true gradient of Fn(·) and is not
computationally feasible to be obtained for neural networks
we consider.

Suppose we consider the ideal case where ∇Fn(wn
tE),

n ∈ N , is known at the beginning of each communication
round t ∈ T . Then, a subset of scheduled clients Mt

is considered to be more diverse, when its corresponding
gradient approximation error ϵtE(Mt) is smaller.

When diversity-based FL is adopted, in each communication
round t, given the scheduling decisionMt, the PS updates the
global model according to

wtE ← w(t−1)E −
1

|Mt|
∑
n∈Mt

qnt , t ∈ T . (10)

Suppose ∇Fn(wn
tE) is known, based on Lemma 1 in the

Appendix, it can be used to estimate qnt , n ∈ N , t ∈ T .
We can further show that the difference between the update
equation in (10) and the full client participation scenario (i.e.,
by setting Mt = N ) in (7) is bounded. The bound on this
difference is smaller when the gradient approximation error
ϵtE(Mt) is smaller.

However, since ∇Fn(wn
tE) is not known at the beginning

of communication round t ∈ T in general, scheduling deci-
sions based on ϵtE(Mt) cannot be implemented in practical

systems. In [7], the authors proposed to use the most recent
model update received from each client n, which is referred
to as the representative gradient, to estimate ∇Fn(wn

tE),
n ∈ N , t ∈ T . In practice, the PS can store the most recent
model update received from each client in a lookup table. Let
q̂nt ∈ R|θ| denote the representative gradient from client n in
communication round t. Before the first communication round,
we initialize q̂n0 = 0, for all n ∈ N . In communication round
t+ 1, we have

q̂nt+1 = 1(unt = 1)qnt + 1(unt = 0)q̂nt , n ∈ N . (11)

As a result, we have q̂nt = qnt−ant , n ∈ N , t ∈ T . Based on
q̂nt , we define an estimated version of ϵtE(Mt) as follows

ϵ̂t(Mt)
∆
=

∥∥∥∥∥∑
n∈N

pnq̂
n
t −

1

|Mt|
∑
n∈Mt

q̂nt

∥∥∥∥∥ , t ∈ T . (12)

In Lemma 3 in the Appendix, we show that an upper bound
on the gap between the expected norm of a scaled version
of ϵ̂t(Mt) and ϵtE(Mt) depends on the largest AoI of the
clients’ representative gradients stored at the PS. In Theorem 3
in the Appendix, we further show that the largest AoI of the
clients’ representative gradients has an impact on the upper
bound on the convergence rate of FL.

5) Diversity Cost: To simplify the notation, we define the
representative gradient matrix in communication round t ∈ T
as

Gt =
[
q̂1
t · · · q̂Nt

]
∈ R|θ|×N . (13)

Let us define vector p = (p1, . . . , pN ) ∈ RN . Let vector
gt ∈ G

∆
= R|θ|N denote the concatenation of the columns of

matrix Gt. In communication round t, given gt and ut, we
define the diversity cost as the gradient approximation error

ϵct(gt,ut) = ϵ̂t(Mt) =

∥∥∥∥Gt

(
p− ut∑

n∈N unt

)∥∥∥∥ , t ∈ T .

(14)

6) Duration of Uplink Transmission in Each Communica-
tion Round: In FL, after local training in communication
round t ∈ T , each scheduled client n ∈Mt needs to send its
updated model parameters to the PS. Similar to [4], in this pa-
per, we consider time-division multiple access (TDMA), where
the scheduled clients perform uplink transmission sequentially
using a fixed transmit power. The time it takes for client n to
send its updated parameters successfully to the PS depends on
the CSI between client n and the PS. In communication round
t, let hnt ∈ C denote the instantaneous CSI between client
n and the PS. Given the system bandwidth W and transmit
power Pn of client n, its instantaneous transmission rate in
communication round t can be expressed as

r(hnt ) =W log2

(
1 +
|hnt |2Pn
σ2

noise,n

)
, n ∈ N , t ∈ T , (15)

where σ2
noise,n denotes the noise variance of client n. We

discretize the possible values of hnt into a finite set Hn =
{hn,1, . . . , hn,max}, n ∈ N , and define the CSI vector
ht = (h1t , . . . , h

N
t ), t ∈ T , where hnt ∈ Hn. Let ζ denote

the packet size (in bits) required to transmit the parameters.



In an FL system, the updates from all clients have the same
size ζ. The time it takes for scheduled client n to send its
model update to the PS is given by

y(hnt ) =
ζ

r(hnt )
, n ∈ N , t ∈ T . (16)

B. Problem Formulation

In this subsection, we formulate the channel-aware joint
AoI and diversity-based client scheduling problem as a finite-
horizon CMDP. We first introduce the set of decision epochs,
actions, states, state transition probability, cost function, ob-
jective function, and constraints of the CMDP problem.

1) Decision Epochs and Actions: We consider a finite-
horizon CMDP, where each decision epoch corresponds to
a communication round. We use the set of communication
rounds T = {1, . . . , T} as the set of decision epochs of the
CMDP. In decision epoch t ∈ T , the action vector corresponds
to a feasible scheduling decision for all N clients. That is, the
action vector is ut ∈ U , where the feasible action set U is
defined in constraint C2.

2) States: To obtain a finite state space, we set an upper
limit Amax for the AoI. That is, we set ant = Amax for any
client n that has not updated its model for more than Amax

communication rounds. We have ant ∈ A = {1, 2, . . . , Amax}.
Let at = (a1t , . . . , a

N
t ) denote the AoI vector in decision epoch

t. The state vector in decision epoch t can be represented as

st = (at,ht,gt) ∈ S
∆
=

[∏
n∈N

(A×Hn)

]
× G, t ∈ T .

3) State Transition Probability: Given ant and unt , the AoI
of client n in the next decision epoch, ant+1, is a deterministic
value, which is given by

P(ant+1 | ant , unt ) =


1, if ant+1 = 1 and unt = 1,

1, if ant+1 = min(Amax, a
n
t + 1)

and unt = 0,

0, otherwise,

where n ∈ N , t ∈ T . The first line corresponds to the case
when client n is selected to participate in training in decision
epoch t. The second line accounts for the alternative case.
We consider a wireless channel that evolves according to a
stochastic random process. At the beginning of each decision
epoch t, the CSI of client n, hnt , is revealed to the decision-
making module. We consider the case where hnt ∈ Hn is
distributed according to probability P(hnt ), n ∈ N , t ∈ T .
For the representative gradient matrix, we make a simplifying
assumption that it follows an unknown probability P(gt+1),
which depends on the compositions in the local datasets. The
state transition probability function can be expressed as

P(st+1 | st,ut) =
N∏
n=1

[
P(ant+1 | ant , unt )P(hnt+1)

]
× P(gt+1), t ∈ {0, 1, . . . , T − 1}.

4) Client Scheduling Policy: A client scheduling policy π
is defined as a mapping from state space S and the set of

decision epochs T to action space U . Let (sπ1 , . . . , s
π
T ) denote

the state evolution under policy π, where sπt = (aπt ,ht,g
π
t ),

t ∈ T . Let (uπ1 , . . . ,u
π
T ) denote the action taken under policy

π, where uπt = (u1,πt , . . . , uN,πt ), t ∈ T . In decision epoch
t ∈ T , given state vector st ∈ S, the decision-making module
chooses an action πt(st) = uπt . Let Π denote the set of all
deterministic policies that satisfy constraint C2. Thus, π ∈ Π
if and only if uπt ∈ U , for all t ∈ T .

5) Cost Function: In decision epoch t ∈ T , we use the
following cost function that jointly accounts for the weighted
aggregate AoI, the uplink transmission time, and the diversity:

c(st,ut) =

N∑
n=1

[
Npna

n
t + ξy(hnt )u

n
t

]
+ ρϵct(gt,ut), (17)

where ξ and ρ are non-negative weight coefficients2. In (17),
the weight coefficient Npn places a higher weight on clients
with more data samples, which encourages these clients to be
scheduled more frequently, in order to reduce their AoI. Note
that in the case when all the clients have the same amount of
data, i.e., pn = 1

N , n ∈ N , we have Npn equals to one for
all clients.

6) CMDP Problem Formulation: The optimal policy π∗ is
defined as the policy that minimizes the expected total cost.
The CMDP can be formulated as follows

minimize
π

T∑
t=1

E [c(sπt ,u
π
t )] (18)

subject to C2a: uπt ∈ U , t ∈ T .

The objective function in (18) favors client scheduling policies
that simultaneously lead to lower weighted aggregate AoI of
all clients, shorter uplink transmission duration, and smaller
gradient estimation error. In this way, our channel-aware joint
AoI and diversity-based client scheduling problem formulation
generalizes some of the previous works and combines the
advantages of several types of FL client scheduling approaches
in the literature, including those which are based on CSI [4]–
[6], AoI [10], [15], and diversity [7], [8]. Problem (18) is a
finite-horizon CMDP. Let V ∗

t (st) denote the cost-to-go func-
tion of the optimal policy, which corresponds to the minimum
expected total cost obtained between decision epochs t and
T , given that the current system state is st ∈ S , t ∈ T . By
assuming that P(gt) follows a discrete probability distribution
that satisfies the Markov property, t ∈ T , V ∗

t (st) and the
optimal solution (for the assumed distribution of gt) can be
found by solving the Bellman equation iteratively using value
iteration [23]. Note that this assumption is not required in
Sections III and V. However, the value iteration approach
cannot be applied to problems with a large number of clients,
due to its high computational complexity O(T |S||U|2) =
O(T (Hmax|A|)N ) [25], where Hmax = maxn∈N |Hn|.

2Here, we use a linear combination of AoI, CSI and diversity terms due
to its simplicity. In practice, nonlinear cost functions can also be considered
based on the system requirement.



III. DIVERSITY-AGNOSTIC PROBLEM AND THE
LAGRANGIAN INDEX ALGORITHM

As discussed in Section I, directly solving the CMDP (18)
with the diversity term is a hard problem. This is partially due
to the fact that the diversity part of the cost function cannot
be decomposed into individual cost functions for each client.
To tackle this issue, in this paper, we propose a two-stage
low-complexity algorithm to solve problem (18).

In this section, we focus on the first stage of the solution
approach, and consider the special case when parameter ρ
in (17) is equal to zero. In this case, the cost function in (17)
only depends on the AoI, the uplink transmission duration of
the scheduled clients, and the scheduling decision vector. We
refer to this problem as the diversity-agnostic client scheduling
problem, and propose a Lagrangian index-based algorithm to
solve this problem. In Section IV, we will use the Lagrangian
index-based policy developed in this section as a base policy
to solve the diversity-based client scheduling problem through
one-step lookahead policy improvement [23].

A. Diversity-agnostic Client Scheduling Problem Formulation
By only considering the AoI and uplink transmission dura-

tion, the cost function of the diversity-agnostic client schedul-
ing problem becomes

cDA(st,ut) =

N∑
n=1

[Npna
n
t + ξy(hnt )u

n
t ] , t ∈ T . (19)

The diversity-agnostic client scheduling problem can be
formulated as the following CMDP

minimize
π

T∑
t=1

E
[
cDA(sπt , π(s

π
t ))
]

(20)

subject to constraint C2a.

Since diversity is not considered in this section, we define
the local state of client n ∈ N in decision epoch t ∈ T as

snt = (ant , h
n
t ) ∈ Sn

∆
= A×Hn. (21)

Given a policy π, let sn,πt denote the state evolution of client
n ∈ N under policy π in decision epoch t ∈ T . Now, the
objective function of problem (20) is separable, and the cost
function related to client n in decision epoch t becomes

cn,DA(snt , u
n
t ) = Npna

n
t + ξy(hnt )u

n
t , n ∈ N , t ∈ T . (22)

B. Lagrangian Index-based Solution
It has been shown in [21] that by relaxing constraint C2a so

that it holds in expectation, problem (20) can be decomposed
into N client-specific CMDP problems. In this subsection, we
will adopt this approach and obtain a lower bound for the
solution of problem (20).

1) Relaxation of Constraint C2a: Let Φ denote the class of
(possibly randomized) policies that satisfy constraint C2a in
expectation. Note that Φ is different from the class of policies
Π ⊂ Φ that satisfy constraint C2a in each decision epoch.
Given a policy ϕ, we have ϕ ∈ Φ if and only if

C1a: uϕt ∈ {0, 1}N , t ∈ T

C2b: E

[
N∑
n=1

un,ϕt

]
≤M, t ∈ T .

The expectation in constraint C2b is taken with respect to
the stochasticity of state sϕt under policy ϕ. After relaxing
constraint C2a so that it holds in expectation, problem (20)
becomes

minimize
ϕ∈Φ

T∑
t=1

E
[
cDA(sϕt ,u

ϕ
t )
]
. (23)

Since any policy that satisfies constraint C2a also satisfies
constraints C1a and C2b, the optimal value of problem (23)
is a lower bound of the optimal value of problem (20).

2) Optimal Solution to Problem (23) via Linear Program-
ming: Let Φn denote the class of policies with scheduling
decision unt = ϕnt (s

n
t ) for client n in state snt ∈ Sn, and

satisfy unt ∈ {0, 1}, t ∈ T , n ∈ N . In this way, a policy
ϕ =

∏
n∈N ϕn ∈

∏
n∈N Φn ⊂ Φ can be constructed by

combining the policies of all N clients, where ut = ϕt(st) =
(ϕ1t (s

1
t ), · · · , ϕNt (sNt )), t ∈ T .

In the following, we adopt the linear programming approach
for obtaining the optimal solution to problem (23), by first
finding the optimal policies for N client-specific CMDPs.

For each client-specific CMDP n ∈ N , we use the expected
fraction of time that client n sojourns in state snt and selects
action unt , for all snt ∈ Sn, unt ∈ Un, n ∈ N , t ∈ T , as
the optimization variables. Given policies ϕn ∈ Φn, n ∈ N ,
and ϕ =

∏
n∈N ϕn, we define the expected sojourn time

νn,ϕt (snt , u
n
t ) as the probability that client n ∈ N is in state

snt and selects action unt in decision epoch t ∈ T . We have

νn,ϕt (snt , u
n
t ) = E

[
1(sn,ϕt = snt , u

n,ϕ
t = unt )

]
, (24)

where sn,ϕt and un,ϕt denote, respectively, client n’s state
evolution and action taken in decision epoch t under policy ϕ.
In this way, problem (23) is equivalent to the following linear
program [21]

minimize
νn,ϕ
t (snt ,u

n
t ),

snt ∈Sn,
un
t ∈Un,

n∈N ,t∈T

∑
t∈T

∑
n∈N

∑
snt ∈Sn

∑
un
t ∈Un

cn,DA(snt , u
n
t )ν

n,ϕ
t (snt , u

n
t )

(25)

subject to C2c:
∑
n∈N

∑
snt ∈Sn

νn,ϕt (snt , 1) ≤M, t ∈ T ,

C3:
∑
un
t ∈Un

νn,ϕt (snt , u
n
t ) =∑

snt−1∈Sn

∑
un
t−1∈Un

P(snt | snt−1, u
n
t−1)ν

n,ϕ
t−1(s

n
t−1, u

n
t−1),

snt ∈ Sn, n ∈ N , t ∈ T \ {1},

C4:
∑
un
1 ∈Un

νn,ϕ1 (sn1 , u
n
1 ) = 1, sn1 ∈ Sn, n ∈ N ,

C5: νn,ϕt (snt , u
n
t ) ≥ 0, snt ∈ Sn, unt ∈ Un, n ∈ N , t ∈ T .

The objective function of problem (25) corresponds to the
expected total cost. The left-hand side of constraint C2c
corresponds to the expected number of clients that are sched-



uled to participate in FL in decision epoch t. Thus, con-
straints C2b and C2c are equivalent. Constraints C3 and
C4 are the flow conservation conditions that ensure the
solution satisfies the state transition probability. Constraint
C5 ensures that the optimization variables, which are prob-
abilities of events, are non-negative. Problem (25) involves
2TN |Sn| variables and has a computational complexity of
O((TNHmax|A|)2.5 log(TNHmax|A|/δ)), where δ denotes
the relative accuracy of the employed solver [26].

Given the optimal solution of problem (25) νn,ϕ
∗

t (snt , u
n
t ),

we can design a randomized policy ϕ∗ =
∏
n∈N ϕn,∗, where

ϕn,∗t (snt ) is a random variable with probability distribution

P(ϕn,∗t (snt ) = unt ) =


νn,ϕ∗
t (snt ,u

n
t )

νn,ϕ∗
t (snt ,1) + νn,ϕ∗

t (snt ,0)
, if unt ∈ Un

and snt ∈ Snt,visited,
1
2 , if u

n
t ∈ Un and snt ∈ Sn \ Snt,visited,

0, otherwise.

The set Snt,visited =
{
snt ∈ Sn |

∑
un
t ∈Un

νn,ϕ
∗

t (snt , u
n
t ) > 0

}
represents the states that are likely being visited under the
randomized policy ϕ∗.

Theorem 1. The client scheduling policy ϕ∗ is the optimal
solution to problem (23).

Proof: Problem (23) falls into the class of problems
considered in [21]. The proof of Theorem 1 can be found
in [21, Sections EC 1.1−1.3].

3) Lagrangian Index-based Feasible Solution: Although
policy ϕ∗ achieves the optimal solution to problem (23), it
may not be a feasible solution to problem (20) since constraint
C2a may not always be satisfied. In [21], the authors proposed
a low-complexity asymptotically-optimal feasible heuristic so-
lution to problem (20) called the Lagrangian index scheduling
policy. In this subsection, we introduce the steps for finding the
Lagrangian index by first solving the dual problem of problem
(23).

Let λ = (λ1, λ2, . . . , λT ) ⪰ 0 denote the vector of
Lagrange multipliers corresponding to constraint C2b. Then,
the dual problem of problem (23) can be expressed as follows

maximize
λ⪰0

min
ψ∈Φ′

T∑
t=1

{
E
[
cDA(sψt ,u

ψ
t )
]

+ λt

(
N∑
n=1

E[un,ψt ]−M

)}
, (26)

where Φ′ denotes the class of policies that satisfy constraint
C1a. Given the optimal Lagrange multiplier vector λ∗ =
(λ∗1, . . . , λ

∗
T ), the optimal value of problem (26) can be found

recursively by backward induction [21]3. First, we initialize
LDA,λ∗

T+1 (sT+1) = 0, for sT+1 ∈ S, and then recursively

3Since constraints C2b and C2c are equivalent, λ∗ can be found by solving
the dual problem of problem (25), for the dual variables associated with
constraint C2c.

compute

LDA,λ∗

t (st) = min
ut∈U

{
cDA(st,ut) + E

[
LDA,λ∗

t+1 (st+1) | st,ut
]

+ λ∗t

(
N∑
n=1

unt −M

)}
,

for all t ∈ T , st ∈ S, where we use the following short-hand
notation

E [f(st+1) | s,u]
∆
=
∑
s+∈S

f(s+)P(st+1 = s+ | st = s,ut = u), (27)

and f(·) is any function of st+1. In this way, given the
optimal Lagrange multiplier vector λ∗ and the initial state s1,
LDA,λ∗

1 (s1) is the optimal value of problem (26). Furthermore,
given λ∗, LDA,λ∗

t (s) can be expressed as follows

LDA,λ∗

t (st) = −
T∑
i=t

λ∗iM +

N∑
n=1

V n,DA,λ∗

t (snt ), (28)

where st ∈ S , t ∈ T , and V n,DA,λ∗

t (snt ) denotes the
value function of the client-specific MDP. It can similarly
be derived using backward induction, by first initializing
V n,DA,λ∗

T+1 (snT+1) = 0, for snT+1 ∈ Sn, n ∈ N . Then,
V n,DA,λ∗

t (snt ), snt ∈ Sn, are found iteratively for decision
epoch t = T, T − 1, . . . , 1, by calculating

V n,DA,λ∗

t (snt ) = min
un
t ∈Un

{
cn,DA(snt , u

n
t ) (29)

+ E
[
V n,DA,λ∗

t+1 (snt+1) | snt , unt
]
+ λ∗tu

n
t

}
.

In decision epoch t ∈ T , given client n ∈ N is in state
snt ∈ Sn, the optimal scheduling policy, ψn,∗ ∈ Φn, can be
expressed as follows

ψn,∗t (snt ) = argmin
un
t ∈Un

{
cn,DA(snt , u

n
t )

+ E
[
V n,DA,λ∗

t+1 (snt+1) | snt , unt
]
+ λ∗tu

n
t

}
, snt ∈ Sn, t ∈ T .

To handle ties, we assume that a deterministic rule is designed,
e.g., assign unt = 0 whenever a tie happens. In this way,
the policy ψ∗ =

∏
n∈N ψn,∗ that combines the deterministic

policies of all N clients can be used to determine the optimal
value of the dual problem (26). The value functions of the
client-specific MDPs can be utilized to derive the following
Lagrangian index for each client.

Definition 1 (Lagrangian Index). In decision epoch t ∈ T ,
the Lagrangian index for client n ∈ N in state snt ∈ Sn is
defined as

in,DA
t (snt ) ≜

(
cn,DA(snt , 1) + E

[
V n,DA,λ∗

t+1 (snt+1) | snt , 1
])

−
(
cn,DA(snt , 0) + E

[
V n,DA,λ∗

t+1 (snt+1) | snt , 0
])
.



In decision epoch t, we define iDA
t (st) ≜

(i1,DA
t (s1t ), . . . , i

N,DA
t (sNt )) as the vector of Lagrangian

indices of all clients. We now introduce the Lagrangian index
scheduling policy.

Definition 2 (Lagrangian Index Scheduling). Under the La-
grangian index scheduling policy, in decision epoch t ∈ T ,
those M clients with the smallest non-positive Lagrangian
indices are scheduled to participate in FL. If multiple clients
have the same Lagrangian indices, then policy ϕ∗ is utilized to
break the tie. Let π̃ ∈ Π denote the Lagrangian index policy.
In each decision epoch, we have

π̃t(st) = argmin
ut∈U

uT
t i

DA
t (st). (30)

Since constraint C2a is satisfied, the optimal solution of
problem (30) is a feasible solution to CMDP problem (18).

We use Ṽ DA
t (st) to denote the cost-to-go function of state

st under policy π̃. By definition, Ṽ DA
t (st) can be found using

policy iteration by first initializing Ṽ DA
T+1(sT+1) = 0, sT+1 ∈

S, and then iteratively calculating for t = T, T − 1, . . . , 1, for
all st ∈ S using the following equation

Ṽ DA
t (st) = cDA(st, π̃t(st)) + E

[
Ṽ DA
t+1(st+1) | st, π̃t(st)

]
.

However, the computational complexity of this approach be-
comes high as N increases. In Section IV, we will introduce
a method to estimate Ṽ DA

t (st). Let V DA,*
t (st) denote the

optimal cost-to-go function of state st of the diversity-agnostic
client scheduling problem obtained by the value iteration
algorithm [23]. Then, it can be proven that by increasing the
number of clients in the FL system, while a fixed percentage of
clients are scheduled in each decision epoch, the Lagrangian
index-based scheduling policy achieves asymptotically optimal
performance. We state this property in the following theorem.

Theorem 2. Consider a sequence of the diversity-agnostic
client scheduling problems with N clients (indexed by N ),
and a fixed portion of zN clients (0 < z < 1) are scheduled
for participating in FL. Let V DA,∗

1 (s1;N), LDA,λ∗

1 (s1;N), and
Ṽ DA1 (s1;N) denote the optimal value function, the optimal
Lagrangian, and the value function using the Lagrangian
index-based policy π̃, respectively. We have

lim
N→∞

Ṽ DA
1 (s1;N)

V DA,∗
1 (s1;N)

= 1 and lim
N→∞

LDA,λ∗

1 (s1;N)

V DA,∗
1 (s1;N)

= 1.

Proof: Problem (20) falls into the class of problems
considered in [21]. The detailed proof of Theorem 2 follows
similar steps as the proof provided in [21, Section EC 3.1].

C. Infinite-horizon Approximation of the Lagrangian Index

Some of the FL tasks may have a long time-horizon
T , which will increase the dimensionality of problem (25),
making it more computationally complex to solve. In this
subsection, we propose a stationary Lagrangian index schedul-
ing method, which has a lower complexity for problems with
long time-horizon. It can be interpreted as an infinite-horizon

approximation of the original Lagrangian index scheduling
approach. Given a stationary policy ϕ̄, let us define the
probability that client n ∈ N is in state sn and takes action
un in any decision epoch t ∈ T as

ν̄n,ϕ̄(sn, un) = E
[
1(sn,ϕ̄t = sn, un,ϕ̄t = un)

]
. (31)

In this way, the equivalent linear program for problem (25)
can be formulated as follows

minimize
ν̄n,ϕ̄(sn,un),

sn∈Sn,u
n∈Un,

n∈N

∑
n∈N

∑
sn∈Sn

∑
un∈Un

cn,DA(sn, un)ν̄n,ϕ̄(sn, un)

(32)

subject to C2d:
∑
n∈N

∑
sn∈Sn

ν̄n,ϕ̄(sn, 1) ≤M,

C3a:
∑
un∈Un

ν̄n,ϕ̄(sn, un) =∑
snt−1∈Sn

∑
un
t−1∈Un

P(sn | snt−1, u
n
t−1)ν̄

n,ϕ̄(snt−1, u
n
t−1),

sn ∈ Sn, n ∈ N ,

C4a:
∑

sn∈Sn

∑
un∈Un

ν̄n,ϕ̄(sn, un) = 1, n ∈ N ,

C5a: ν̄n,ϕ̄(sn, un) ≥ 0, sn ∈ Sn, un ∈ Un, n ∈ N .

Let λ∗inf denote the optimal Lagrange multiplier re-
lated to constraint C2d, which can be found by solv-
ing the dual problem of problem (32). Problem (32) has
2N |Sn| variables and has a computational complexity of
O((NHmax|A|)2.5 log(NHmax|A|/δ)) [26].

Let V n,DA,λ∗
inf(sn) denote the infinite-horizon average cost

value function of state sn of the client-specific MDP, given
λ∗inf. V

n,DA,λ∗
inf(sn) can be obtained using the relative value

iteration algorithm (RVIA) [27, Proposition 5.3.2], by first
initializing V

n,DA,λ∗
inf

0 (sn) = 0, sn ∈ Sn, n ∈ N , and then
iteratively calculating, for all j = 1, 2, . . .

V
n,DA,λ∗

inf
j (sn) = min

un∈Un

{
cn,DA(sn, un) (33)

+ E
[
V
n,DA,λ∗

inf
j−1 (snnext) | sn, un

]
+ λ∗infu

n − V n,DA,λ∗
inf

j (snref)
}
,

for all sn ∈ Sn, n ∈ N , where snref is a fixed reference
state. Any state snref ∈ Sn can be chosen as the reference
state, but it needs to be fixed across the RVIA iterations.
At the beginning of each iteration j, V n,DA,λ∗

inf
j (snref) is first

calculated by omitting the last term on the right-hand side
of (33). Since RVIA is guaranteed to converge [27], we
let V n,DA,λ∗

inf(sn) = lim
j→∞

V
n,DA,λ∗

inf
j (sn). We subsequently

define the stationary Lagrangian index in Definition 3 and its
corresponding scheduling policy in Definition 4.

Definition 3 (Stationary Lagrangian Index). The stationary
Lagrangian index for client n ∈ N in state sn ∈ Sn is defined
as

in,DA
inf (sn) ≜

(
cn,DA(sn, 1) + E

[
V n,DA,λ∗

inf(snnext) | sn, 1
])

−
(
cn,DA(sn, 0) + E

[
V n,DA,λ∗

inf(snnext) | sn, 0
])
.



Definition 4 (Stationary Lagrangian Index Scheduling). Under
the stationary Lagrangian index scheduling policy, in each
decision epoch, given the vector of stationary Lagrangian
indices iDA

inf (s) ≜ (i1,DA
inf (s1), . . . , iN,DA

inf (sN )), the M clients
with the smallest non-positive stationary Lagrangian indices
are scheduled to participate in FL. Let π̃inf ∈ Π denote the
stationary Lagrangian index scheduling policy. Then, given
current state s ∈ S, in each decision epoch,

π̃inf(s) = argmin
u∈U

uTiDA
inf (s). (34)

Compared with problem (30), we can obtain a stationary
policy for each state s ∈ S from (34). This allows us to
solve problems with long time-horizon since the dimension of
problem (32) does not increase with T . In Section V, we will
show that the infinite-horizon approximation renders similar
performance as the original Lagrangian index-based approach.

IV. DIVERSITY-BASED LAGRANGIAN INDEX SOLUTION

In this section, we propose a low-complexity suboptimal
solution to the original diversity-based CMDP (18). We con-
sider the case when the representative gradient matrix Gt is
revealed at the beginning of communication round t ∈ T ,
without making any assumption on P(gt), t ∈ T . We use the
Lagrangian index-based scheduling policy for the diversity-
agnostic client scheduling problem as a base policy, and derive
the diversity-based client scheduling policy based on one-step
lookahead policy improvement.

A. One-step Lookahead Policy Improvement

In large-scale MDP problems, it is often hard to obtain
the optimal policy using the value iteration algorithm, due
to the large state and action spaces of the problem. One-step
and multi-step lookahead approaches have been proposed to
obtain low-complexity heuristic policies. In this section, we
adopt the one-step lookahead policy proposed in [23, Ch. 6] to
find a heuristic policy for the diversity-based client scheduling
problem.

Definition 5 (One-step Lookahead Policy). In the one-step
lookahead scheme, starting from a base policy πbase with value
function V base(·) : S×T 7→ R, given state st in decision epoch
t ∈ T , the action vector ut is selected based on the following
optimization objective

min
ut∈U

{
c(st,ut) + E

[
V base
t+1 (st+1) | st,ut

] }
.

The one-step lookahead policy π̂ ∈ Π is defined as

π̂t(st) = argmin
ut∈U

{
c(st,ut) + E

[
V base
t+1 (st+1) | st,ut

] }
.

In [23, Section 6.4], it was proved that the policy achieved
by the one-step lookahead scheme achieves better performance
compared to the base policy. Recent work has further shown
that the one-step lookahead scheme typically improves the
performance considerably [23]. In this paper, we use the
Lagrangian index-based policy π̃ (obtained from the diversity-
agnostic case) as the base policy for the diversity-based client

scheduling problem and obtain an improved policy π ∈ Π
through the one-step lookahead scheme. From the results in
Theorem 2 and considering the client scheduling problem with
a truncated time-horizon T ′ = {t, . . . , T}, we can estimate the
cost-to-go functions under the Lagrangian index-based policy
Ṽ DA
1 (st), for all st ∈ S, t ∈ T as follows

Ṽ DA
t (st) ≈ LDA,λ∗

t (st) = −
T∑
i=t

λ∗iM +

N∑
n=1

V n,DA,λ∗

t (snt ).

(35)
Under the conditions given in Theorem 2, approximation
(35) is asymptotically accurate. Since the future diversity
information is unknown, we do not consider the portion of
the expected future cost corresponding to diversity for the
cost-to-go function estimation4. In this way, for all st ∈ S ,
t ∈ T , the cost-to-go function of the Lagrangian index-based
policy π̃ for the diversity-based client scheduling problem can
be approximated as follows

Ṽt(st) ≈ −
T∑
i=t

λ∗iM +

N∑
n=1

V n,DA,λ∗

t (snt ). (36)

B. Per-time Slot Decision Problem

Given the cost-to-go function under the Lagrangian index-
based policy is approximated by (36), the one-step lookahead
policy for the diversity-based client scheduling problem be-
comes

πt(st) = argmin
ut∈U

{
c(st,ut)−

T∑
i=t

λ∗iM

+

N∑
n=1

E
[
V n,DA,λ∗

t+1 (snt+1) | snt , unt
]}

= argmin
ut∈U

{
cDA(st,ut) + ρ

∥∥∥∥Gt

(
p− ut∑

n∈N unt

)∥∥∥∥
}

+

N∑
n=1

E
[
V n,DA,λ∗

t+1 (snt+1) | snt , unt
]

(a)
= argmin

ut∈U

[
uT
t i

DA
t (st) + ρ

∥∥∥∥Gt

(
p− ut∑

n∈N unt

)∥∥∥∥] .
(37)

We can obtain equality (a) in (37) as follows. Let us define
Θ1(st,ut)

∆
= uT

t i
DA
t (st), Ω(st)

∆
=
∑N
n=1

(
cn,DA(snt , 0) +

E
[
V n,DA,λ∗

t+1 (snt+1) | snt , 0
])

, and Θ2(st,ut)
∆
= Ω(st) +

Θ1(st,ut).
Based on Definition 1, we have

Θ1(st,ut) =

N∑
n=1

unt
(
cn,DA(snt , 1)− cn,DA(snt , 0)

)
+

N∑
n=1

unt

(
E
[
V n,DA,λ∗

t+1 (snt+1) | snt , 1
]

4Although diversity is not considered in the cost-to-go function estimation,
it is still accounted for in the one-step lookahead scheme, through cost
function c(st,ut).



− E
[
V n,DA,λ∗

t+1 (snt+1) | snt , 0
])

,

Θ2(st,ut) = Θ1(st,ut) + Ω(st)

=

N∑
n=1

(
1(unt = 1)cn,DA(snt , 1) + 1(unt = 0)cn,DA(snt , 0)

)
+

N∑
n=1

(
1(unt = 1)E

[
V n,DA,λ∗

t+1 (snt+1) | snt , 1
]

+ 1(unt = 0)E
[
V n,DA,λ∗

t+1 (snt+1) | snt , 0
])

= cDA(st,ut) +

N∑
n=1

E
[
V n,DA,λ∗

t+1 (snt+1) | snt , unt
]
.

Since Ω(st) does not depend on ut, we have
argmin
ut∈U

Θ1(st,ut) = argmin
ut∈U

Θ2(st,ut), which is equivalent

to equality (a) in (37).
When the time horizon T is large, the infinite-horizon

approximation obtained in Section III-C can be adopted, and
the stationary Lagrangian index vector iDA

inf (st) is used in place
of iDA

t (st). The optimal solution to problem (37) can be found
by first introducing an equality constraint

∑N
n=1 u

n
t = M̃t,

and then solving the optimization problem M times with
M̃t = 1, 2, . . . ,M . In this way, the optimization problem
becomes

minimize
ut∈{0,1}N

− uT
t i

DA
t (st) + ρ

∥∥∥Gt

(
p− ut/M̃t

)∥∥∥ (38)

subject to
N∑
n=1

unt = M̃t.

Given a fixed M̃t, problem (38) is a binary optimization
problem. In practice, to obtain a low-complexity solution that
can be implemented in real time, we can set M̃t = M ,
t ∈ T , relax the binary variables to continuous ones, and
use successive convex approximation (SCA) [28] to obtain a
suboptimal solution to problem (38). We initialize u(0)

t to a
random binary vector and employ SCA for ISCA iterations.
In the i-th iteration, we obtain u

(i)
t by solving the following

optimization problem

minimize
u

(i)
t

−
(
u
(i)
t

)T
iDA
t (st) + ρ

∥∥∥Gt

(
p− u

(i)
t /M

)∥∥∥
+ 2i+1ρ′

(
u
(i)
t − u

(i−1)
t

)T
u
(i−1)
t

subject to
N∑
n=1

u
n,(i)
t =M, (39)

where ρ′ denotes a penalty factor. The values for ρ and ρ′ are
chosen manually before FL training. In each iteration of SCA,
the optimization problem involves N continuous variables
and one constraint, and has a computational complexity of
O(N3) [29]. The problem can be solved by using optimization
solvers such as CVX [30].

To solve problem (39), the Lagrangian indices of each
client in different states are first obtained during the planning
stage. During the deployment stage, problem (39) is solved
in an online manner, based on the representative gradient

Algorithm 1 Two-stage Online Client Scheduling Algorithm
1: Planning Stage:
2: Solve the dual problem of problem (32) to obtain λ∗

inf, ∀t ∈ T .

3: Initialization: Titer, V
n,DA,λ∗

inf
0 (sn) := 0, ∀sn ∈ Sn, n ∈ N .

4: for n = 1 to N do
5: Set j := 0.
6: while j ≤ Titer do
7: Calculate V

n,DA,λ∗
inf

j (sn), ∀ sn ∈ Sn from (33).
8: Set j := j + 1.
9: end while

10: Compute and store the stationary Lagrangian index in,DA
inf (sn) from

Definition 3, ∀sn ∈ Sn.
11: end for
12: Deployment Stage:
13: Set t := 1
14: while t ≤ T do
15: Observe Gt.
16: for n = 1 to N do
17: Observe snt := (ant , h

n
t ) and retrieve the stored stationary

Lagrangian index in,DA
inf (snt ).

18: end for
19: Solve problem (39) for ISCA iterations, and set ut := u

(ISCA)
t

20: Set t := t+ 1.
21: end while

matrix revealed at the beginning of communication round
t. Henceforth, we will refer to this proposed approach for
solving problem (18) as the two-stage online algorithm. The
key steps in the planning and deployment stages are presented
in Algorithm 1.

V. PERFORMANCE EVALUATION AND COMPARISON

In this section, we conduct simulation experiments to eval-
uate the performance of the proposed algorithm. We first
introduce the simulation setup and then present the results.

1) Simulation Parameters: We consider a communication
scenario where the set of N users are uniformly distributed
within a ring with inner radius Li = 10 m and outer radius
Lo = 1.5 km. The PS is located in the centre of the ring. The
system bandwidth W is equal to 50 MHz. The transmit power
of each client Pn is set to 28 dBm, and the noise variance
σ2

noise,n is set to −97 dBm. We consider a channel model where
the pathloss for client n ∈ N can be expressed as 128.1 +
37.6 log10(l

n), and ln denotes the distance between client n
and the PS in kilometers [5]. We assume Rayleigh fading when
computing the instantaneous channel gain of each client. We
discretize the CSI into |Hn| = H̄ levels, for all n ∈ N ,
based on its empirical cumulative distribution function. For
stationary Lagrangian indices, we set Titer = 1000.

We consider two popular machine learning datasets. The
MNIST dataset consists of pictures of hand-written digits
{0, . . . , 9} and the CIFAR-10 dataset consists of photos of 10
classes of objects. Each client performs 50 SGD steps before
sending the updated model back to the PS. We consider a
convolutional neural network (CNN) with three convolutional
layers and two fully-connected layers for the MNIST dataset.
The size of the neural network is ζ = 159.8 kB. For
the CIFAR-10 dataset, we further include a dropout layer
in the model. The number of samples owned by the set
of clients N follows a Zipf distribution with parameter κ.
That is, the number of samples owned by client n satisfies



|Xn| =
⌈
n−κ∑

j∈N |Xj |∑
i∈N i−κ

⌉
, n ∈ N , where κ represents the

degree of difference between the amount of data owned by
different clients. When κ is equal to zero, it corresponds to the
case where all clients have the same amount of data. Among
the |Xn| samples owned by client n, the composition of classes
follows a Dirichlet distribution with parameter α. We have
P(xn) ∝

∏10
i=1(x

n
i )
α−1, and

∑10
i=1 x

n
i = |Xn|, n ∈ N .

A smaller value of α corresponds to more severe disparity
between data shared among all clients5. The FL experiments
were constructed using the PyTorch code package, based on
the source code of an existing FL project [8]. Simulations were
conducted on an NVIDIA RTX2060 GPU.

2) Performance Comparison: In Fig. 2, we compare the
performance of the finite-horizon Lagrangian index-based
algorithm and the proposed infinite-horizon approximation
stationary Lagrangian index-based algorithm. We use the
performance given by the optimal solution to problem (23),
i.e., policy ϕ∗, as a lower bound for the optimal value of
problem (20). In Fig. 2(a), we compare the Lagrange mul-
tiplier vector λ∗ = (λ∗1, . . . , λ

∗
T ) obtained from problem (25)

and the Lagrange multiplier λ∗inf obtained from the infinite-
horizon approximation from problem (32), when N = 25 and
M = 5. The results show that the values of λ∗t differ from
λ∗inf significantly only at the beginning and toward the end
of the entire time-horizon. This justifies the choice of using
the infinite-horizon approximation. In Fig. 2(b), we vary the
number of clients N . One fifth of the clients are scheduled to
participate in FL in each communication round. Each exper-
iment was repeated 1,000 times with different random seeds.
The expected total cost obtained using the finite-horizon and
infinite-horizon algorithms are compared. They show similar
performance. These results show that the proposed infinite-
horizon approximation achieves similar performance as the
finite-horizon approach.

Next, we deploy the proposed algorithm in a large-scale FL
system. We consider an FL system with N = 100 potential
clients and M = 10 users are scheduled to send their updated
model during each communication round. We set H̄ = 20,
Amax = 50,6 ρ = 5, ISCA = 10, ξ = 10000, and ρ′ = 1. The
infinite-horizon approximation of the Lagrangian index was
adopted. In Figs. 3 and 4, we show the performance of the
proposed algorithm in terms of the following three metrics:
The global loss captures the cross-entropy loss of the model
during training. The average duration of one communication
round corresponds to 1

t

∑t
τ=1

∑N
n=1 y(h

n
τ , u

n
τ ).

7 The testing
accuracy corresponds to the mean accuracy of all clients on
the testing dataset. For the MNIST dataset, we split the dataset
evenly across all clients (i.e., κ = 0). For the CIFAR-10
dataset, we set κ = 0.2. We observe that the classification

5In real-life FL scenarios, the datasets owned by different clients are often
non-IID. Therefore, in this paper, we focus on non-IID local datasets of clients.
We note that when the client local datasets are IID, having the diversity term
in the cost function may not improve the convergence performance of FL.

6This value is chosen such that ant never exceeds Amax, t ∈ T , n ∈ N ,
when using the proposed algorithm.

7Similar to [4], we assume that the duration of a communication round can
be approximated by the total uplink transmission time of all clients that are
scheduled to participate in FL.
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Fig. 2: Performance comparison between the proposed Lagrangian index-
based algorithm (finite-horizon) and the proposed stationary Lagrangian
index-based algorithm (infinite-horizon approximation) in an FL system with
H̄ = 5, T = 30, κ = 0, ξ = 200, and ρ = 0. One fifth of the clients
are scheduled in each decision epoch: (a) The Lagrangian index vector λ∗

obtained from the dual problem of problem (25), and λ∗
inf obtained from the

dual problem of problem (32), where N = 25 and M = 5. (b) The expected
total cost obtained by the two algorithms and the lower bound.

task using the CIFAR-10 dataset takes longer to converge.
We set T = 200 for the MNIST dataset and T = 3000
for the CIFAR-10 dataset. We compare the results obtained
with the proposed algorithm with three baseline algorithms:
The MD sampling algorithm [3]8 samples clients according
to their local dataset size in each communication round. It
has a computational complexity of O(M). In the clustered
sampling algorithm [8], clustering and random sampling are
performed in each communication round. It has a computa-
tional complexity of O(N2 log(N)). The DivFL algorithm [7]
samples clients only based on the diversity cost, and adopts
a submodular heuristic with a computational complexity of
O(N2). These three algorithms are chosen since they are
state-of-the-art client scheduling algorithms in the literature.
The global loss with respect to the number of communication
rounds, achieved by the four algorithms, are plotted in the first
column of Figs. 3 and 4. We observe that the proposed two-
stage online algorithm achieves slightly better performance
compared to the clustered sampling algorithm, which has the
best performance among the three baselines. This is due to the
inclusion of the diversity term in the objective function. The

8Since the initial gradient estimate for the proposed two-stage online
algorithm can be inaccurate, a round robin sampling scheme was adopted
in the first N

M
communication rounds to ensure that each client is sampled at

least once in the beginning.
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Fig. 3: Comparison of the global loss, average duration of each communication round, and the testing accuracy on the MNIST dataset between the proposed
two-stage online algorithm, clustered sampling [8], MD sampling [3], and DivFL [7] algorithms when (a) α = 0.001, (b) α = 0.01, and (c) α = 0.1.

average duration of each communication round is shown in the
second column of Figs. 3 and 4. The proposed algorithm can
reduce the average duration of each communication round by
up to 71%, compared with the other three baseline algorithms.
This is due to the inclusion of the duration of uplink transmis-
sion time in the objective function. The testing accuracy with
respect to the elapsed time since training began is shown in
the third column of Figs. 3 and 4. We observe that the testing
accuracy of the proposed algorithm improves faster compared
to the baseline algorithms, due to the shorter duration of
the communication rounds. The performance of the proposed
algorithm consistently outperforms the three baselines on local
datasets with different values of α’s.

To investigate the necessity of incorporating the AoI, uplink
transmission time, and diversity terms in the cost function (17),
we perform ablation studies and consider three cases where
only two out of three terms are present in the cost function.
In Fig. 5, we show the performance comparison between
these three cases and the original proposed two-stage online
algorithm, using the same simulation settings as in Fig. 4(a).
From the global loss curves, we notice that the training
converges slower without the AoI term in the cost function.
This happens because a small subset of clients with good CSI
and low diversity cost are repeatedly sampled to participate in

FL training and the stored representative gradients at the PS
are not up-to-date. Without the diversity term in the objective
function, the training converges more slowly, with a larger
variance. Without the CSI term, the training is also slower, due
to the longer duration of the communication rounds. Thus, all
three terms in (17) contributed to the overall improvement of
the convergence of FL.

VI. CONCLUSION

In this paper, we designed a channel-aware joint AoI
and diversity optimization framework to address the client
scheduling problem in FL with non-IID client datasets. First,
we formulated the client scheduling problem as a CMDP
and derived the optimal solution using the value iteration
algorithm. Then, we considered a diversity-agnostic variant of
the problem and proposed a low-complexity Lagrangian index
solution. The proposed Lagrangian index-based approach has
the potential of being applied to other optimization problems
with AoI as part of the objective function or constraints.
Based on the Lagrangian index solution, we designed a two-
stage online algorithm for solving the formulated CMDP. We
applied the proposed algorithm to FL training for the MNIST
and CIFAR-10 datasets. The results showed that the proposed
algorithm can improve the training performance by up to



Fig. 4: Comparison of the global loss, average duration of each communication round, and the testing accuracy on the CIFAR-10 dataset between the proposed
two-stage online algorithm, clustered sampling [8], MD sampling [3], and DivFL [7] algorithms when (a) α = 0.001, (b) α = 0.01, and (c) α = 0.1.

Fig. 5: Performance comparison between the proposed two-stage online algorithm with three cases, where only two out of the three terms in equation (17)
are considered. The simulation settings are the same as in Fig. 4(c).

71%, in terms of uplink transmission time. Future work will
study client scheduling in FL systems by considering adaptive
transmit power allocation and beamforming design.

APPENDIX

In this Appendix, we show the effect of AoI on the conver-
gence rate of diversity-based FL. Similar to [3], [7], we define
Γ

∆
= F ∗−

∑N
n=1 pnF

∗
n to model the degree of heterogeneity of

the client local datasets, where F ∗ and F ∗
n denote the optimal

values of F and Fn, respectively. We require function Fn(·),
n ∈ N , to satisfy the following standard assumptions:

• Assumption 1. The function Fn(·), n ∈ N , is L-smooth.
• Assumption 2. The function Fn(·), n ∈ N , is µ-strongly

convex.
• Assumption 3. The variance of the stochastic gradient is

bounded, such that

E
[
||∇Fn(wn

k | Ξnk )−∇Fn(wn
k )||2

]
≤ σ2

n,

for all n ∈ N , k ∈ K. To simplify the notation, we also
define σ ≜ maxn∈N σn.

• Assumption 4. The expected squared norm of the



stochastic gradient is uniformly bounded, such that

E
[
||∇Fn(wn

k | Ξnk )||2
]
≤ G2, ∀n ∈ N , k ∈ K.

Based on the above assumptions, we will show that the AoI
has an impact on the convergence performance of FL.

Theorem 3. Let Assumptions 1−4 hold and L, Γ, µ, σn, σ, G
be defined therein. Choose γ = max(8L/µ,E)−1 and learn-
ing rate ηk = 2

µ(γ+k) , k ∈ K9. Let Cηt
∆
=
∑E−1
i=0 η(t−1)E+i,

t ∈ T . Given the AoI of each client ant ≤ β, n ∈ N and the
diversity cost in (14), ϵct(gt,ut)/C

η
(t−β) ≤ ϵ, t ∈ T , we have

E[F (wtE)]− F ∗ <
L

(γ + tE)

[
2(B1 +B2)

µ2

+
γ

2
E ∥w0 −w∗∥2

]
+
B3L

µ
, t ∈ T , (40)

where B1, B2, and B3 are defined as

B1 ≜
N∑
n=1

p2nσ
2
n + 6LΓ + 8(E − 1)2G2,

B2 ≜ 4(ϵ+ 4σ)2E2 + 2β+3(β + 2)LGE2
(
2β+3

× (β + 2)LGE2 + 4(ϵ+ 4σ)E + 2(G/µ+ J)
)
,

B3 ≜ 4(G/µ+ J)(ϵ+ 4σ)E,

and J is a positive constant.

The term inside the square bracket in (40) converges to zero
when t→∞ and affects the speed of convergence. The term
outside of the square bracket persists during training and is
referred to as a bias term. Similar to [7], we observe that ϵ
appeared in B2 and B3, and it affects both the convergence
speed and the bias term. Moreover, we notice that the AoI term
β only appeared in B2. Hence, a larger AoI will lead to slower
convergence of FL. To facilitate the proof of Theorem 3, we
begin by introducing the following three lemmas:10

Lemma 1. Under Assumptions 1, 3, and 4, consider a learning
rate ηk that is non-increasing and satisfies ηk ≤ 2ηk+E , k ∈ K.
Then, for all n ∈ N , t ∈ T , we have

E
[
∥qnt /C

η
t −∇Fn(wn

tE)∥
]
≤ 2η(t−1)EELG+ 2σn. (41)

Proof: We start by defining

q̃nt ≜ Cηt ∇Fn(wn
tE) =

E−1∑
i=0

η(t−1)E+i∇Fn(wn
tE), (42)

and recall the definition of qnt from (5) and (6)

qnt =− (wn
tE −wn

(t−1)E)

=

E−1∑
i=0

η(t−1)E+i∇Fn(wn
(t−1)E+i | Ξ

n
(t−1)E+i).

Then, we can bound the expected norm of the difference

9To simplify the notation, we also define η−k ≜ 2
µγ

, k ∈ K.
10To improve the readability of the proofs, we placed (T), (L), and

(A1)−(A4) above an inequality sign when the inequality is due to the triangle
inequality, the learning rate ηk , and Assumptions 1−4, respectively.

between qnt and q̃nt by

E [∥qnt − q̃nt ∥] ≤
E−1∑
i=0

η(t−1)E+i

× E
[
||∇Fn(wn

tE)−∇Fn(wn
(t−1)E+i | Ξ

n
(t−1)E+i)||

]
=

E−1∑
i=0

η(t−1)E+iE
[
||∇Fn(wn

tE)−∇Fn(wn
(t−1)E+i)

+∇Fn(wn
(t−1)E+i)−∇Fn(w

n
(t−1)E+i | Ξ

n
(t−1)E+i)||

]
(T)
≤

E−1∑
i=0

η(t−1)E+iE
[
||∇Fn(wn

tE)−∇Fn(wn
(t−1)E+i)||

+ ||∇Fn(wn
(t−1)E+i)−∇Fn(w

n
(t−1)E+i | Ξ

n
(t−1)E+i)||

]
(a)
≤

E−1∑
i=0

η(t−1)E(E||∇Fn(wn
(t−1)E+i)−∇Fn(w

n
tE)||+ σn)

(T)
≤

[
E−1∑
i=0

η(t−1)E

E−1∑
j=i

E
∣∣∣∣∣∣∣∣∇Fn(wn

(t−1)E+j)

−∇Fn(wn
(t−1)E+j+1)

∣∣∣∣∣∣∣∣
]
+ Eσnη(t−1)E

(A4)
≤ η(t−1)E

E−1∑
i=0

E−1∑
j=i

η(t−1)E+jLG+ Eσnη(t−1)E

≤ η2(t−1)EE
2LG+ Eσnη(t−1)E ,

where inequality (a) is due to Assumption 3 and Jensen’s
inequality. In this way, the expected norm of the difference
between qnt /C

η
t and ∇Fn(wn

tE) can be bounded by

E ∥qnt /C
η
t −∇Fn(wn

tE)∥≤
η2(t−1)EE

2LG+ Eσnη(t−1)E∑E−1
i=0 η(t−1)E+i

(L)
≤
η2(t−1)EE

2LG+ Eσnη(t−1)E

EηtE

(b)
≤ 2η(t−1)EELG+ 2σn.

Inequality (b) is due to the inequality η(t−1)E/ηtE ≤ 2, t ∈
{2, . . . , T}.

Lemma 2 (Impact of Using Stale Model Updates). Under
Assumptions 1 and 4, consider a learning rate ηk, k ∈ K,
which is non-increasing. In communication round t ∈ T , given
the AoI of client n ∈ N is ant and k ∈ {i | i ≥ (t−ant )E, i ∈
K}, we have

E
[∥∥∥q̂nt /Cη(t−ant ) −∇Fn(wn

k )
∥∥∥]

≤ η(t−ant −1)ELG[k − (t− ant )E + 2E] + 2σn. (43)

Proof: Based on the L-smooth property of Fn(·) (i.e.,
Assumption 1), we can show that

E
[∥∥∥∇Fn(wn

k )−∇Fn(wn
(t−ant )E)

∥∥∥]
(A1)
≤ LE

[∥∥∥wn
k −wn

(t−ant )E

∥∥∥]



(T)
≤ LE

k−1−(t−ant )E∑
i=0

∥∥wn
k−i −wn

k−i−1

∥∥
= L

k−1−(t−ant )E∑
i=0

E
[∥∥wn

k−i −wn
k−i−1

∥∥]
(a)
≤ L

k−1−(t−ant )E∑
i=0

ηk−i−1E
[∥∥∇Fn(wn

k−i−1 | Ξnk−i−1)
∥∥]

(A4), (L)
≤ LG

k−1−(t−ant )E∑
i=0

η(t−ant )E

= η(t−ant )ELG(k − (t− ant )E), (44)

where inequality (a) comes from (5). Then, we can show

E
[∥∥∥q̂nt /Cη(t−ant ) −∇Fn(wn

k )
∥∥∥]

= E
[∣∣∣∣∣∣∣∣q̂nt /Cη(t−ant ) −∇Fn(wn

(t−ant )E)

+∇Fn(wn
(t−ant )E)−∇Fn(w

n
k )

∣∣∣∣∣∣∣∣]
(b)
≤ E

[∥∥∥qn(t−ant )/Cη(t−ant ) −∇Fn(wn
(t−ant )E)

∥∥∥]
+ E

[∥∥∥∇Fn(wn
(t−ant )E)−∇Fn(w

n
k )
∥∥∥]

(c)
≤ 2η(t−ant −1)EELG+ 2σn + η(t−ant )ELG(k − (t− ant )E)

(L)
≤ η(t−ant −1)ELG[k − (t− ant )E + 2E] + 2σn,

where inequality (b) is due to triangle inequality and the
definition of q̂nt from (11). Inequality (c) is due to Lemma 1
and inequality (44).

Lemma 3. Under Assumptions 1, 3, and 4, consider a subset
of clients Mt with AoI ant , n ∈Mt, where ant ≤ β. Given a
sequence of non-increasing learning rates ηk such that ηk ≤
2ηk+E , for k ∈ {i | i > (t− β)E, i ∈ K}, we have

E [ϵk(Mt)] ≤ 1/Cη(t−β)E [ϵ̂t(Mt)]

+ 2η(t−β−1)ELG[k − (t− β)E + 2E] + 4σ. (45)

Proof: Based on triangle inequality, we have

E [ϵk(Mt)]︸ ︷︷ ︸
∥T1−T4∥

(T)
≤ E

[∥∥∥∥∥∑
n∈N

pn∇Fn(wn
k )−

∑
n∈N

1

Cη(t−β)
pnq̂

n
t

∥∥∥∥∥
]

︸ ︷︷ ︸
∥T1−T2∥

+ E

[∥∥∥∥∥∑
n∈N

1

Cη(t−β)
pnq̂

n
t −

1

|Mt|
∑
n∈Mt

1

Cη(t−β)
q̂nt

∥∥∥∥∥
]

︸ ︷︷ ︸
∥T2−T3∥

+ E

[
1

|Mt|

∥∥∥∥∥ ∑
n∈Mt

1

Cη(t−β)
q̂nt −

∑
n∈Mt

∇Fn(wn
k )

∥∥∥∥∥
]

︸ ︷︷ ︸
∥T3−T4∥

.

(46)

The first term on the right-hand side of (46) can be bounded
by using inequality (43), such that

E

[∥∥∥∥∥∑
n∈N

pn∇Fn(wn
k )−

∑
n∈N

1

Cη(t−β)
pnq̂

n
t

∥∥∥∥∥
]

= E

[∥∥∥∥∥∑
n∈N

pn

(
∇Fn(wn

k )−
1

Cη(t−β)
q̂nt

)∥∥∥∥∥
]

(T)
≤
∑
n∈N

pnE

[∥∥∥∥∥∇Fn(wn
k )−

1

Cη(t−β)
q̂nt

∥∥∥∥∥
]

≤
∑
n∈N

pn(η(t−β−1)ELG[k − (t− β)E + 2E] + 2σ)

= η(t−β−1)ELG[k − (t− β)E + 2E] + 2σ.

The second term on the right-hand side of (46) can be
simplified as 1/Cη(t−β)E [ϵ̂t(Mt)]. The third term on the right-
hand side of (46) can be bounded in a similar way as the first
term.

Using the results from these lemmas, we can now prove
Theorem 3.

Proof: The proof is similar to the proof of [7, Theorem 1].
The key difference between these two theorems is the inclusion
of the AoI term in our work. Similar to [3], [7], we define
a sequence of vnk , where vnk+1 = wn

k − ηk∇Fn(wn
k | Ξnk ),

n ∈ N , k ∈ K. We also define w̄k ≜
∑
n∈N pnw

n
k and

v̄k ≜
∑
n∈N pnv

n
k , k ∈ K. w̄k and v̄k only differ when

k = tE, t ∈ T . Since w̄(t−1)E+1 = v̄(t−1)E+1, we can bound
E ∥w̄tE − v̄tE∥ by [7, eqns. (20)−(29)]:

E [∥w̄tE − v̄tE∥] ≤
E−1∑
i=0

η(t−1)E+iE
[
ϵ(t−1)E+i(Mt)

]
(L)
≤ η(t−1)E

E−1∑
i=0

E
[
ϵ(t−1)E+i(Mt)

]
≤ η(t−1)E

E−1∑
i=0

(
ϵ+ 4σ + 2η(t−β−1)ELG[(β + 1)E + i]

)
(L)
≤ A1(tE) ≜ 2(ϵ+ 4σ)EηtE + 2β+3(β + 2)LGE2η2tE .

(47)

Since we did not make any assumption on the value of v̄tE ,
we also have

E [∥w̄tE − v̄tE∥ | v̄tE = v̄′] ≤ A1(tE). (48)

Similar to [7, eqn. (33)], we can derive a recursion for
∥w̄k+1 −w∗∥2, where

E
[
∥w̄k+1 −w∗∥2

]
≤ 2E [∥w̄k+1 − v̄k+1∥ ∥v̄k+1 −w∗∥]

+ E
[
∥w̄k+1 − v̄k+1∥2

]
+ E

[
∥v̄k+1 −w∗∥2

]
(a)
≤ 2A1(k + 1)E [∥v̄k+1 −w∗∥]︸ ︷︷ ︸

A2

+E
[
∥w̄k+1 − v̄k+1∥2

]
︸ ︷︷ ︸

A3

+ E
[
∥v̄k+1 −w∗∥2

]
︸ ︷︷ ︸

A4

. (49)



Here, inequality (a) is due to the fact that

E [∥w̄k+1 − v̄k+1∥ ∥v̄k+1 −w∗∥]
(b)
= Ev̄′

[
E [∥w̄k+1 − v̄k+1∥ ∥v̄k+1 −w∗∥ | v̄k+1 = v̄′]

]
= Ev̄′

[
∥v̄′ −w∗∥E [∥w̄k+1 − v̄k+1∥ | v̄k+1 = v̄′]

]
≤ A1(k + 1)Ev̄′ [∥v̄′ −w∗∥] = A1(k + 1)E[∥v̄k+1 −w∗∥].

Equality (b) is often referred to as the law of iterated expecta-
tions. The term A3 can be bounded by (47). From [3, Theorem
1], the term A4 can be bounded by

E
[
∥v̄k+1 −w∗∥2

]
≤ (1− ηkµ)E

[
∥w̄k −w∗∥2

]
+ η2kB1.

From [7, eqn. (38)], the term A2 is bounded by

E[∥v̄k+1 −w∗∥] ≤ G/µ+ J.

By defining ∆k
∆
= E[∥w̄k −w∗∥2] and expanding the terms,

we have

∆k+1 ≤ (1− µηk)∆k + (B1 +B2)η
2
k +B3ηk. (50)

Then, let us define

vk ≜ max

{
4(B1 +B2)

µ2
+

2B3

µ
(γ + k), γ∆0

}
, (51)

and we have ∆0 ≤ v0
γ . Then, given ∆k ≤ vk

k+γ , we can prove
that ∆k+1 ≤ vk+1

k+1+γ . Starting from (50), we have

∆k+1

≤
(
1− 2µ

µ(k + γ)

)
vk

k + γ
+

4(B1 +B2)

µ2(k + γ)2
+

2B3

µ(k + γ)

=
k + γ − 1

(k + γ)2
vk +

[
4(B1 +B2)

µ2(k + γ)2
+

2B3

µ(k + γ)
− vk

(k + γ)2

]
(c)
≤ k + γ − 1

(k + γ)2
vk ≤

vk+1

k + γ + 1
,

where inequality (c) is due the definition (51), hence the term
inside the square bracket is non-positive. From the L-smooth
property of F (·) (Assumption 1), we further have

E[F (w̄k)]− F ∗ ≤ L

2
∆k ≤

Lvk
2(k + γ)

<
L

2(k + γ)

[
4(B1 +B2)

µ2
+

2B3

µ
(γ + k) + γ∆0

]
≤ L

(k + γ)

[
2(B1 +B2)

µ2
+
γ

2
E ∥w̄0 −w∗∥2

]
+
B3L

µ
.

Then, inequality (40) follows from the fact that w̄tE = wtE ,
for t ∈ T .
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