
Age of Information Driven Cache Content Update
Scheduling for Dynamic Contents

in Heterogeneous Networks
Manyou Ma, Student Member, IEEE and Vincent W.S. Wong Fellow, IEEE

Abstract—The recent development in mobile edge computing
necessitates caching of dynamic contents, where new versions of
contents become available around-the-clock, thus timely update
is required to ensure their relevance. The age of information
(AoI) is a performance metric that evaluates the freshness of
contents. Existing works on AoI-optimization of cache content
update algorithms focus on minimizing the long-term average
AoI of all cached contents. Sometimes, user requests that need
to be served in the future are known in advance and can be
stored in user request queues. In this paper, we propose dynamic
cache content update scheduling algorithms that exploit the user
request queues. We consider a use case, where the trained neural
networks (NNs) from deep learning models are being cached in
a heterogeneous network (HetNet), as a motivating example. A
queue-aware cache content update scheduling algorithm based
on constrained Markov decision process (CMDP) is developed
to minimize the average AoI of the dynamic contents delivered
to the users. By using enforced decomposition technique and
deep reinforcement learning, we propose two low-complexity
suboptimal scheduling algorithms. Simulation results show that
our proposed algorithms outperform the periodic cache content
update scheme and reduce the average AoI by up to 30%.

Index Terms—Age of information (AoI), dynamic content
caching, constrained Markov decision process (CMDP), deep
reinforcement learning (DRL) heterogeneous network (HetNet),
queue-aware scheduling

I. INTRODUCTION

To handle the ever-increasing growth of data traffic, one
promising approach is to cache popular contents using
a heterogeneous network (HetNet) architecture. In HetNet
caching [2], a macro base station (MBS) and multiple small-
cell base stations jointly serve users within a macrocell. These
small-cell base stations have storage capacity and can act
as content servers (CSs). When the data traffic is low, such
as during off-peak hours, the MBS pushes popular contents
to the CSs via a wireless backhaul. Henceforth, the CSs
can simultaneously serve mobile user requests using their

Manuscript received on Oct. 6, 2019; revised on Apr. 13, 2020 and Jun.
24, 2020; accepted on Sept. 4, 2020.

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

This paper has been published in part in the Proceedings of the IEEE
International Conference on Communications (ICC), Jun. 2020 [1]. The editor
coordinating the review of this paper and approving it for publication was
Besma Smida. (Corresponding author: Vincent W.S. Wong)

The authors are with the Department of Electrical and Computer Engineer-
ing, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
(e-mail: {manyoum, vincentw}@ece.ubc.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

cached contents, resulting in lower power consumption and
higher throughput. Previous research has studied different
aspects of content caching, such as predicting future content
popularity [3], [4], content placement strategies [5], [6], and
scheduling algorithms design [7]–[10]. In the aforementioned
works, the content caching strategies of static files, such as
popular video and audio files, are studied. These files typically
do not change once they have been created and hence only
need to be pushed to the CSs once.

However, with the proliferation of Internet of things (IoT)
and mobile edge computing paradigm, billions of IoT devices,
e.g., industrial robots, security cameras, and autonomous driv-
ing cars, are expected to be connected to the fifth generation
(5G) and beyond wireless networks [11]. Many of these IoT
applications require to download the latest version of dynamic
contents, such as up-to-date software, list of neighbouring
devices, environmental parameters (e.g., temperature, traffic
status, video feeds), and ledgers for blockchain-enabled ap-
plications [12], in order to perform either mission-critical or
time-sensitive tasks using the onboard chipset. These contents
are dynamic because newer versions of such contents become
available around-the-clock. Ensuring the freshness of the dy-
namic contents that are delivered to the IoT applications is
of equal importance as satisfying the conventional quality-
of-service (QoS) requirements, such as average delay and
throughput.

As an example, a particular genre of artificial intelligence
(AI)-oriented IoT applications is powered by deep learn-
ing (DL) algorithms [13]. DL techniques have been applied
ubiquitously in domains such as autonomous driving, natural
language processing, and medical diagnosis. Since the training
of DL neural networks (NNs) is computationally and memory
intensive, general-purpose cloud computing facilities, such
as the Amazon Web Service (AWS) and Microsoft Azure
platforms, have been developed to train and maintain NNs,
using an ever-growing training dataset with new data con-
tinuously added into those platforms. Once an NN has been
trained, its size is typically small1 compared to the raw data
(e.g., images, videos) collected by the IoT devices. Moreover,
executing an NN in the deployment stage is less resource-
demanding, compared to the training step in DL. Therefore,
it is desirable for the IoT devices to download the trained
NNs and execute the AI applications using their onboard

1The size of popular pre-trained NNs ranges from 5 MB (SqueezeNet) to
500 MB (VGG11) [14].

2

chipset. Tools have been developed for the deployment of
DL algorithms on lightweight computational devices, such as
smartphones [15]. In the literature, the DL frameworks, where
NNs are trained in a centralized server and later distributed
to the users in the system, have already been proposed for
wireless communication and robotics applications [16], [17].
In anticipation of the ubiquitous adoption of these DL frame-
works, effective algorithms need to be developed to deliver the
trained NNs to the system users. We postulate that the trained
NNs should be treated as dynamic contents, since we live in a
dynamically changing world with the explosive emergence of
new information, patterns, and trends, the DL NNs need to be
re-trained using the newly available data to stay adaptive to
these new changes. Due to the massive number of IoT devices
connected to the networks, many of which with stringent la-
tency requirements, it may not be possible for the IoT devices
to download the dynamic contents, such as the NNs, directly
from the cloud computing server. This is because sending all
these data packets (with the dynamic contents as payloads)
across the cloud through the core network to the radio access
network introduces extra delay overhead, and may increase the
level of congestion in the core network and the access links.
Hence, the aforementioned HetNet architecture can be adopted
to tackle the dynamic contents caching problem. To reduce
the data traffic in the MBS, recent versions of the dynamic
contents can be cached in the CSs. When a user request arrives,
the cached dynamic content can be sent by the CS to the user
at the target download time specified by the user.

To ensure the freshness of the dynamic contents delivered to
the IoT applications, we propose to use the age of information
(AoI) [18], [19] of the delivered dynamic contents as a metric
to evaluate the system performance. The AoI of a file depicts
the amount of time that has elapsed since the current version
of a file is generated. Hence, a smaller AoI corresponds to a
file which is more recent. Modeling and optimizing the AoI of
a system have attracted much research interest. For example,
in the original work that proposed the AoI framework, Kaul
et al. in [18] studied the optimal rate of re-sampling different
measurement data in the control system of a vehicle, using
different queuing models of user arrivals. In [20], Kadota et
al. studied the problem of optimizing the AoI in a wireless
sensor network subject to the throughput constraint. In [21]–
[23], scheduling policies for wireless broadcasting channels
are proposed. In [24], Yates et al. used AoI as a metric
to evaluate the performance of a caching network. Follow-
ing [24], research on dynamic content caching [25], [26] has
also been reported in the literature. Although the earlier works
on AoI optimization are based on queuing theory frameworks,
learning-based methods such as Markov decision process
(MDP) [27]–[29] and reinforcement learning (RL) [30] have
also been proposed recently.

In the aforementioned works on AoI optimization, stochastic
arrivals of user requests following a renewal process are
assumed, and the long-term average AoI of all the files in the
system is minimized. However, we conjecture that in practical
systems, many user requests may require the dynamic content
to be sent at a specific time in future, because IoT devices
in general submit their request earlier than the expected time

that the dynamic content is being used. Therefore, the number
of dynamic contents or files that need to be transmitted in the
near future are often known ahead of time and can be used to
facilitate scheduling of dynamic content update. In this paper,
we consider the scenario where user requests arrive before
their target download time. We employ multiple queues to
keep track of user requests for different dynamic contents that
need to be served at different target download times. Each user
in the network needs to submit a request for downloading the
dynamic content before the target download time.

When AoI is adopted as the performance metric, serving a
user request earlier may not always improve the AoI perfor-
mance of the system. This is because when a user request
arrives and the specified target download time is large, it
may be better to wait and obtain a more recent version than
sending the current version. For example, consider the use
cases when (a) an IoT device that is scheduled to perform
a series of periodic tasks and requires a computational step
using an NN, and (b) a car that is scheduled to start an NN-
based autonomous driving application in 20 seconds. In both
cases, the requests are scheduled well-ahead before the NN
is required to be downloaded, i.e., the target download time.
Delivering the NNs early will not benefit the IoT application,
since it may result in a slightly dated NN when the application
actually begins. Therefore, to mitigate this, we let the users,
which are the IoT applications, specify the target download
time of the dynamic content. In this paper, we consider the
case where the CS is scheduled to deliver the requested
dynamic contents exactly at the time specified by the users,
and leave the general scenario, where each user submits a time
interval for dynamic content delivery, for future work. We
aim to minimize the average AoI of the delivered dynamic
contents. We keep track of the queues of user requests for
different dynamic contents that need to be served in the
near future. Since only the AoI of the dynamic contents
that are delivered to the users will be accounted for system
performance, we can use the information stored in the user
request queues to decide when to update the cached dynamic
contents in the CSs, and which dynamic content to update. As
will be shown later in the paper, maintaining the user request
queues and using this information can reduce the average AoI
of the delivered dynamic contents in the system.

In this paper, we investigate the problem of AoI minimiza-
tion of dynamic contents caching in a HetNet. Compared
to previous studies on AoI in the literature, we utilize the
information of the user request queues and the target download
times to improve the system performance. We consider a
scenario where the dynamic contents are being cached by the
CSs in a HetNet. The contributions of our work are as follows:
• We formulate the problem of caching dynamic contents

in a HetNet as a constrained Markov decision process
(CMDP). The objective is to minimize the average AoI of
the dynamic contents that are sent to the IoT applications.
Compared to the existing algorithms in the literature, our
proposed framework utilizes information from the queues
of user requests for different dynamic contents that need
to be served in the near future.

• By using the enforced decomposition technique, we pro-

3

pose a low-complexity suboptimal algorithm to update
multiple dynamic contents being cached. In the subopti-
mal algorithm, a separate MDP subproblem is formulated
for each cached dynamic content.

• We show that the optimal policy of the formulated CMDP
for caching a single dynamic content has a threshold
structure and is monotonically non-decreasing with re-
spect to the AoI and the user request queues.

• To facilitate implementation of the proposed algorithm
in practical systems, where the state space can be large
for each CMDP subproblem, we train deep reinforcement
learning (DRL) agents to learn the optimal policy of
the formulated CMDP. This low-complexity suboptimal
algorithm can effectively reduce the memory required to
store the optimal policy. Our DRL is based on a state-of-
the-art algorithm called deep deterministic policy gradient
(DDPG) [31], which exploits the derived threshold struc-
ture of the optimal policy. The proposed DDPG algorithm
achieves better convergence performance when compared
to the deep Q-network (DQN) algorithm [32], which does
not exploit the threshold structure.

• We perform simulations and compare the optimal policy
of the CMDP problem with the offline optimal policy
where all future requests are known a priori. We show
that with the availability of information of user requests
that need to be served in a few subsequent time slots, the
performance of the proposed CMDP policy approaches
the offline optimal policy. Furthermore, compared to the
existing strategies that do not utilize the user request
queues, including the periodic update approach [24], our
proposed queue-aware cache content update scheduling
algorithms reduce the average AoI of the dynamic con-
tents delivered to the users by up to 30%.

The rest of this paper is organized as follows. The system
model and the CMDP problem formulation are presented in
Section II, where methods for obtaining the optimal solution
of the CMDP problem are introduced. In Section III, we pro-
pose two low-complexity suboptimal algorithms that solve the
formulated problem. Performance evaluation and comparison
are presented in Section IV. Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present how the decision making module
in the MBS makes the dynamic content caching decision
based on the current AoI of each dynamic content and
information in the user request queues. The MBS aims to
minimize the long-term average AoI of all the served user
requests, subject to a constraint on the update frequency of
the dynamic contents. We begin this section by presenting
the system model, followed by the formulation of the HetNet
dynamic content caching problem as a CMDP. In particular,
we introduce its state space, action space, state transition
probability, constraint, and the objective function. We use a
Lagrangian-based algorithm to find the optimal solution to the
formulated CMDP problem, where a Lagrange multiplier that
represents the cost related to updating a dynamic content is
introduced. Given the Lagrange multiplier, an unconstrained

MDP problem can be formulated. The corresponding deter-
ministic stationary optimal policy can be found using relative
value iteration algorithm (RVIA). A root-finding algorithm is
deployed to find the optimal Lagrange multiplier, given the
constraint on the maximum dynamic content update frequency.
Finally, the optimal policy of the formulated CMDP is a
randomized policy, which is a mixture of two deterministic
stationary policies.

A. System Model

We consider a HetNet consisting of one MBS and F CSs.
For the f -th CS, where f ∈ F = {1, . . . , F}, there are Nf
users associated with it and a dynamic content is being cached.
We assume only one dynamic content is being cached in each
CS both for simplicity of notation and to ensure that all the
CSs can operate simultaneously to serve user requests2. A
sample system topology of the network with two CSs and two
different dynamic contents being cached is shown in Fig. 1.
In this example, one of the dynamic contents corresponds to
the NN for navigation system for IoT-enabled cars and the
other dynamic content corresponds to the NN for computer
vision-based applications for reporting suspicious activities.

We consider a time-slotted system, and user requests may
arrive at the beginning of each time slot. The CSs transmit
the latest available cached dynamic content to the users at
the beginning of the target download time via multicasting.
We assume that the transmission of a dynamic content can be
finished within one time slot3, and error-free transmission can
be achieved4.

We make the simplifying assumption that newer versions
of the dynamic contents become available in every time slot,
which is known as the generate-at-will model [19] in the AoI
literature. To justify this assumption, we can consider again the
use case where multiple AI-enabled IoT devices perform tasks
based on NNs cached in their onboard chipsets. Those NNs
are trained in the cloud and need to be updated periodically
and every time prior to their activation. If a stochastic gradient
descent training algorithm [34] is executed in the cloud with
new data added into it after each training epoch, then the IoT
devices can obtain an up-to-date NN after each training step.

The CSs are connected to the MBS via a wireless backhaul.
The CSs have disjoint coverage areas. Simultaneous transmis-
sions by different CSs can be achieved when appropriate fre-
quency reuse schemes are adopted. The channels or subcarriers
used by the MBS to update the cached dynamic contents are
orthogonal to those used by the CSs to serve user requests.

2The model can be extended to the cases where (a) multiple dynamic
contents are being cached in each CS and (b) each dynamic content is being
cached in multiple CSs. For case (a), spectral resources need to be allocated
to each CS to ensure the user requests for different dynamic contents can be
served simultaneously. For case (b), a dynamic content cached in multiple
CSs can be updated via multicasting.

3If the dynamic contents being cached in the HetNet are NNs, where each
NN is large and the transmission cannot be completed within one time slot,
then the NN training algorithm, which is executed by the cloud computing
server, will only update and transmit a subset of the parameters in the NN
while the other parameters remain fixed. This approach is known as transfer
learning [33].

4To consider the possibility of transmission errors, one can extend the state
space by including the channel state information.

4

MBS

Cloud

Action 1: Update the 1st NN (related

to autonomous driving)

Action 0: Stay idle

Action 2: Update the 2nd NN (related

to video surveillance)

Actions of MBS:

CS

t
t+1

t+3

t+3

CS
t

t

t+2
t+3

Timet t+1 t+2 t+3

v

User Request Queues:

2nd NN

For the

1st NN

t+3

Decision Making

Module

Fig. 1: System model of the HetNet with one MBS and two CSs. Two
different dynamic contents are being cached, one in each CS. One of the
dynamic contents corresponds to the NN for navigation system, and the other
corresponds to the NN for computer vision applications. The IoT devices
correspond to the IoT-enabled cars and video surveillance cameras in the
network. The decision making module is located at the MBS. At a given time
instance t, the target download time specified by each IoT device is shown
above the IoT devices in the figure. The user request queues, which are stored
in the decision making module, at time instances t, t+1, t+2, and t+3 are
shown. The decision making module chooses one of the (F + 1) available
actions, where action 0 corresponds to staying idle and action f corresponds
to updating the f -th dynamic content, for all f ∈ F .

At the beginning of each time slot, the CSs serve the user
requests that are due at the end of the current time slot. The
decision making module in the MBS decides whether the MBS
remains idle or update one of the dynamic contents cached in
a CS (see Fig. 1). We assume that apart from updating the
dynamic contents cached in the CSs, the MBS also performs
other tasks, such as collecting and forwarding data collected
from the IoT devices. Therefore, only a certain number of
time slots within a time frame can be used for dynamic content
updating. We use µ, where 0 ≤ µ ≤ 1 to denote the maximum
update frequency (i.e., maximum fraction of time slots that are
used to perform dynamic content update).

The MBS is connected to the cloud via a high-speed wired
backhaul link. The IoT devices, e.g., the AI-enabled cars
shown in Fig. 1, submit their requests to the CS, which are
forwarded to the MBS, for the latest version of NNs at least
∆ time slots before the NN is required. That is, a request
submitted at the t-th time slot needs to be served in the (t+∆)-
th time slot. For example, ∆ can be the number of time slots
required by the engine and other hardware in the car to become
ready for using the updated NN to perform navigation. The
car submits the request when it is turned on at time slot t,
and an up-to-date NN is delivered when the car is ready to
be driven at time slot t+ ∆. Since the car will not be driven
until t + ∆, sending the NN too early, for example in time
slot t + 1, will lead to a larger AoI of the NN, when the car
is actually ready for driving at time slot t+ ∆. In this paper,
we consider a simple case where all users send the request
∆ time slots before the dynamic contents are needed5. We
assume that the user request arrivals of the f -th CS follow the

5In practice, the system only specifies a minimum time interval ∆min,
which represents the minimum time window between the time a user request
is submitted and the dynamic content is needed. An IoT device may submit
a request for a dynamic content which is due well ahead in the future.

binomial distribution with rate λf .

B. CMDP Problem Formulation

1) Decision Epochs and States: We consider an infinite
horizon CMDP, where the decision epochs are represented
by the time slots in set T = {0, 1, 2, . . .}. In decision
epoch t ∈ T , let Aft denote the AoI of the f -th dynamic
content being cached in the CS. To obtain a finite discrete
state space, let Â denote the upper limit of the AoI. Hence,
A = {1, 2, . . . , Â} is the set of all the possible values of AoI
of a cached dynamic content. In this way, we have Aft ∈ A,
∀ f ∈ F and t ∈ T .

In decision epoch t, let Qf,δt ∈ Nf
∆
= {0, 1, . . . , Nf} denote

the number of user requests for the f -th dynamic content that
have their target download time at time t+ δ, for f ∈ F and
δ ∈ {0, . . . ,∆−1}. Since in the networking literature, queues
are usually used to denote the number of user requests that
have arrived and need to be served, we will refer to Qf,δt as a
user request queue in this paper. We refer to ∆ as the window
size. For example, given a window size ∆ = 3, in decision
epoch t, the user requests that need to be served in decision
epochs t, t + 1, and t + 2 are known. In decision epoch t,
let Gft ∈ Nf denote the user request queue of newly arrived
user requests for the f -th dynamic content, which need to be
served in decision epoch t+ ∆.

In decision epoch t, the set of system states for the f -th
dynamic content can be represented by a finite set Sf = A×
N∆
f ×Nf . The state vector for the f -th dynamic content can

be represented as

sft =
(
Aft , Q

f,0
t , Qf,1t , . . . , Qf,∆−1

t , Gft
)
∈ Sf , t ∈ T , f ∈ F .

(1)

As an example, in Fig. 2, we show the state of the
system when t = 6 and ∆ = 3, where s1

6 =
(A1

6, Q
1,0
6 , Q1,1

6 , Q1,2
6 , G1

6) = (3, 1, 1, 0, 2) and s2
6 =

(A2
6, Q

2,0
6 , Q2,1

6 , Q2,2
6 , G2

6) = (5, 2, 0, 1, 1).
In summary, when considering all the F dynamic contents

being cached in the HetNet, the system state space is the finite
set S = S1 × · · · × SF . The state vector St ∈ S, representing
the overall state of the system in decision epoch t, can be
represented as

St = (s1
t , s

2
t , . . . , s

F
t)

=
(
A1
t , Q

1,0
t , . . . , Q1,∆−1

t , G1
t , . . . , A

F
t ,

QF,0t , . . . , QF,∆−1
t , GFt

)
, t ∈ T .

(2)

2) Actions: Let U = {0, 1, . . . , F} denote the set of actions
that can be chosen by the decision making module at the MBS.
Let ut denote the action chosen in decision epoch t, where
the MBS stays idle when ut = 0, updates the ut-th dynamic
content in the HetNet when ut > 0.

3) State Transition Probability: Since each individual user
request is independent, in decision epoch t, the number of new
user request arrivals for the f -th dynamic content, Gft , f ∈ F ,
follows the binomial distribution

P(Gft = i) =

(
Nf
i

)
λif (1− λf)Nf−i, i ∈ Nf . (3)

5

t [Time slot]2 6 87 9

Q
!,"

Q
!,#

Q
!,! $

!

Q
#,"

Q
#,#

Q
#,! $

#

%
#

%
!

AoI evolution of the 2nd NN

AoI evolution of the 1st NN

1 3 4 5

1

2

3

4

0

A
o

I
[T

im
e

 s
lo

t]

5

Fig. 2: Illustration of the system state in time slot t = 6 and window size
∆ = 3, where states s16 = (A1

6, Q
1,0
6 , Q1,1

6 , Q1,2
6 , G1

6) = (3, 1, 1, 0, 2) and
s26 = (A2

6, Q
2,0
6 , Q2,1

6 , Q2,2
6 , G2

6) = (5, 2, 0, 1, 1).

In decision epoch t+ 1, given the AoI of the f -th dynamic
content and the action chosen in decision epoch t, the AoI of
the f -th dynamic content is increased by one if no update is
scheduled, or reset to one if an update is scheduled for the
f -th dynamic content in decision epoch t. Therefore, given
the AoI Aft and action chosen ut in decision epoch t, its AoI
in decision epoch t+ 1 is a deterministic value, where

P(Aft+1 | St, ut)

=


1, if Aft+1 = Aft + 1 and ut 6= f ,
1, if Aft+1 = 1 and ut = f ,
0, otherwise.

(4)

If a user request arrives in decision epoch t, then the target
download time is equal to t + ∆6. Hence, in decision epoch
t + 1, the value of Qf,∆−1

t+1 depends on whether a new user
request arrived in decision epoch t. That is,

P(Qf,∆−1
t+1 | St) =

{
1, if Qf,∆−1

t+1 = Gft ,

0, otherwise.
(5)

If a user request is due in δ+1 time slots in decision epoch
t, then this request is due in δ time slots in decision epoch
t+ 1. Thus, for Qf,δt+1, 0 ≤ δ ≤ ∆− 2, we have

P(Qf,δt+1 | St) =

{
1, if Qf,δt+1 = Qf,δ+1

t ,

0, otherwise.
(6)

Given the current state vector St and action ut, the state
transition probability to the next state St+1 is equal to

P(St+1 | St, ut)

=

F∏
f=1

(
P(Aft+1 | St, ut)

∆−1∏
δ=0

P(Qf,δt+1 | St)P(Gft+1)

)
.

(7)

6Note that a user may request a newer version of the f -th dynamic content
when it already has a recent version of f . If f is not updated between the
target download times of these requests, then duplicate version of f will be
sent to the user.

4) Cost and Constraint: A deterministic stationary updating
policy π is defined as a mapping from state space S to action
space U . For a system with state vector St, the policy chooses
an action π(St) = ut, ∀ St ∈ S and t ∈ T . Similar to
the approach in [27], we restrict our attention to uni-chain
policies, whose induced Markov chain has a single recurrent
class (and possibly some transient states) [35, vol. II, Sec. 5.2].
In [35, vol. II, Proposition 5.2.6], it is stated that for systems
satisfying the weak accessibility conditions, there exists an
optimal policy that is uni-chain. Since all the system states
are reachable with non-zero probability, the weak accessibility
conditions hold for our problem.

Let Sπt denote the controlled Markov chain induced by
policy π, where

Sπt =
(
A1,π
t , Q1,0,π

t , . . . , Q1,∆−1,π
t , G1,π

t , . . . , AF,πt ,

QF,0,πt , . . . , QF,∆−1,π
t , GF,πt

)
, t ∈ T .

(8)

Note that Qf,0,πt corresponds to the number of user requests
for the f -th dynamic content that need to be served in decision
epoch t. Given policy π, the sum of the expected AoI of all
the served user requests in the first T decision epochs is equal
to

Mtot =

T−1∑
t=0

F∑
f=1

E
[
Af,πt Qf,0,πt

]
, (9)

where E denotes the expectation with respect to the user re-
quest arrivals. Due to the adoption of multicasting, in decision
epoch t, if there are multiple users requesting for dynamic
content f , i.e. Qf,0,πt > 1, then these requests are being served
simultaneously using one spectral resource. The average total
number of user requests being served in T decision epochs is
equal to

Mnum = T

F∑
f=1

Nfλf . (10)

Hence, given policy π, the average AoI and the update
frequency of all user requests are as follows:

M(π) = lim sup
T−→∞

Mtot

Mnum
(11a)

= lim sup
T−→∞

∑T−1
t=0

∑F
f=1 E

[
Af,πt Qf,0,πt

]
T
∑F
f=1Nfλf

, (11b)

C(π) = lim sup
T−→∞

1

T

T−1∑
t=0

E [I(π(Sπt) > 0)] , (12)

where Sπt , ∀ t ∈ T , follows the state transition probability
specified in (7), and I(·) is the indicator function.

The optimal policy π∗ is defined to be a uni-chain policy
that minimizes the average cost, which corresponds to the
average AoI of the served user requests, while satisfying a
constraint on the update frequency of the dynamic content.
That is,

M
∗

= minimize
π

M(π)

subject to C(π) ≤ µ.
(13)

6

Problem (13) is an infinite horizon average cost CMDP
problem [36], [37]. In the following subsection, we use a
Lagrangian-based method [27], [30] to find the optimal so-
lution to the CMDP problem.

C. Optimal Solution of the CMDP

Following the Lagrangian approach to solve the formulated
average cost CMDP problem (13), we define the Lagrangian
for a policy π, given a Lagrange multiplier η ≥ 0, as

L(η, π) , lim sup
T→∞

1

T

(T−1∑
t=0

∑F
f=1 E

[
Af,πt Qf,0,πt

]
∑F
f=1Nfλf

+η

T−1∑
t=0

E [I(π(Sπt) > 0)]

)
.

(14)

We define the Lagrangian in decision epoch t as

c(St, ut, η) ,

∑F
f=1A

f
tQ

f,0
t∑F

f=1Nfλf
+ ηI(ut > 0). (15)

The Lagrangian in (14) can be re-written as

L(η, π) = lim sup
T→∞

1

T

T−1∑
t=0

E [c(Sπt , π(Sπt), η)] . (16)

Given a Lagrange multiplier η, we can determine an optimal
policy that minimizes the Lagrangian. Let L

∗
(η) denote the

optimal Lagrangian for Lagrange multiplier η ≥ 0, where

L
∗
(η) = min

π
L(η, π), (17)

and
π∗η = arg

π
min L(η, π). (18)

We refer to the policy that satisfies (18) as the η-optimal
policy. To obtain the η-optimal policy π∗η for a given Lagrange
multiplier η in an unconstrained MDP problem, we use the
differential Bellman optimality equations introduced in [27],
[35, vol. II, Propositions 5.2.1 and 5.2.2].

Lemma 1. For any η ≥ 0, there exists (θη, J(St, η)) satisfying

θη + J(St, η) = min
ut∈U

{
c(St, ut, η)

+
∑

St+1∈S

P(St+1 | St, ut)J(St+1, η)

}
,

(19)

where St+1 satisfies the state transition probability (7), and
θη = L

∗
(η) for all initial states. J(St, η) is the cost-to-go

function, and represents the expected total relative future cost
starting from a given state St ∈ S . The η-optimal policy
achieving the optimal Lagrangian L

∗
(η) can be found as

π∗η(St) = arg min
ut∈U

{
c(St, ut, η)

+
∑

St+1∈S

P(St+1 | St, ut)J(St+1, η)

}
.

(20)

The proof of Lemma 1 can be found in [35, vol. II,
Proposition 5.1.4].

Algorithm 1 Relative Value Iteration Algorithm (RVIA)

Input: η, λ = [λ1, λ2, . . . , λF], N = [N1, . . . , NF], ∆,
η, and εr

1: Arbitrarily choose a reference state Sref ∈ S
2: J0(S, η)← 0, ∀ S ∈ S
3: for S ∈ S do
4: for u ∈ U do
5: V1(S, u, η) ← c(S, u, η) +∑

St∈S
P(St | S, u)J0(St, η)

6: end for
7: H1(S, η)← min

u∈U
V1(S, u, η)

8: end for
9: J1(S, η)← H1(S, η)−H1(Sref, η), ∀ S ∈ S

10: k ← 1
11: while ∃ S ∈ S, such that |Jk(S, η)−Jk−1(S, η)| > εr do
12: for S ∈ S do
13: for u ∈ U do
14: Vk+1(S, u, η) ← c(S, u, η) +∑

Sk∈S
P(Sk | S, u)Jk(Sk, η)

15: end for
16: Hk+1(S, η)← min

u∈U
Vk+1(S, u, η)

17: end for
18: Jk+1(S, η)← Hk+1(S, η)−Hk+1(Sref, η), ∀ S ∈ S
19: k ← k + 1
20: end while
21: π∗η(S)← arg min

u∈U
Vk(S, u, η), ∀ S ∈ S

22: V (S, u, η)← Vk(S, u, η), ∀ S ∈ S, u ∈ U
23: J(S, η)← Jk(S, η), ∀ S ∈ S
24: return Optimal policy π∗η(S), V (S, u, η), ∀ S ∈ S, u ∈ U

and J(S, η),∀ S ∈ S

For a given η, we define the state-action value function
V (St, ut, η) as follows:

V (St, ut, η)
∆
= c(St, ut, η) +

∑
St+1∈S

P(St+1 | St, ut)

× J(St+1, η), St ∈ S, ut ∈ U .
(21)

In practice, finding J(St, η) and V (St, ut, η) involve solv-
ing the Bellman equations iteratively, using methods such as
RVIA [35] (shown in Algorithm 1). From the RVIA, the
obtained optimal policy needs to be saved in the memory of
the decision making module. The module chooses the optimal
action based on the value stored in a look-up table. However,
due to the curse of dimensionality, the size of the stored
optimal policy matrix grows exponentially as the state space
expands.

From [36, Lemma 3.1], C(π∗η) in (12) is a non-decreasing
function with respect to η. Therefore, to find the optimal policy
π∗ for problem (13), we can determine the Lagrange multiplier
η∗, such that

η∗ = inf{η ≥ 0 | C(π∗η) ≤ µ}. (22)

In practice, finding η∗ requires iterative numerical methods,
such as the Robbins-Monro algorithm [38]. After η∗ has

7

been determined, the optimal solution to the CMDP (13) is
a randomized mixture of two deterministic policies, as stated
in Lemma 2 [37] below.

Lemma 2. The optimal policy π∗ of the formulated CMDP
(13) is a randomized mixture of two deterministic stationary
policies π∗η∗,1 and π∗η∗,2, in the form

π∗ = απ∗η∗,1 + (1− α)π∗η∗,2, (23)

where α ∈ [0, 1] is a randomization parameter. π∗η∗,1 and π∗η∗,2
are the optimal policies of the unconstrained MDP under the
Lagrange multiplier η∗, where π∗η∗,1 and π∗η∗,2 differ at most
in a single state St ∈ S.

The proof of Lemma 2 can be found in [37]. Although
Lemma 2 suggests the existence of the optimal policy of the
CMDP, finding this policy is not computationally tractable.
The first aspect is that the state space of the CMDP problem
can be large, especially when a large number of dynamic
contents are being cached. This means that the dynamic
programming-based RVIA algorithm, which is only suitable
for solving problems with a small state space, quickly becomes
computationally intractable. The second aspect is that finding
η∗, π∗η∗,1, and π∗η∗,2 is computationally demanding. It has been
reported that the convergence speed of the iterative algorithm
for finding η can be slow [27], [30]. In the next section, we will
investigate suboptimal solutions that have lower computational
complexity.

III. SUBOPTIMAL ALGORITHMS DESIGN

In this section, we develop two suboptimal algorithms
with lower computational complexity. To address the large
state space of the CMDP problem (13), we decompose the
CMDP problem into F subproblems, based on the principle
of enforced decomposition [35]. When the state space of each
subproblem becomes large, we address this by using DRL.

A. Enforced Decomposition

1) Decomposition into Subproblems: Consider a special
case of the system where only one particular dynamic content
f ∈ F is being cached in the HetNet. The state space of
the system is Sf . In this case, the MBS only has two actions
from its action set UF = {0, 1} to choose from: action uft = 0
corresponds to staying idle, and action uft = 1 corresponds to
updating the f -th dynamic content.

Given sft ∈ Sf and uft ∈ UF , the state transition probability
of the system can be written as

P(sft+1 | s
f
t , u

f
t) =P(Aft+1 | s

f
t , u

f
t)

×
∆−1∏
δ=0

P(Qf,δt+1 | s
f
t)P(Gft+1),

(24)

where P(Gft+1), P(Qf,δt+1 | s
f
t), δ ∈ {0, 1, . . .∆−1} are defined

in Section II-B. We have

P(Aft+1 | s
f
t , u

f
t) =


1, if Aft+1 = Aft + 1 and uft = 0,
1, if Aft+1 = 1 and uft = 1,
0, otherwise.

(25)

We define a stationary updating policy πf as a mapping
from Sf to UF . For a system with state vector sft , the policy
chooses action πf (sft) = uft , for all sft ∈ Sf and t ∈ T .
Given policy πf , the average AoI and update frequency of the
system when only the f -th dynamic content is being cached
can be found as

M
f
(πf) = lim sup

T→∞

1

TNfλf

T−1∑
t=0

E
[
Af,π

f

t Qf,0,π
f

t

]
, (26)

C
f
(πf) = lim sup

T→∞

1

T

T−1∑
t=0

E
[
I
(
π(sf,π

f

t) = 1
)]
, (27)

where sf,π
f

t , for all t ∈ T , follows the state transition
probability specified in (24).

Given µ, Nf and λf , for all f ∈ F , Yates et al. in [24]
derived the following optimal update frequency for dynamic
content f when the scheduling decision is made without prior
knowledge of the user request queues (i.e., ∆ = 0 in our
problem),

µf =
µ
√
Nfλf∑F

i=1

√
Niλi

, f ∈ F . (28)

In finding a low-complexity suboptimal policy of the enforced
decomposition solution with good performance, we adopt the
above update frequency for the cases ∆ > 0. In this way,
the optimal policy πf,∗ can be determined by solving the
following CMDP problem

M
f,∗

= minimize
πf

M
f
(πf)

subject to C
f
(πf) ≤ µf .

(29)

Given a Lagrange multiplier ηf ≥ 0, the Lagrangian in each
decision epoch t can be found as

cf (sft , u
f
t , ηf) =

Af,π
f

t Qf,0,π
f

t

Nfλf
+ ηfI(u

f
t = 1). (30)

The expectation of the Lagrangian using policy πf becomes

L(ηf , π
f) = lim sup

T→∞

1

T

T−1∑
t=0

E
[
cf
(
sf,π

f

t , πf (sf,π
f

t), ηf

)]
.

(31)
Using the same RVIA algorithm shown in Algorithm 1,

and consider the original CMDP problem where only the f -th
dynamic content is being cached (by setting St = sft), we can
determine θfηf , Jf (sft , ηf), V f (sft , u

f
t , ηf), and πf,∗ηf satisfying

θfηf + Jf (sft , ηf) = min
uf
t ∈UF

{
cf (sft , u

f
t , ηf)

+
∑

sft+1∈Sf

P(sft+1 | s
f
t , u

f
t)Jf (sft+1, ηf)

}
,

(32)

V f (sft , u
f
t , ηf) = cf (sft , u

f
t , ηf) +

∑
sft+1∈Sf

P(sft+1 | s
f
t , u

f
t)

× Jf (sft+1, ηf),
(33)

8

Algorithm 2 Enforced Decomposition Algorithm

Input: η∗1 , . . . , η∗F , λ1, λ2, . . . , λF , N1, . . . , NF , ∆, and
εr

1: for f ∈ F do
2: Set λ← λf and N ← Nf
3: Call Algorithm 1 to determine V (sf , uf , η∗f)

4: for uf ∈ UF do
5: V f (sf , uf , η∗f)← V (sf , uf , η∗f), sf ∈ Sf
6: end for
7: end for
8: π̃∗(S)← arg min

u∈U

∑
f∈F

V f (sf , I(u = f), η∗f), S ∈ S

9: return Optimal policy π̃∗

and
πf,∗ηf (sft) = arg min

uf
t ∈UF

V f (sft , u
f
t , ηf). (34)

The optimal Lagrange multiplier η∗f satisfies

η∗f = inf{ηf ≥ 0 | Cf (π∗ηf) ≤ µf}. (35)

Now, consider the case where all F dynamic contents are
being cached in the system. After obtaining V f (sft , u

f
t , η
∗
f),

∀f ∈ F , the action is chosen by

π̃∗(St) = arg min
ut∈U

∑
f∈F

V f (sft , I(ut = f), η∗f). (36)

The decomposition step in (36) follows the enforced de-
composition technique introduced in [35]. By using the de-
composed optimal policies πf,∗η∗f to approximate the optimal
policy with complete state space, we train F individual CMDP
processes, one for each of the F dynamic contents. During
the training of each dynamic content, we consider a HetNet
where the particular dynamic content under consideration is
requested by the users. For computational tractability, we
propose to find a feasible Lagrange multiplier for each dy-
namic content that satisfies the constraint in problem (29).
This can be achieved using classical root-finding algorithms,
such as bisection search or the Robbins-Monro algorithm [38].
Using these approximation steps, the state space of the CMDP
problem grows linearly, instead of exponentially, with respect
to F (i.e., the number of files being cached). The gain is
two-fold: First, the memory space required for storing the
look-up table for the state-action value function is reduced.
Secondly, the algorithmic complexity of the RVIA algorithm
is also reduced.

B. Structural Property of πf,∗ηf
In this subsection, we investigate the monotonicity and

submodular properties of function V f (sft , u
f
t , ηf). Based on

this, we prove that the optimal policy in problem (29) has
a threshold structure, which will be used to design a policy-
gradient-based DRL algorithm in the next subsection.

By using the RVIA, the state transition probability (24), and
the Lagrangian (30), we can prove the following properties.

Lemma 3. (Monotonicity of Jf (sft , ηf) and V f (sft , u
f
t , ηf)):

Given ηf ≥ 0, Jf (sft , ηf) and V f (sft , u
f
t , ηf) are monoton-

ically non-decreasing functions with respect to Aft , Gft , and
Qf,δt , ∀δ ∈ {0, . . . ,∆− 1}.

Proof: See Appendix A.
In decision epoch t with state vector sft , for any two actions

uf1 , u
f
2 ∈ UF , let us define an auxiliary function Γf

uf
1 ,u

f
2

:

Sf × R+ 7→ R

Γf
uf
1 ,u

f
2

(sft , ηf)
∆
= V f (sft , u

f
1 , ηf)− V f (sft , u

f
2 , ηf). (37)

An action uf1 is said to dominate action uf2 in state sft
if Γf

uf
1 ,u

f
2

(sft , ηf) ≤ 0, and action uf1 is referred to as the

dominating action in state sft . We can prove the following
monotonicity result.

Lemma 4. (Monotonicity of Γf1,0(sft , ηf)) For any state sft ∈
Sf , Γf1,0(sft , ηf) is a monotonically non-increasing function in
Aft .

Proof: See Appendix B.
In the literature, Lemma 4 is also known as the submodular

property of V f (sft , u
f
t , ηf), which implies that V f (sft , u

f
t , ηf)

is submodular in state sft and action uft . Let us define the set

Φf (Qf,0t , . . . , Qf,∆−1
t , Gft , ηf)

∆
= {Aft | A

f
t ∈ A, Γf1,0(sft , ηf) ≤ 0}.

(38)

We also define

φf (Qf,0t , . . . , Qf,∆−1
t , Gft , ηf)

∆
=


min

[
Φf (Qf,0t , . . . , Qf,∆−1

t , Gft , ηf)
]
,

if Φf (Qf,0t , . . . , Qf,∆−1
t , Gft , ηf) 6= ∅

−∞, otherwise,

(39)

where min[·] denotes the minimum element in a set.

Theorem 1. (Structural property of πf,∗ηf) Given ηf ≥ 0, for
any state sft ∈ Sf , the optimal policy πf,∗ηf has the following
threshold structure

πf,∗ηf (sft) =

{
1, if Aft ≥ φf (Qf,0t , . . . , Qf,∆−1

t , Gft , ηf)

0, otherwise.
(40)

Proof: See Appendix C.
To simplify the notation, we define s̃ft =

(Qf,0t , . . . , Qf,∆−1
t , Gft), which specifies the system state in

decision epoch t ∈ T , excluding Aft . Theorem 1 shows that
given s̃ft , the optimal action can be chosen based on whether
Aft ≥ φf (s̃ft , ηf). In the next subsection, we will exploit this
threshold structure and train an NN to estimate φf (s̃ft , ηf).
Compared to learning V f (sft , u

f
t , ηf), the input dimension of

the NN is reduced and the training process converges faster.

9

C. Deep Reinforcement Learning (DRL)

Despite the reduction of complexity brought by enforced
decomposition, finding the optimal values of the state-action
value function still requires using the RVIA, and the optimal
state-action values V f (sft , u

f
t , ηf), ∀ sft ∈ Sf , uft ∈ UF , f ∈

F need to be stored in the memory. The memory required
may still be large for implementation in practical systems, as
the potential number of users for each dynamic content, Nf ,
f ∈ F , and Â become large.

Leveraging the recent development in AI, in this subsec-
tion, we propose to estimate the threshold of updating a
dynamic content, φf (s̃ft , ηf), using a policy-gradient DRL-
based method. The policy is approximated by an NN, called
the actor network, which takes the state of the CMDP as input,
and its output corresponds to the threshold value. Since the
optimal policy has a threshold structure as specified in (40), the
action can be chosen based on the output of the actor network.
Let φft (· | ξt) denote the threshold function approximated by
the actor network with parameters ξt. At training time step t,
given s̃ft and ηf , the threshold is chosen as

ψft = φft (s̃ft , ηf | ξt) + Norm(σ2), (41)

where Norm(σ2) denotes the independent and identically
distributed Gaussian noise with zero mean and variance σ2.
Thereafter, based on (40), the action taken is uft = I(Aft ≥
ψft).

We adopt a state-of-the-art DRL algorithm called
DDPG [31] to approximate the threshold function, where
another NN called the critic network is jointly trained to
reduce the variance of the training process. At training time
step t, when the system state is sft , let Ṽ ft (sft , ψ

f
t , ηf) denote

the state-action value function corresponding to choosing
ψft as the threshold for updating the dynamic content. Let
Ṽ ft (· | θt) denote the state-action value function approximated
by the critic network with parameters θt at training time
step t. Accounting for the complexity, training time, and the
accuracy in approximation, we design an actor network with
two hidden layers with sizes 512 and 128. The rectified linear
units (ReLUs) are used as the activation functions for the
hidden layers, while a tanh(·) activation function and scaling
are used at the output layer, to ensure that the threshold ψft is
within the range [1, Â]. We design a critic network with three
hidden layers, with sizes 1024, 512, and 300 for each layer.
Similarly, ReLUs are used as the activation functions for the
hidden layers of the critic network.

We divide the training process into Nepi episodes to track the
training performance, where each episode contains Tepi train-
ing time steps. Therefore, there are in total NepiTepi training
time steps, represented by the set Ttrain = {1, . . . , NepiTepi}.
To improve the stability of the training process, an NN with
the same dimensions as the actor network, called the target
actor network, is created and being updated during the training
steps. Similarly, an NN with the same dimensions as the critic
network, called the target critic network, is created and being
updated. Let φft (· | ξtarget

t) denote the target function approx-
imated by the target actor network with parameters ξtarget

t

and let Ṽ ft (· | θtarget
t) denote the state-action value function

approximated by the target critic network with parameters
θtarget
t .
In Monte Carlo reinforcement learning, sampled experience

(i.e., simulated interaction with an environment) is used to
estimate the state-action value functions. Given current state
sft and decision epoch t, we use a simulator to sample the
next system state sft+1 in decision epoch t + 1 and the
Lagrangian cf (sft , I(A

f
t ≥ ψft), ηf). The state-action value

function update step for an average-cost MDP problem is

Ṽ ft+1(sft , ψ
f
t , ηf) = Ṽ ft

(
sft , ψ

f
t , ηf

)
+ β

(
cf (sft , I(A

f
t ≥ ψ

f
t), ηf)

+ min
ψ∗∈[1,Â]

Ṽ ft (sft+1, ψ
∗, ηf)

− min
ψ∗∈[1,Â]

Ṽ ft (sf,ref, ψ∗, ηf)− Ṽ ft (sft , ψ
f
t , ηf)

)
,

(42)

where β is the learning rate parameter and sf,ref is a fixed
state that can be chosen arbitrarily and remains fixed during
the entire training process [35]. Given θt, the loss is defined
as

L(θt)

=
1

2

(
Ṽ ft

(
sft+1, φ

f (s̃ft+1, ηf | ξ
target
t), ηf | θtarget

t

)
− Ṽ ft

(
sf,ref, φf (s̃f,ref

t , ηf | ξtarget
t), ηf | θtarget

t

)
− Ṽ ft

(
sft , φ

f (s̃ft , ηf | ξ
target
t), ηf | θt

)
+ cf (sft , I(A

f
t ≥ ψ

f
t), ηf)

)2

.

(43)

The actor policy network is updated based on the deterministic
policy gradient theorem [31]

∇ξtJ(ξt) = E
[
∇ψf

t
Ṽ ft (sft , ψ

f
t , ηf | θt)∇ξt

φf (s̃ft , ηf | ξt)
]
.

(44)
To reduce the degree of correlation among the observed

sequence of data and to improve the stability of DRL, we adopt
the experience replay approach, where the system transition
tuples (sft , ψ

f
t , c

f (sft , I(A
f
t ≥ ψft), ηf), sft+1) are stored in

the replay memory after each training time step t. At training
time step t, a set of Kbatch system transition tuples Kbatch

t are
randomly drawn from the replay memory, and batch gradient
descent [32] is employed to minimize the sum of the loss
functions of all the Kbatch system transition tuples. A stochastic
gradient descent step can be expressed as

θt+1 = θt − βs∇θtL(θt), (45)

ξt+1 = ξt − βs∇ξt
J(ξt), (46)

where βs is the learning rate for stochastic gradient descent.
A soft update approach is used to update parameters of the
target actor network and the target critic network. To obtain the
suboptimal policy (36) for F > 1, we use the approximation

V ft (sft , 0, ηf) ≈ Ṽ ft (sft ,min(Â, sft + ρ), ηf | θt), (47)

V ft (sft , 1, ηf) ≈ Ṽ ft (sft ,max(1, sft − ρ), ηf | θt), (48)

10

Algorithm 3 Deep Deterministic Policy Gradient (DDPG)
Algorithm

Input: ηf , τ , βs, σ2, Nepi, Tepi, Tupdate, and Kbatch
1: Initialize the replay memory
2: Initialize the actor network parameters θ0 and target actor

network parameters θtarget
0

3: Initialize critic network parameters ξ0, target critic net-
work parameters ξtarget

0

4: Observe the initial state sf0 and select a random threshold
ψf0

5: for t ∈ Ttrain do
6: System samples sft and cf (sft , I(A

f
t ≥ ψ

f
t), ηf)

7: Save the system transition tuple to the replay memory
8: Choose threshold according to (41)
9: Randomly sample a set of Kbatch

t system transition
tuples from the replay memory

10: for j ∈ Kbatch
t do

11: Calculate the loss function based on (43)
12: Calculate the policy gradient based on (44)
13: end for
14: Update critic network parameter θt based on (45)
15: Update actor network parameter ξt based on (46)
16: θtarget

t ← τθt + (1− τ)θtarget
t

17: ξtarget
t ← τξt + (1− τ)ξtarget

t

18: end for
19: θtarget ← θtarget

t , θ ← θt, ξtarget ← ξtarget
t , and ξ ← ξt

20: return θtarget and ξtarget

where 0 < ρ < 1. In Algorithm 3, we list the key steps of the
algorithm we used to implement the DDPG algorithm.

IV. PERFORMANCE EVALUATION

In this section, we perform simulation studies to validate
the analytical results. We compare the proposed optimal and
suboptimal algorithms with the periodic update algorithm pro-
posed in [24]. Unless specified otherwise, we set T = 10, 000,
Â = 50, ∆ = 3, η = 100, and Nf = 3, ∀f ∈ F . The DDPG
algorithm was implemented using PyTorch [14], and the
parameters used for DDPG are as follows: ρ = 0.01, τ = 0.01,
βs = 0.001, Nepi = 200, Tepi = 1, 000, Tupdate = 5, 000,
σ2 = 0.0001 and Kbatch = 32.

A. Case 1: Single Dynamic Content

In Fig. 3 (a), we plot the average AoI obtained by the
optimal policy, as the window size ∆ increases from 0 to
4. We observe that under the same update frequency, the
average AoI obtained by the optimal policy decreases with
increasing window size. However, increasing the window size
also increases the memory required to store the optimal policy.
Since we observe that the average AoI obtained by the optimal
policy with ∆ = 4 is close to the performance with ∆ = 3,
in the remaining of this section, we will use ∆ = 3 as
the default window size of the CMDP problem, due to its
performance and complexity. The average AoI obtained by
the DDPG algorithm is also shown in Fig. 3 (a), and we

0.05 0.1 0.15 0.2 0.25 0.3

1

2

3

4

5

6

7

8

0 20 40 60 80 100

0

10

20

30

40

50

60

Fig. 3: (a) The average AoI obtained by CMDP and DDPG algorithms v.s.
cache update frequency µ, as the window size ∆ increases from 0 to 4. One
dynamic content is being cached in the system. (b) Plot of the Lagrangian
from subsequent episodes in the DDPG and DQN training.

observe that the performance of the DDPG algorithm is close
to the optimal solution of the CMDP problem. In Fig. 3 (b),
we plot the convergence performance of the DDPG algorithm
with two different values of η. We observe the average
Lagrangian converged in all three cases after 20 episodes.
Therefore, our choice of training the DDPG for 100 episodes
is appropriate. The convergence performance of another DQN-
based method [32], which does not exploit the structural
property of the optimal policy, denoted as DQN in Fig. 3 (b),
is also shown for comparison. We observe that our proposed
DDPG algorithm has a better convergence performance.

In Fig. 4, we use the box and whisker plot7 to compare
the optimal policy of the CMDP problem with the offline
optimal solution for a finite horizon problem, where all the
user arrival requests and target download time are known
a priori. The offline policy is obtained through exhaustive
search. Due to the prohibitively high computational complexity
of the exhaustive search method, we only consider a problem
with small dimension, where T = 50, F = 1, and Nf = 1.
We compare the optimal policy when ∆ = 0, 1, and 3 with
the offline optimal policy. We observe that even for a small
window size, i.e., ∆ = 3, the average AoI obtained from the
CMDP policy is close to the offline optimal solution.

7In a box and whisker plot, the upper and lower ends of the boxes are the
upper and lower quartiles of the data samples. The median is marked by the
horizontal line inside the box, while the two whiskers extend to the maximum
and minimum values of the data samples.

11

0 1 3 Offline

1

2

3

4

5

6

7

8

0 1 3 Offline

1

2

3

4

5

6

7

8

Fig. 4: Box and whisker plot of the average AoI obtained by the CMDP opti-
mal policy and the offline optimal policy v.s. window size in a finite horizon
problem where T = 50, and (a) four cache updates (i.e.,

∑T−1
t=0 I(ut > 0) =

4) and (b) five cache updates (i.e.,
∑T−1

t=0 I(ut > 0) = 5) are performed,
respectively. ‘Offline’ corresponds to the offline optimal policy when all future
user arrival requests are known a priori.

B. Case 2: Multiple Dynamic Contents

In Fig. 5, we plot the average AoI of two dynamic contents,
for the case where the window size is set to either 0 or 3.
The AoI obtained by using the optimal policy (in solid lines)
is also included to evaluate the performance of the enforced
decomposition algorithm (in dashed lines). We observe that
there is only a small gap between the optimal and suboptimal
algorithms. The average AoI performance is better when the
window size ∆ is equal to 3.

Next, we plot the average AoI obtained by the proposed
CMDP-based algorithm, for ∆ = 0 and ∆ = 3, and compared
it with the periodic update approach proposed in [24]. Five
dynamic contents are being cached in the HetNet, where λf
follows the Zipf’s distribution with parameter κ. That is,

λf =
f−κ∑F
i=1 i

−κ
, f ∈ F . (49)

In Fig. 6, we plot the performance of the three algorithms

0.1 0.15 0.2 0.25 0.3

3

4

5

6

7

8

9

10

11

Fig. 5: Average AoI obtained by the optimal and suboptimal policies v.s. the
frequency of cache update µ when two dynamic contents are being cached in
the system. The window size ∆ is equal to either 0 or 3.

0.5 0.55 0.6 0.65 0.7 0.75 0.8

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 6: Average AoI obtained by the proposed CMDP algorithm compared to
the periodic update approach [24], under Zipf’s distribution with parameter
κ = 0 and κ = 1.5.

when κ = 0 and κ = 1.5. From Fig. 6, we observe that
the proposed CMDP algorithm when ∆ = 0 achieves similar
AoI performance compared to the periodic update approach
proposed in [24]. This is because when ∆ = 0, the CMDP
algorithm updates the dynamic content f based on whether
Aft exceeds a threshold ψft , which results in periodic update
of f with an approximate period ψft . For both ∆ = 0 and
∆ = 3, the average AoI performance of the proposed CMDP
algorithm improves when κ > 0.

In Fig. 7, we plot the average AoI performance obtained
by the suboptimal policy obtained using the CMDP and
DDPG algorithms when five and ten dynamic contents are
being cached, and user request arrival rates follow the Zipf’s
distribution with parameter κ = 0. We observe that both the
DDPG and CMDP algorithms achieve better AoI performance
compared to the periodic update method. For example, when
F = 5 and µ = 0.5, the average AoI obtained by periodic
update is approximately 6 time slots while the average AoI

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

15

20

Fig. 7: Average AoI obtained by the CMDP, DDPG, and the periodic update
algorithms v.s. cache update frequency µ, when (a) five dynamic contents are
being cached and (b) ten dynamic contents are being cached. For µ = 1 and
∆ = 0, the performance of the Whittle index-based algorithm is also shown.

obtained by the proposed algorithms are approximately 4 time
slots, which resulted in a 30% improvement in the average
AoI performance. The DDPG algorithm achieved comparable
performance as the CMDP algorithm. When µ = 1 and ∆ = 0,
the problem can also be solved using the Whittle index-based
scheduling algorithm introduced in [23], which is also denoted
in Fig. 7. We observe that the CMDP algorithm matches the
solution obtained by the Whittle index-based approach when
∆ = 0.

C. Validation of the Structural Results

Finally, in Fig. 8, we plot the optimal policy for different
states when only one dynamic content is being cached, and
different window sizes are used. The states that are not shown
correspond to those states whose optimal policy is always not
to update. In Fig. 8 (a), we observe that when ∆ = 0, the cache
content update scheduling policy is only based on the current
AoI of the served dynamic content in the current time slot,
and is equivalent to the periodic updating policy. In Fig. 8 (b),
we observe that when ∆ = 1, the optimal action depends on
whether there is a user request that needs to be served in the
next decision epoch. The optimal action is not to update the
CS when no user request that needs to be served in the next
decision epoch; and to only update the cache content when
the current AoI is above a certain threshold, otherwise. In
Figs. 8 (c) and (d), we observe that when ∆ is equal to either
2 or 3, the optimal policy depends on Q1,1

t , . . . , Q1,∆−1
t , G1

t ,
and A1

t . Nevertheless, in all the cases tested here, the optimal

0 5 10 15 20 25 30 35 40 45 50

0

1

0 5 10 15 20 25 30 35 40 45 50

0

1

0 5 10 15 20 25 30 35 40 45 50

0

1

0 5 10 15 20 25 30 35 40 45 50

0

1

Fig. 8: Optimal policy for different states when only one dynamic content is
being cached. The window size ∆ is set to 0, 1, 2, and 3, respectively. The
x in the legend means that the corresponding element can either be zero or
one.

policy has a threshold structure with respect to the current AoI
of the file.

V. CONCLUSION

In this paper, we studied the problem of caching dynamic
contents using a HetNet architecture. We formulated the prob-
lem where the target download time for user requests in a short
future time window is known, and designed a strategy where
the scheduling decision depends on the user requests that need
to be served in the near future. We formulated the problem
as a CMDP. However, due to large state space, finding the
optimal policy becomes computationally intractable. To this
end, we designed a suboptimal algorithm that decomposes the
original problem into separate subproblems, and determined a
low-complexity suboptimal solution to the problem. We also
proved that the optimal policy for caching a dynamic content
has a threshold structure. To further reduce the memory
required to store the optimal policy of the CMDP, we exploited
the threshold structure and proposed a DRL framework based
on DDPG to estimate the optimal policy of the CMDP.
Simulation results show that both of the suboptimal algorithms

13

have near-optimal performance. The suboptimal algorithms
outperform the periodic update scheme in different settings.
Future research will consider more complex system dynamics,
such as time varying channel conditions and the soft service
deadline for different user requests.

APPENDIX

A. Proof of Lemma 3

Proof: We prove Lemma 3 using the RVIA algorithm
(as shown in Algorithm 1) and mathematical induction. For
readability, we will drop the superscript f and Lagrange
multiplier ηf . From line 14 of Algorithm 1, we have for each
state s ∈ Sf and action u ∈ UF ,

Vk+1(s, u) = c(s, u) +
∑

sk∈Sf

P(sk | s, u)Jk(sk). (50)

According to lines 14 and 18 of Algorithm 1,

Jk+1(s) = min
u∈UF

Vk+1(s, u)−Hk+1(sref), (51)

where sref is a chosen reference state. According to [35], under
any initialization of J0(s), the generated sequence {Jk(s)}
converges to J(s), i.e.,

lim
k→∞

Jk(s) = J(s), ∀ s ∈ Sf , (52)

where J(s) satisfies the Bellman equations (32). Let π∗k denote
the optimal policy at the k-th iteration, i.e.,

π∗k(s) = arg min
u∈UF

Vk(s, u), ∀ s ∈ Sf . (53)

Let us define two states s, s+ ∈ Sf , where

s = (A,Q0, . . . , Q∆−1, G) (54)

and
s+ = (A+, Q0+, . . . , Q∆−1+, G+). (55)

Suppose states s and s+ satisfy A+ ≥ A, Qδ = Qδ+, ∀ δ ∈
{0, . . . ,∆ − 1} and G = G+. We define this relationship as
s+<A s. We aim to show that Jk(s+) ≥ Jk(s) holds for all
k = 1, 2, From (30), we have c(s, u) ≤ c(s+, u), ∀ u ∈
UF , s+ <A s. Suppose the RVIA algorithm is used, and we
initialize J0(s) = 0, ∀ s ∈ Sf , we have J0(s) ≤ J0(s+),
∀ s+ <A s. Now suppose Jk(s) ≤ Jk(s+), ∀ s+ <A s, we
would like to show Jk+1(s) ≤ Jk+1(s+), ∀ s+ <A s. Since
the optimal action in the (k+1)-th decision epoch is π∗k+1(s+),
∀ s+ ∈ Sf , we have

Jk+1(s+) +Hk+1(sref)

= c(s+, π∗k+1(s+)) +
∑

s+k ∈Sf

P(s+
k | s

+, π∗k+1(s+))Jk(s+
k)

= c(s+, π∗k+1(s+))

+
∑

s+k ∈Sf

P(s+
k | s

+, π∗k+1(s+))Jk(s+
k)I(π∗k+1(s+) = 1)

+
∑

s+k ∈Sf

P(s+
k | s

+, π∗k+1(s+))Jk(s+
k)I(π∗k+1(s+) = 0)

(a)

≥ c(s, π∗k+1(s+))

+
∑

s+k ∈Sf

P(s+
k | s, π

∗
k+1(s+))Jk(sk)I(π∗k+1(s+) = 1)

+
∑

s+k ∈Sf

P(s+
k + s− s+ | s, π∗k+1(s+))

× Jk(s+
k + s− s+)I(π∗k+1(s+) = 0)

= c(s, π∗k+1(s+)) +
∑

sk∈Sf

P(sk | s, π∗k+1(s+))Jk(sk)

(b)

≥ c(s, π∗k+1(s)) +
∑

sk∈Sf

P(sk | s, π∗k+1(s))Jk(sk)

= Jk+1(s) +Hk+1(sref).

Note that (24), (30), and the induction assumption give in-
equality (a). Inequality (b) is due to the fact that π∗k+1(s)
is the optimal action. The monotonicity of J(s) in G and
Qδ , ∀ δ ∈ {0, . . . ,∆ − 1} can be proved in a similar
manner. The monotonicity of V (s, u) follows directly from
the monotonicity of J(s) and (30).

B. Proof of Lemma 4

Proof: Similar to the proof of Lemma 3, we will drop
the superscript f and Lagrange multiplier ηf . We prove that
Γ1,0(s) is a monotonically non-increasing function in A, by
using mathematical induction. We use the RVIA algorithm and
define

Γk,1,0(s)
∆
= Vk(s, 1)− Vk(s, 0), s ∈ Sf , (56)

where Vk(s, u) represents the state-action value at the k-th
iteration of RVIA. Since

lim
k→∞

Jk(s) = J(s), s ∈ Sf , (57)

we also have

lim
k→∞

Vk(s, u) = V (s, u), s ∈ Sf , u ∈ UF . (58)

Hence
lim
k→∞

Γk,1,0(s) = Γ1,0(s), s ∈ Sf . (59)

Consider two state vectors s+ and s defined in (54) and (55),
where s+ <A s, we would like to show that

Γk,1,0(s+) ≤ Γk,1,0(s) (60)

holds for all k = 1, 2, We have

Γk,1,0(s+)− Γk,1,0(s)

= Vk(s+, 1)− Vk(s, 1)− Vk(s+, 0) + Vk(s, 0)

= c(s+, 1) +
∑

s+k ∈Sf

P(s+
k | s

+, 1)Jk(s+
k)

− c(s, 1)−
∑

sk∈Sf

P(sk | s, 1)Jk(sk)

− c(s+, 0)−
∑

s+k ∈Sf

P(s+
k | s

+, 0)Jk(s+
k)

+ c(s, 0) +
∑

sk∈Sf

P(sk | s, 0)Jk(sk)

14

(a)
=
∑

s+k ∈Sf

P(s+
k | s

+, 1)Jk(s+
k)−

∑
sk∈Sf

P(sk | s, 1)Jk(sk)

−
∑

s+k ∈Sf

P(s+
k | s

+, 0)Jk(s+
k) +

∑
sk∈Sf

P(sk | s, 0)Jk(sk)

(b)

≤ −
∑

s+k ∈Sf

P(s+
k | s

+, 0)Jk(s+
k) +

∑
sk∈Sf

P(sk | s, 0)Jk(sk)

=−
∑

s+k ∈Sf

P(s+
k | s

+, 0)

(
Jk(s+

k)− Jk(s+
k − s+ + s)

)
(c)

≤ 0.

Equality (a) comes from (30), which leads to

c(s+, 1)− c(s+, 0) = c(s, 1)− c(s, 0) = ηf . (61)

Since the AoI of the dynamic content is reset to 1 after a
cache content update action is chosen, we have P(Ak | s, 1) =
P(Ak | s+, 1) = I(Ak = 1). Hence, according to (24), we
have P(sk | s, 1) = P(sk | s+, 1), ∀ s+ <A s, which leads to
inequality (b). Inequality (c) is due to the monotonicity of Jk
from Lemma 3 and that s+

k <A s+
k − s+ + s.

C. Proof of Theorem 1

Proof: Given two states s+ and s defined in (54) and
(55), where s+ <A s, due to the monotonicity of Γf1,0(sft , ηf)
from Lemma 4, we have

V f (s+, 1, ηf)− V f (s+, 0, ηf)

≤ V f (s, 1, ηf)− V f (s, 0, ηf).
(62)

Therefore, if action 1 dominates in state s, then it will also
dominate in state s+.

REFERENCES

[1] M. Ma and V. W. S. Wong, “A deep reinforcement learning approach
for dynamic contents caching in HetNets,” in Proc. of IEEE Int’l Conf.
on Commun. (ICC), Jun. 2020.

[2] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–
8413, Dec. 2013.

[3] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. of IEEE Int’l Conf. on Commun.
(ICC), Sydney, Australia, Jun. 2014.

[4] T. Hou, G. Feng, S. Qin, and W. Jiang, “Proactive content caching by
exploiting transfer learning for mobile edge computing,” in Proc. of
IEEE Global Commun. Conf. (GLOBECOM), Singapore, Dec. 2017.

[5] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[6] L. Xiang, D. W. K. Ng, R. Schober, and V. W. S. Wong, “Cache-enabled
physical layer security for video streaming in backhaul-limited cellular
networks,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 736–751,
Feb. 2018.

[7] B. Zhou, Y. Cui, and M. Tao, “Stochastic content-centric multicast
scheduling for cache-enabled heterogeneous cellular networks,” IEEE
Trans. Wireless Commun., vol. 15, no. 9, pp. 6284–6297, Sep. 2016.

[8] B. Zhou, Y. Cui, and M. Tao, “Optimal dynamic multicast scheduling
for cache-enabled content-centric wireless networks,” IEEE Trans. Com-
mun., vol. 65, no. 7, pp. 2956–2970, Jul. 2017.

[9] L. Xiang, D. W. K. Ng, X. Ge, Z. Ding, V. W. S. Wong, and R. Schober,
“Cache-aided non-orthogonal multiple access: The two-user case,” IEEE
Trans. Sel. Areas. Signal Process., vol. 13, no. 3, pp. 436–451, Jun. 2019.

[10] M. Ma and V. W. S. Wong, “An optimal peak hour content server cache
update scheduling algorithm for 5G HetNets,” in Proc. of IEEE Int’l
Conf. on Commun. (ICC), Shanghai, China, May 2019.

[11] V. W. S. Wong, R. Schober, D. W. K. Ng, and L. Wang, Key Technologies
for 5G Wireless Systems. Cambridge University Press, 2017.

[12] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and
M. Rehmani, “Applications of blockchains in the Internet of things:
A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1676–1717, Second Quarter 2019.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[14] PyTorch. (2020) torchvision.models. [Online]. Available:
https://pytorch.org/docs/stable/torchvision/models.html

[15] Google. (2020) Introduction to TensorFlow lite. [Online]. Available:
https://www.tensorflow.org/lite/overview

[16] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for
distributed dynamic spectrum access,” IEEE Trans. Wireless Commun.,
vol. 18, no. 1, pp. 310–323, Jan. 2019.

[17] G. Sartoretti, Y. Wu, W. Paivine, T. S. Kumar, S. Koenig, and
H. Choset, “Distributed reinforcement learning for multi-robot decen-
tralized collective construction,” in Distributed Autonomous Robotic
Systems. Springer, 2019, pp. 35–49.

[18] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. IEEE Int’l Conf. on Computer Commun.
(INFOCOM) Mini-Conf., Orlando, FL, Mar 2012.

[19] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[20] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information
in wireless networks with throughput constraints,” in Proc. IEEE Int’l
Conf. on Computer Commun. (INFOCOM), Honolulu, HI, Apr. 2018.

[21] Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Can decentralized
status update achieve universally near-optimal age-of-information in
wireless multiaccess channels?” in Proc. Int’l Teletraffic Congress,
Vienna, Austria, Sep. 2018.

[22] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing
the age of information in broadcast wireless networks,” in Proc. Annual
Allerton Conf. on Communi., Control, and Computing, Monticello, IL,
Sep. 2016.

[23] Y. Hsu, “Age of information: Whittle index for scheduling stochastic
arrivals,” in Proc. IEEE Int’l Symp. Information Theory (ISIT), Vail,
CO, Jun. 2018.

[24] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal con-
strained cache updating,” in Proc. IEEE Int’l Symp. on Inf. Theory (ISIT),
Aachen, Germany, Jun. 2017.

[25] H. Tang, P. Ciblat, J. Wang, M. Wigger, and R. Yates, “Age of
information aware cache updating with file-and age-dependent update
durations,” arXiv preprint arXiv:1909.05930, 2019.

[26] C. Xu, X. Wang, H. H. Yang, H. Sun, and T. Q. Quek, “AoI and energy
consumption oriented dynamic status updating in caching enabled IoT
networks,” arXiv preprint arXiv:2003.00383, 2020.

[27] B. Zhou and W. Saad, “Joint status sampling and updating for minimiz-
ing age of information in the Internet of things,” IEEE Trans. Commun.,
vol. 67, no. 11, pp. 7468–7482, Nov. 2019.

[28] ——, “Minimum age of information in the Internet of things with non-
uniform status packet sizes,” IEEE Trans. Commun., vol. 19, no. 3, pp.
1933–1947, Mar. 2020.

[29] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-optimal
sampling and transmission scheduling in multi-source systems,” in Proc.
ACM Int’l Symp. Mobile Ad Hoc Networking and Computing (MobiHoc),
Catania, Italy, Jul. 2019.

[30] E. T. Ceran, D. Gunduz, and A. Gyorgy, “Average age of information
with hybrid ARQ under a resource constraint,” IEEE Trans. Wireless
Commun., vol. 18, no. 3, pp. 1900–1913, Mar. 2019.

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in Proc. Int’l Conf. on Learning Representations (ICLR), San
Juan, Puerto Rico, May 2016.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[33] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” in Proc. of Advances in Neural
Information Processing Systems Conf. (NIPS), Montreal, Canada, Dec.
2014.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int’l Conf. on Learning Representations (ICLR), San Diego,
CA, May 2015.

15

[35] D. P. Bertsekas, Dynamic Programming and Optimal Control, 4th
Edition, Vol. I & II. Athena Scientific, 2017.

[36] F. J. Beutler and K. W. Ross, “Optimal policies for controlled Markov
chains with a constraint,” Journal of Mathematical Analysis and Appli-
cations, vol. 112, no. 1, pp. 236–252, Nov. 1985.

[37] L. I. Sennott, “Constrained average cost Markov decision chains,”
Probability in the Engineering and Informational Sciences, vol. 7, no. 1,
p. 69–83, Jan. 1993.

[38] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat., vol. 22, no. 1, pp. 400–407, 1951.

Manyou Ma (S’19) received the B.Eng degree from
McGill University, Montreal, Canada, in 2014 and
the M.A.Sc. degree from the University of British
Columbia (UBC), Vancouver, Canada, in 2016. She
is currently pursuing the Ph.D. degree at UBC.
She is a recipient of the UBC Four Year Doctoral
Fellowship (4YF), Mitacs Accelerate Fellowship,
and the Natural Sciences and Engineering Research
Council of Canada (NSERC) Postgraduate Scholar-
ship. Her research interests include deep learning-
driven scheduling algorithms design, content caching

in heterogeneous networks, and age of information.

Vincent W.S. Wong (S’94, M’00, SM’07, F’16) re-
ceived the B.Sc. degree from the University of Man-
itoba, Winnipeg, MB, Canada, in 1994, the M.A.Sc.
degree from the University of Waterloo, Waterloo,
ON, Canada, in 1996, and the Ph.D. degree from the
University of British Columbia (UBC), Vancouver,
BC, Canada, in 2000. From 2000 to 2001, he worked
as a systems engineer at PMC-Sierra Inc. (now Mi-
crochip Technology Inc.). He joined the Department
of Electrical and Computer Engineering at UBC
in 2002 and is currently a Professor. His research

areas include protocol design, optimization, and resource management of
communication networks, with applications to wireless networks, smart grid,
mobile edge computing, and Internet of Things. Currently, Dr. Wong is an
Executive Editorial Committee Member of IEEE Transactions on Wireless
Communications, an Area Editor of IEEE Transactions on Communications
and IEEE Open Journal of the Communications Society, and an Associate
Editor of IEEE Transactions on Mobile Computing. He is a Technical Program
Co-chair of the IEEE 92nd Vehicular Technology Conference (VTC2020-Fall).
He has served as a Guest Editor of IEEE Journal on Selected Areas in
Communications and IEEE Wireless Communications. He has also served on
the editorial boards of IEEE Transactions on Vehicular Technology and Jour-
nal of Communications and Networks. He was a Tutorial Co-chair of IEEE
Globecom’18, a Technical Program Co-chair of IEEE SmartGridComm’14,
as well as a Symposium Co-chair of IEEE ICC’18, IEEE SmartGridComm
(’13, ’17) and IEEE Globecom’13. He is the Chair of the IEEE Vancouver
Joint Communications Chapter and has served as the Chair of the IEEE
Communications Society Emerging Technical Sub-Committee on Smart Grid
Communications. He is an IEEE Communications Society Distinguished
Lecturer (2019−2020).

