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Abstract—Backscatter communication is an energy-efficient
communication technique for the Internet of things (IoT) devices.
It enables data transmission by reflecting the incident radio sig-
nals. In this paper, we propose a communication mode selection
scheme for IoT devices that can communicate using either active
transmission or backscattering. In the active transmission mode,
the IoT devices can transmit data over narrowband subcarriers
using power-domain non-orthogonal multiple access (NOMA). In
the backscattering mode, which operates over shorter distance
than active transmission, nearby user equipment (UE) devices
are used as relays. The UEs receive the backscattered signals
from the IoT devices and forward them to the base station. We
formulate a connection density maximization problem to select
the communication mode used by each IoT device. We determine
the IoT device pairing for active transmission mode with NOMA
and UE-IoT device association for backscattering mode. The
formulated problem is a binary integer programming problem.
Although it can be solved optimally, the optimal algorithm incurs
exponential computational complexity. Hence, we propose a low-
complexity suboptimal algorithm to solve this problem. Results
show that our proposed algorithm can enhance the connection
density of narrowband IoT systems by up to 64% when compared
with using single communication mode.

Index Terms: Backscatter communications, non-
orthogonal multiple access (NOMA), relaying.

I. INTRODUCTION

The Internet of things (IoT) is an emerging paradigm in
which IoT devices can support a wide variety of applications,
such as home automation, healthcare, environmental moni-
toring, and industrial automation [2]. Due to its ubiquitous
coverage, fifth generation (5G) and beyond 5G (B5G) wireless
cellular networks are strong candidates for enabling the IoT,
especially the massive IoT (mIoT) use case [3]. mIoT is
characterized by a large number of low-cost low-power IoT
devices (up to 106 devices per km2) which can perform delay-
tolerant tasks with relaxed latency requirements in the order
of seconds or hours [4]. Due to the inconvenience of battery
replacement and recharging in many IoT applications, the IoT
devices are required to maintain a long battery lifetime which
necessitates energy-efficient communication [5].
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Backscatter communication [6] is a promising energy-
efficient communication technology for the IoT devices. The
IoT devices reflect or backscatter an external excitation signal
(e.g., power beacon) by tuning a set of antenna impedances.
Subsequently, the frequency, phase, or amplitude of the exci-
tation signal is modulated according to the data of these IoT
devices. Backscatter communication enables the IoT devices
to transmit their data without active transmission of radio
frequency (RF) signals, which results in lower energy con-
sumption [7]. Furthermore, low-power backscatter transmitters
and receivers can be implemented with low cost [8].

In general, there are three types of backscatter communica-
tion systems, namely monostatic backscatter communication,
bistatic backscatter communication, and ambient backscatter
communication. In monostatic backscatter communication, the
backscattering device (i.e., IoT device) modulates and reflects
a dedicated excitation signal that is transmitted by the intended
receiver of the data. On the other hand, in bistatic backscatter
communication, the IoT device modulates and reflects a dedi-
cated high-power excitation signal from an RF source which is
different from the intended receiver (e.g., a base station (BS)
or a TV tower). Bistatic backscatter communication is more
reliable than monostatic backscatter communication since it
involves the usage of a dedicated RF source that can generate
a high power excitation signal. In addition, bistatic backscatter
communication can operate over a longer communication
range. In ambient backscatter communication, the dedicated
high power excitation signal is replaced by an RF data signal
that is intended for other devices, such as user equipment
(UE) devices. Hence, ambient backscatter communication does
not require the generation of dedicated excitation signals. For
example, the downlink data signals, that are intended for UEs,
can be beamformed by the BS to enhance the performance
of an ambient backscatter communication system for IoT
devices [9]. However, ambient backscatter communication
entails the dependence on unpredictable data traffic to provide
the required excitation signal for the IoT devices that use
backscattering.

The performance of backscatter communication systems can
be enhanced by relaying [1]. Relaying enables the receiver to
obtain multiple copies of the low-power backscattered signal
and combine them to improve the received signal-to-noise ratio
(SNR). For the device-to-device (D2D) systems considered in
[10], UEs can use backscattering to communicate with their
peers and relay information for other D2D pairs. To maximize
the aggregate throughput in the aforementioned scenario, an
algorithm is proposed in [10] to optimize the beamforming
of the power beacon signal and the selection of the reflection
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coefficients for relaying. A similar scenario is considered in
[11], where D2D pairs use active transmission for forwarding
information and backscattering for relaying the information of
other pairs. A time division multiple access (TDMA) scheme
is proposed to allocate different periods for energy harvesting,
active transmission, and backscattering-based relaying for the
D2D pairs to maximize the aggregate throughput. In [12],
the throughput of a backscattering device is improved with
the help of a relay that can use either active transmission
or backscattering, depending on whether it has an embedded
power source or not. In [13], a relaying scheme is proposed
for a system consisting of a backscattering device and a
harvest-then-transmit device by optimizing the time and power
allocation to maximize the weighted sum rate. In [14], [15],
the author considers a time-slotted backscatter communication
system. A relay harvests energy in the first time slot, during
which the transmitter reflects the incident power beacon. In
the second time slot, the relay forwards the reflected data to
the intended receiver.

Apart from the above, there is another use case of relaying
in backscatter systems. Backscatter transmitters can reflect
the incident signals to nearby relays that are equipped with
stable power sources. Those relays can detect the backscattered
signals and actively transmit them to the receivers. In [16], the
authors consider a system where an unmanned aerial vehicle
(UAV) acts as either a power source for the backscatter IoT
device or as a relay between the IoT device and its intended
receiver. In [17], the authors consider a downlink system with a
multi-antenna transmitter and a single-antenna receiver, where
a group of amplify-and-forward energy-harvesting relays is
used for relaying data between the transmitter and receiver.
The relays switch between active and passive relaying modes
(i.e., active transmission and backscattering) to maximize the
SNR of the system subject to energy harvesting constraints. In
[18], the authors consider a system where each IoT device is
associated with a dedicated relay (i.e., gateway) that has energy
harvesting capability. The relay receives the backscattered data
from the IoT device and relays the data to the BS using
active transmission after harvesting sufficient energy. The
authors formulate a sum-rate maximization problem, where the
time duration allocated for energy harvesting, backscattering,
and active transmission is optimized. In [19], beamforming
of the power beacon is optimized to further improve the
system aggregate throughput. In [1], a bipartite matching-
based algorithm is proposed to pair backscattering IoT devices
with a nearby UE relay in order to maximize the system
connection density (i.e., maximize the number of IoT devices
that meet a minimum SNR constraint).

Some other related works (e.g., [20]–[26]) addressed the
case that IoT devices can perform both active transmission and
backscattering. In a cognitive radio system considered in [20],
secondary devices can use backscatter communication instead
of harvest-then-transmit technique to reduce the interference
on the primary user. In [21], deep reinforcement learning
(DRL) is applied to obtain a policy that maximizes the
aggregate data rate of the IoT devices that can use both of
the aforementioned communication modes. In [22], [23], the
IoT devices offload data for computation to a mobile edge

computing server using either RF transmission or backscatter
communications. A policy is obtained using DRL to deter-
mine which communication mode to be chosen based on
the device state information (i.e., channel conditions, battery
level, computation workload). On the other hand, optimizing
the backscatter communication systems with a large number
of backscattering-enabled IoT devices is challenging since it
requires the knowledge of the channel state information (CSI)
among the many devices coexisting in the same network,
which necessitates extensive training and pilot signal trans-
missions for channel estimation. In [24], the authors consider
an ambient backscatter communication system where an IoT
device overlays in the time slot allocated for UE by backscat-
tering data while using the downlink UE signal as an excitation
signal. In this scheme, it is assumed that the channel conditions
among the UEs and the IoT devices are unknown to the BS
for UE-IoT device pairing. Hence, centralized and distributed
association algorithms are developed using DRL. In [25],
an algorithm is proposed for switching among harvest-then-
transmit, bistatic backscattering, and ambient backscattering
modes for data transmission. In [26], the authors consider a
system where some IoT devices act as relays for other IoT
devices. In the aforementioned system, ambient backscattering
is used for transmitting data from an IoT device to its
associated relay. On the other hand, bistatic backscattering is
used for forwarding data from the relay to the destination.

When IoT devices are equipped with the necessary circuitry
to transmit data using backscattering or RF transmission, they
have more opportunities to use backscattering for data trans-
mission. As an energy-efficient communication technology,
backscattering can help IoT devices to save energy, increase
battery lifetime, and reduce the rate of battery replacement
[27]. However, using backscattering over longer communi-
cation range requires the presence of nearby backscatter re-
ceivers. Hence, UEs can be employed as backscatter receivers
that receive the backscattered data from the IoT devices and
relay them to the BS. On the other hand, active transmission
can be used when there are no nearby UEs.

In this paper, we propose a communication mode selection
scheme for narrowband IoT networks, where IoT devices can
transmit their data using one of the two available communica-
tion modes. Those two modes are (a) active transmission and
(b) backscattering data to a nearby UE which then forwards the
data to the BS. In our work, we focus on those IoT applications
with relaxed or loose latency requirements. Consequently,
the proposed communication mode selection scheme has an
IoT-oriented objective, which is to maximize the connection
density, i.e., maximizing the number of IoT devices that
satisfy a minimum SNR constraint. Our proposed scheme takes
advantage of the presence of abundant UEs around the network
and utilizes them as relays to forward the backscattered data
from the IoT devices to the BS [1]. In this work, we use bistatic
backscattering, where the BS acts as a power beacon source
and the UEs act as backscattering receivers. When both active
transmission and backscattering are enabled at the IoT devices,
our proposed scheme helps IoT devices to select one of the
communication modes according to the network topology. For
example, if UE relays are available in the vicinity, then IoT
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devices have the opportunity to backscatter data as a means
for energy-efficient communication. Using UEs as relays in the
backscattering mode has several additional advantages. First, it
reduces the expenditure of deploying dedicated readers (relays)
or utilizing dedicated mobile readers (e.g., UAVs). Second, the
IoT devices can have more opportunities to use backscattering
to transmit data over a longer communication range with the
help of UE relays, which can enhance the battery lifetime of
IoT devices. Furthermore, UEs can be provided with economic
rewards for relaying data of the IoT devices. On the other
hand, with the absence of suitable UE relays in the vicinity,
the IoT devices can utilize the active transmission mode. In
this mode, two IoT devices can share a single subcarrier
using uplink power-domain non-orthogonal multiple access
(NOMA). Hence, it is necessary to determine the transmit
power of a pair of IoT devices that share the same subcarrier
in order to guarantee successful data decoding of the received
signals at the BS using successive interference cancellation.

To this end, we formulate a communication mode selection
problem as an optimization problem with the objective of max-
imizing the connection density. Each IoT device is assigned
one of the communication modes (i.e., active transmission
or backscattering). The communication mode selection needs
to take into account several factors, including the network
topology, CSI, and transmit power budgets. The contributions
of this paper can be summarized as follows:

• We propose a communication mode selection scheme,
where IoT devices can utilize active transmission or
backscattering for communication. In the active trans-
mission mode, two IoT devices share a single subcarrier
using power-domain NOMA. In the backscattering mode,
IoT devices can backscatter data to UE relays for data
transmission.

• We formulate a connection density maximization problem
to assign a communication mode for each IoT device.
The formulated problem is a binary integer programming
(BIP) problem, which can be solved optimally.

• Since the optimal algorithm has high computational com-
plexity, we also solve the formulated problem by de-
composing it into two subproblems, which can be solved
by low-complexity suboptimal algorithms. For those IoT
devices that are selected to use active transmission, we
propose an algorithm based on bipartite matching to
determine the IoT device pairing and the transmit power
in an uplink power-domain NOMA system. For those
IoT devices that are selected to use backscattering, a
heuristic algorithm is used to associate them with UE
relays and determines which IoT devices are scheduled
to backscatter their data to the associated UE relays in
the given time slot.

• Simulation results show that our proposed scheme can
enhance the connection density of narrowband IoT sys-
tems by up to 64% when compared with using a single
communication mode with perfect CSI in a 100 m2

coverage area. Results also show that the suboptimal
algorithm achieves a close performance to that of the
optimal algorithm in most of the simulation scenarios.

The remainder of the paper is organized as follows. The
system model is described in Section II. In Section III, we
formulate the connection density maximization problem as a
BIP problem, which can be optimally solved. We also propose
suboptimal low-complexity algorithms to solve the formulated
connection density maximization problem. We conduct perfor-
mance evaluation of the proposed algorithms in Section IV.
Section V concludes the paper.

Notations: In this paper, we use C to denote the set of
complex numbers and RN+ to denote the set of non-negative
numbers. We denote the circularly symmetric complex Gaus-
sian distribution with mean µ and variance σ2 by CN (µ, σ2),
and ∼ stands for “distributed as”. We use |h| to denote the
absolute value of a complex number h. We also use |D| to
denote the cardinality of a set D.

II. SYSTEM MODEL

Consider a single BS that provides coverage for a set of
active IoT devices D and a set of available UE relays U . The
BS, the UEs and all the IoT devices are equipped with single
antenna. Each IoT device is equipped with a battery and can
transmit data either by (a) active transmission directly to the
BS or (b) backscattering an incident power beacon signal from
a single-antenna power source that is co-located at the BS to
the associated UE, which in turn relays the backscattered data
to the BS by active transmission as shown in Fig. 1.

We consider a time-slotted system. The communication
mode selection is determined at the beginning of each time
slot for the active IoT devices. Active transmission can be
used to support communication without the need of relaying
via a UE. This communication mode is useful in case of
the absence of potential UE relays or the presence of UE
relays with poor channel conditions for the backscattering
link. On the other hand, with the presence of nearby UE
relays, backscattering can be more energy-efficient for the IoT
devices. In the backscattering mode, the BS acts as a carrier
emitter and UE relays act as backscatter readers, i.e., bistatic
backscattering is employed. Assigning the tasks of the carrier
emitter and the backscatter reader to different devices (i.e., BS
and UE relays, respectively) can increase the communication
range of the backscattering systems.1

Dedicated subcarriers (i.e., frequency bands) are allocated
for each communication mode, i.e., the IoT devices that use
backscattering do not cause interference for the IoT devices
that use active transmission and vice versa [26]. A set of
narrowband subcarriers S is used for the active transmission
mode. The IoT devices that transmit data using active trans-
mission can share the same subcarrier using uplink power-
domain NOMA [4]. Each subcarrier s ∈ S can be shared by
at most two IoT devices [28], [29]. In most practical systems,
no more than two IoT devices can share a single subcarrier
because hardware complexity and processing delay increase
with the devices on each subcarrier [29]. On the other hand, a

1In monostatic backscattering systems, where the carrier emitter and
backscatter reader are the same device (e.g., BS), the communication range
is limited to a few meters [6]. This makes direct communication between the
BS and IoT devices via monostatic backscattering impractical.
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IoT Device 1 ↔ UE Relay 2 s
u2

IoT Device 2 ↔ UE Relay 3 s
u3

Fig. 1. System model. (a) Active transmission mode: The IoT device transmits
data to the BS via active RF transmission. Each subcarrier can be accessed
either by a single IoT device using orthogonal multiple access (OMA) or by
a pair of IoT devices using NOMA. (b) Backscattering mode: An IoT device
is associated with one of the available UE relays. The BS transmits a power
beacon signal that is backscattered by the IoT device. The UE relay receives
the backscattered signal and forwards it to the BS.

single subcarrier so is allocated for backscattering IoT devices.
Hence, multiple UE-IoT device pairs can be scheduled within
the same time slot over this subcarrier as long as they cause

minimal interference to each other (i.e., each UE-IoT device
pairs meets a minimum SNR requirement). Furthermore, each
UE relay u ∈ U is allocated a dedicated subcarrier su that
does not belong to the set of subcarriers assigned for serving
the IoT devices (i.e., su /∈ S ∪ {so}).

The UE relay can forward the decoded data of the associated
IoT device to the BS by appending them to the UE data,
combining them with the UE data (by superposition similar
to NOMA), or transmitting a dedicated IoT data packet. We
consider that each UE u ∈ U is available to serve as a relay
during the current time slot for a predetermined economic
reward by the network.

Time is divided into slots with equal duration. A time slot is
sufficient for a data packet transmission from an IoT device to
the BS (i.e., active transmission), or from an IoT device to the
BS via a UE relay (i.e., backscattering and relaying). During
any given time slot, each IoT device d in the set of active IoT
devices D has a data packet to transmit using one of the two
communications modes. A subset of those devices can transmit
their data packets in this time slot according to the decisions
made by the communication mode selection scheme. If the
data packet reception is successful, then the IoT device will
receive an acknowledgment (ACK) packet from the BS. If the
IoT device does not have additional packets in its buffer, it will
then enter the sleep mode until a new data packet arrives. This
is consistent with those scenarios where an IoT device needs to
periodically obtain new measurements from the environment.
When IoT device d receives an ACK packet and does not have
new data packets to send, it is no longer a member of the set of
active IoT devices D in the next time slot, i.e. D −→ D\{d}.

The BS has information on the set of active IoT devices
and the set of available UE relays in the coverage area after
those devices have established connection via the random
access procedure [30]. In addition, the BS acquires knowledge
of the locations of the IoT devices and the UEs. We use
h
(mode)
m,n,s (t) ∈ C to denote the channel gain between device m

and device n over subcarrier s at time slot t for a certain
communication mode, where m, n ∈ {BSi | 1 ≤ i ≤
I} ∪ U ∪ D and m 6= n. Also, mode ∈ {tr, bcs}, where tr
and bcs are abbreviations to denote the active transmission
and backscattering modes, respectively. Moreover, we consider
h
(mode)
m,n,s (t) =

√
`m,nĥ

(mode)
m,n,s (t), where ĥ(mode)

m,n,s (t) ∈ C denotes
the small-scale channel coefficient (e.g., Rayleigh fading) at
time slot t such that ĥ(mode)

m,n,s (t) ∼ CN (0, 1). `m,n ∈ R+

denotes the large-scale channel coefficient (e.g., path loss)
between device m and device n. Since we assume channel
reciprocity, we have |h(mode)

m,n,s (t)| = |h(mode)
n,m,s (t)|, |ĥ(mode)

m,n,s (t)| =
|ĥ(mode)
n,m,s (t)|, and `m,n = `n,m. For simplifying the subsequent

expressions, the time index t is dropped in the remaining part
of this paper.

The channel gain between the BS and any of the IoT devices
or the UE relays (i.e., h(tr)

BS,d,s, h
(bcs)
BS,d,so , d ∈ D or hBS,u,su ,

u ∈ U) can be estimated at the BS side by receiving a pilot
signal from the IoT devices and UE relays. Similarly, hd,u,so
can be estimated in a similar way, where IoT device d transmits
a pilot signal that is receievd by UE relay u. In addition,
h
(bcs)
d,u,so

can also be estimated by the UE after receiving the
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reflection of the IoT device for a pilot signal from the BS.
Given the received reflected signal at the UE, the pilot signal,
and h

(bcs)
BS,d,so , the UE can estimate h(bcs)

d,u,so
. In both methods,

the UE reports the aforemtioned estimation to the BS [12].2

A. Active Transmission Mode
If IoT device d is scheduled to transmit in a given time slot

and active transmission mode is used, then it will transmit
a data packet to the BS with transmit power Pd over a
subcarrier s ∈ S . Once the BS has successfully decoded the
received data, it transmits an ACK packet to the IoT device.
Subsequently, the IoT device enters the sleep mode to save
energy and does not attempt packet transmission over the
subsequent time slots until a new data packet arrives from
upper layer. On the other hand, if the BS fails to decode
the received data packet, no ACK packet will be transmitted
by the BS. In the latter case, the IoT device remains active
and is considered for scheduling in one of the following time
slots (according to the backoff mechanism followed by the IoT
device) using either active transmission or backscattering.

The total system bandwidth allocated for active transmission
mode is divided into a set of equal bandwidth subcarriers
S. Each subcarrier can be shared by up to two IoT devices
using uplink power-domain NOMA [4]. For maximizing the
connection density (scheduling the maximum number of IoT
devices in the given subcarriers subject to the minimum
SNR requirements), the transmit power of the IoT devices
should be controlled. In addition, the transmit power should
be minimized in order to reduce the energy consumption.
In this paper, we assume a narrowband IoT system, i.e.,
the system bandwidth is less than the coherence bandwidth.
Hence, |h(tr)

m,n,s| = |h(tr)
m,n,s′ | for all s, s′ ∈ S. Hence, subcarrier

allocation in narrowband systems denotes pairing two IoT
devices that can share access to a subcarrier s ∈ S using
power-domain NOMA. In the following parts of the paper, the
subcarrier index s is removed in order to simplify the notation
of channel coefficient variables.

We introduce a binary variable xd,d′ , which is equal to 1
if IoT devices d and d′ from set D share the same subcarrier
(any subcarrier in S) such that data from device d are decoded
first.

xd,d′ ∈ {0, 1}, d ∈ D, d′ ∈ D ∪ {do} \ {d}, (1)

where do is a dummy device index to indicate that an IoT
device is allocated a given subcarrier without sharing it with
other IoT devices using orthogonal multiple access (OMA).
For example, if xd,do = 1, then a single subcarrier is allocated
to IoT device d using OMA. Consequently, the total number
of NOMA pairs (including the OMA pairs of IoT devices with
the dummy device do) cannot exceed the number of available
subcarriers for active transmission,∑

d∈D

∑
d′∈D∪{do}\{d}

xd,d′ ≤ |S|. (2)

2The acquisition of CSI for all the links in each time slot may incur
significant control overhead. The first approach to tackle this challenge is to
update CSI every few time slots to reduce the control overhead. The second
approach is to use geographical location information instead of CSI [31], e.g.,
we can assume that |hd,u| = c

√
`d,u, where c is a constant.

We determine the transmit power for each pair consisting
of two distinct IoT devices from the set D assuming that
those two IoT devices are allocated a shared subcarrier. In the
formulation of the power allocation problem, a subcarrier is
allocated to two IoT devices d1 and d2. Data from IoT device
d1 is decoded first. Hence, we introduce the binary variable
ad, which is equal to 1 if the BS can successfully decode the
data from IoT device d ∈ {d1, d2}, i.e.,

ad ∈ {0, 1}, d ∈ {d1, d2}. (3)

When ad is equal to 0, data from IoT device d cannot be
decoded by the BS, i.e., the given pair of IoT devices cannot
share any subcarrier using NOMA.

The IoT devices d1 and d2 use transmit powers Pd1 and
Pd2 with maximum limits Pmax

d1
and Pmax

d2
, respectively, i.e.,

0 ≤ Pd ≤ adPmax
d , d ∈ {d1, d2}. (4)

Note that if ad is equal to 0, then the transmit power Pd is
equal to 0.

For successful decoding of the superimposed signals from
the IoT devices d1 and d2 at the BS, it is required that the
received signal-to-interference-plus-noise ratio (SINR) of d1
and the received SNR of d2 should be greater than a certain
threshold γ(th)

BS . That is,

Pd1 |h
(tr)
BS,d1 |

2

Pd2 |h
(tr)
BS,d2 |

2 + σ2
BS

≥ ad1γ
(th)
BS , (5)

Pd2 |h
(tr)
BS,d2 |

2

σ2
BS

≥ ad2γ
(th)
BS . (6)

To successfully serve the NOMA pair consisting of the
IoT devices d1 and d2 while consuming minimum power for
data transmission, we formulate the power control problem as
follows:

maximize
ad,Pd

d∈{d1,d2}

ad1 + ad2 − w(Pd1 + Pd2) (7)

subject to constraints (3)−(6),

where w is a positive weight factor that is selected such
that pairing the two IoT devices and successfully decoding
their data has higher priority than minimizing the total power
consumption. This can be achieved by setting weight factor
w to any value in the range

(
0, 1

Pmax
d1

+Pmax
d2

)
(we set w to

the maximum value in the aforementioned range). Problem
(7) can be solved for each binary combination in A =
{(ad1 , ad2) | ad1 ∈ {0, 1}, ad2 ∈ {0, 1}} and we select the
solution that maximizes the objective. In case of infeasibility,
the objective is equal to −∞. The optimal solutions can be
obtained from Table I.

Note that when the objective value is equal to 0, both IoT
devices d1 and d2 cannot meet the minimum SNR threshold
requirements even with OMA (i.e., choosing one of the two
devices to solely use the subcarrier) and hence cannot be
served with active transmission mode in the current time slot.
When the objective value is equal to 1− wP ?d1 or 1− wP ?d2 ,
IoT devices d1 and d2 cannot share the given subcarrier using
power-domain NOMA, but one of them can use it for active
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TABLE I
OPTIMAL SOLUTION FOR PROBLEM (7)

a?d1 a?d2 P ?d1 P ?d2 Objective Value
0 0 0 0 0

0 1 0
γ
(th)
BS σ

2
BS

|h(tr)
BS,d2

|2

1− wP ?d2 ,
γ
(th)
BS σ

2
BS

|h(tr)
BS,d2

|2
≤ Pmax

d2

−∞, otherwise

1 0
γ
(th)
BS σ

2
BS

|h(tr)
BS,d1

|2
0

1− wP ?d1 ,
γ
(th)
BS σ

2
BS

|h(tr)
BS,d1

|2
≤ Pmax

d1

−∞, otherwise

1 1
γ
(th)
BS σ

2
BS(1+γ

(th)
BS )

|h(tr)
BS,d1

|2
γ
(th)
BS σ

2
BS

|h(tr)
BS,d2

|2


2− w(P ?d1 + P ?d2),

γ
(th)
BS σ

2
BS(1+γ

(th)
BS )

|h(tr)
BS,d1

|2
≤ Pmax

d1
and

γ
(th)
BS σ

2
BS

|h(tr)
BS,d2

|2
≤ Pmax

d2

−∞, otherwise

transmission with OMA. Finally, when the objective value is
equal to 2− w(P ?d1 + P ?d2), IoT devices d1 and d2 can share
the allocated subcarrier using power-domain NOMA with the
specified decoding order.

If there is no feasible solution when both ad1 and ad2 are
equal to 1, then IoT devices d1 and d2 cannot share any
subcarrier in the given decoding order. Hence, we introduce
a binary variable bd1,d2 that is equal to 1 if and only if the
optimal solution is obtained when ad1 and ad2 are equal to 1,
i.e.,

bd1,d2 = ad1ad2 . (8)

When IoT devices d1 and d2 are paired, where data from IoT
device d1 are decoded first, then the transmit power of IoT
device d1 is denoted as Pd1,d2,1 and the transmit power of
IoT device d2 is denoted as Pd1,d2,2. Pd1,d2,1 and Pd1,d2,2 are
set to take the values of P ?d1 and P ?d2 , respectively.

In case of OMA, we set d2 = do, where do is a dummy IoT
device and Pd2 = 0. Hence, Pd1 can be evaluated as follows:

Pd1 =


γ
(th)
BS σ

2
BS

|h(tr)
BS,d1

|2
,

γ
(th)
BS σ

2
BS

|h(tr)
BS,d1

|2
≤ Pmax

d1
,

0,
γ
(th)
BS σ

2
BS

|h(tr)
BS,d1

|2
> Pmax

d1
.

(9)

If the data of IoT device d1 can be decoded in case of OMA,
we set bd1,do to be equal to 1. The transmit power of IoT
device d1 is denoted as Pd1,do,1 and the transmit power of
dummy device do is denoted as Pd1,do,2. Pd1,do,1 and Pd1,do,2
are set to take the values of Pd1 and 0, respectively.

The objective function aims to allocate the minimum trans-
mit power to a pair of IoT devices while satisfying the
minimum SNR threshold constraints. In narrowband systems,
we need to evaluate the objective value for |D|2 potential
pairs. The transmit power of any IoT device d that uses active
transmission can be obtained for a given paired IoT device d′

and the decoding order r ∈ {1, 2}. Note that satisfying the
minimum SNR threshold for decoding the data at the BS is
already taken into account while evaluating Pd,d′,1 and Pd,d′,2
for all d ∈ D and d′ ∈ D ∪ {do} \ {d}.

The previous framework is applicable when more than two
IoT devices access a subcarrier with NOMA. For grouping L

IoT devices per subcarrier, we need to solve the power control
problem for

∑L
l=1

∏l−1
j=0 |D| − j NOMA groups, which is in

the order of |D|L. The solution is obtained by evaluating the
transmit power of the last decdoed IoT device in the group then
evaluating the transmit powers of the remaining IoT devices
in a descending decoding order. Hence, we obtain a binary
indicator for whether the NOMA group can access a shared
subcarrier (similar to bd1,d2 when L = 2) and the required
tranmsit power values (similar to Pd1,d2,1, Pd1,d2,2 when L =
2). For example, when L = 3 and the data of IoT devices d1,
d2, and d3 are decoded in the aforemnetioned order, we obtain
bd1,d2,d3 , Pd1,d2,d3,1, Pd1,d2,d3,2, and Pd1,d2,d3,3. In practical
systems, increasing the number of devices per subcarrier in
power-domain NOMA systems results in a higher hardware
complexity and processing delays [28], [29].

Each IoT device can be paired with only one IoT device,
i.e., ∑

d′∈D∪{do}\{d}

xd,d′ +
∑

d′′∈D\{d}

xd′′,d ≤ 1, d ∈ D. (10)

At the BS, we consider that the received packets of IoT
devices d and d′ pair can be successfully decoded if their re-
ceived SNRs, denoted by γd,d′,BS,1 and γd,d′,BS,2, respectively,
are greater than a certain threshold γ

(th)
BS . The expression for

γd,d′,BS,1 is given by

γd,d′,BS,1 =
Pd,d′,1|h(tr)

BS,d|2

Pd,d′,2|h(tr)
BS,d′ |2 + σ2

BS

, d ∈ D, d′ ∈ D∪{do}\{d},

(11)
where σ2

BS is the noise power at the BS. The expression of
γd,d′,BS,2 is given by

γd,d′,BS,2 =
Pd,d′,2|h(tr)

BS,d′ |2

σ2
BS

, d ∈ D, d′ ∈ D ∪ {do} \ {d}.
(12)

Then, the minimum SNR threshold constraint can be ex-
pressed as

γd,d′,r ≥ xd,d′γ(th)
BS , d ∈ D, d′ ∈ D ∪ {do} \ {d}, r ∈ {1, 2}.

(13)
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The solution of the power control problem (7) (i.e., bd,d′ ,
Pd,d′,1 and Pd,d′,2) for each pair of IoT devices ensures
satisfying constraint (13). This is because after the power
control problem has been solved, we obtain a binary variable
bd,d′ , which is equal to 1 if and only if the IoT devices pair
d and d′ can share a subcarrier using NOMA (i.e., the power
control problem returns a feasible solution that satisfies the
maximum power constraint and minimum SNR threshold).
The minimum SNR threshold constraint can be rewritten as

xd,d′ ≤ bd,d′ , d ∈ D, d′ ∈ D ∪ {do} \ {d}. (14)

This constraint enforces that if a pair of IoT devices cannot
share a subcarrier using NOMA, then they will not be paired
together.

B. Backscattering Mode

If IoT device d is scheduled to transmit in a given time slot
and backscattering mode is used, then it will transmit a data
packet by modulating an incident power beacon signal from
the BS which has a transmit power of PBS. The backscattered
signal is received by an associated UE relay u over a com-
mon backscattering subcarrier so. Subsequently, the UE relay
forwards the data to the BS using a constant transmit power
of Pu. When BS has successfully decoded the received data,
it transmits an ACK packet to the IoT device. Similar to the
active transmission case, the IoT device enters the sleep mode
to save energy until a new data packet arrives. On the other
hand, if the IoT device does not receive an ACK from the
BS, the IoT device may attempt packet retransmission in the
following time slot. We assume that the UE relay drops the
buffered data by the end of each time slot.

The BS needs to successfully decode the forwarded packet
by any UE relay u over its allocated subcarrier su. This
requires that the received SNR γu,BS is greater than a certain
threshold γ(th)

BS . The expression of γu,BS is given by:

γu,BS =
Pu|hBS,u|2

σ2
BS

, u ∈ U . (15)

Without loss of generality, we assume that the set of UE relays
U only includes UEs which have good channel conditions for
forwarding data to the BS (i.e., Pu|hBS,u|2

σ2
BS

≥ γ(th)
BS ).

We introduce a binary variable zd,u, which is equal to 1 if
IoT device d is associated with UE relay u and the UE-IoT
device pair (d, u) is scheduled for data transmission during
the current time slot. Otherwise, zd,u is equal to 0.

zd,u ∈ {0, 1}, d ∈ D, u ∈ U . (16)

Each IoT device d can be associated with a single UE relay
u. Then, we have ∑

u∈U
zd,u ≤ 1, d ∈ D. (17)

In addition, each UE relay can receive backscattered data from
a single IoT device, i.e.,∑

d∈D

zd,u ≤ 1, u ∈ U . (18)

IoT device d transmits data by modulating an incident power
beacon signal from the BS which has a transmit power of PBS.
The backscattered signal is received by an associated UE relay
u. Let γd,u denote the received SNR at UE relay device u when
device d backscatters the data. The expression is given by

γd,u =
zd,uGd,u∑

k∈D\{d}
∑
v∈U\{u} zk,vGk,u + σ2

u

, d ∈ D, u ∈ U ,

(19)
where Gd,u = ζdPBS|h(bcs)

BS,d |2|h
(bcs)
d,u |2, ζd is the magnitude of

the reflection coefficient of IoT device d while backscattering
incident power beacon signal, and σ2

u is the noise power at UE
u. At the UE, the backscattered signals from non-associated
IoT devices are treated as noise during decoding. Also, the
power beacon signal from the BS is assumed to be known
at the UE and can be subtracted from the received signal
using self-interference cancellation [10]. Upon successful data
decoding at the UE relay, the received SNR at the UE γd,u
should be greater than a certain threshold γ(th)

u , i.e.,

zd,uGd,u∑
k∈D\{d}

∑
v∈U\{u} zk,vGk,u + σ2

u

≥ zd,uγ(th)
u ,

d ∈ D, u ∈ U . (20)

Constraint (20) can be rewritten as

zd,u

(
Gd,u − σ2

uγ
(th)
u

)
≥

∑
k∈D\{d}

∑
v∈U\{u}

yd,u,k,vGk,uγ
(th)
u ,

d ∈ D, u ∈ U , (21)

where yd,u,k,v = zd,uzk,v and it is a binary variable defined
by the following constraints:

yd,u,k,v ∈ {0, 1}, d ∈ D, u ∈ U , k ∈ D\{d}, v ∈ U\{u}
(22)

yd,u,k,v ≤ zd,u, d ∈ D, u ∈ U , k ∈ D\{d}, v ∈ U\{u}
(23)

yd,u,k,v ≤ zk,v, d ∈ D, u ∈ U , k ∈ D\{d}, v ∈ U\{u}
(24)

yd,u,k,v ≥ zd,u + zk,v − 1,

d ∈ D, u ∈ U , k ∈ D\{d}, v ∈ U\{u}. (25)

III. COMMUNICATION MODE SELECTION PROBLEM
FORMULATION AND PROPOSED ALGORITHM

In this section, we formulate the communication mode
selection problem which can be solved optimally. Then, we
decompose it into two subproblems that can be solved using
low-complexity proposed algorithms.

A. Communication Mode Selection Problem Formulation

Each IoT device can either use active transmission mode or
backscattering mode, i.e.,∑
d′∈D∪{do}\{d}

xd,d′+
∑

d′′∈D\{d}

xd′′,d+
∑
u∈U

zd,u ≤ 1, d ∈ D.

(26)
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The communication mode selection problem can be for-
mulated as a connection density maximization problem as
follows:

maximize
X, Z, Y

∑
d∈D

( ∑
d′∈D∪{do}\{d}

xd,d′ +
∑

d′′∈D\{d}

xd′′,d

+
∑
u∈U

zd,u

)
(27)

subject to constraints (1)−(2), (14), (16)−(18), (21)−(26),

where X = [xd,d′ ] represents the IoT device pairing matrix
for the active transmission mode, d ∈ D, d′ ∈ D ∪ {do}\{d}.
Z = [zd,u] is the UE-IoT device pairing matrix for the
backscattering mode, where d ∈ D, u ∈ U . Y = [yd,u,k,v]
is the matrix of the auxiliary binary variables yd,u,k,v for
all d ∈ D, u ∈ U , k ∈ D\{d}, v ∈ U \{u}. Note that the
term

∑
d∈D

∑
d′∈D∪{do}\{d} xd,d′ represents the total number

of IoT devices that can successfully transmit their data with
active transmission with OMA or NOMA as the first user for
decoding at the BS. The term

∑
d∈D

∑
d′′∈D\{d} xd′′,d rep-

resents the total number of IoT devices that can successfully
transmit their data with active transmission with NOMA as
the second user for decoding in the NOMA pair. Then, the
term

∑
d∈D

∑
u∈U zd,u represents the total number of IoT

devices that can successfully transmit their data packets by
backscattering the data signals to their respective associated
UE relays.

The formulated problem is a BIP problem that can be
solved optimally using exact algorithms such as branch-and-
bound and exhaustive search. However, these algorithms have
exponential complexity. We need to solve for |D|2 binary
variables in matrix X, |D||U| binary variables in matrix Z,
and |D|(|D| − 1)|U|(|U| − 1) binary variables in matrix Y.
Hence, in the worst case (i.e., with exhaustive search), the
computational complexity is given by O(2|D|

2|U|2). In the
following subsections, we decompose the problem into two
subproblems (one subproblem for each communication mode)
and then solve each subproblem using a suboptimal algorithm
with low computational complexity.

B. Active Transmission Subproblem

In the first subproblem, we consider a set of IoT devices
D(tr) = D for active transmission mode. Given a set of
subcarriers, the objective is to form as many NOMA pairs as
possible in order to maximize the overall connection density.
First, after sorting the elements from the set of IoT devices
D(tr) based on the channel gain from the BS, the set is further
divided into two subsets D(tr-n) and D(tr-f) for near and far IoT
devices, respectively. Then, we form NOMA pairs by pairing
IoT devices from both subsets in order to solve the following
active transmission subproblem:

maximize
X

∑
d∈D(tr-n)

∑
d′∈D(tr-f)

2xd,d′ +
∑
d∈D(tr)

xd,do (28)

subject to xd,d′ ∈ {0, 1}, d ∈ D(tr-n), d′ ∈ D(tr-f) ∪ {do}∑
d′∈D(tr-f)∪{do}

xd,d′ ≤ 1, d ∈ D(tr-n)

Algorithm 1: NOMA Pairing of IoT Devices Algo-
rithm

1 Input: γ(th)
BS , D, |S|

2 D(tr) ←− ∅
3 xd,d′ := 0 for all d ∈ D, d′ ∈ D ∪ {do} \ {d}
4 Sort the IoT devices of D in descending order according to

the magnitude of the channel gain |h(tr)
BS,d|

5 D(tr-n) ←− The nearest 50% of the IoT devices of D
6 D(tr-f) ←− The farthest 50% of the IoT devices of D
7 wdn,df := 0 for all dn ∈ D(tr-n), df ∈ D(tr-f)

8 for dn ∈ D(tr-n) do
9 for df ∈ D(tr-f) do

10 Evaluate bdn,df from (8) after solving the power
allocation problem using Table I

11 wdn,df := bdn,df
12 end
13 end
14 Solve problem (28) as a maximum cardinality bipartite

one-to-one matching problem to obtain xdn,df for all
dn ∈ D(tr-n), df ∈ D(tr-f) (the maximum number of pairs is
|S|). Allocate a unique subcarrier for each matched pair of
IoT devices.

15 // Allocating the remaining subcarriers
for IoT devices with OMA

16 if Number of NOMA pairs < |S| then
17 Allocate each remaining subcarrier to a non-paired IoT

device d(OMA) from D that satisfies the condition(
γ
(th)
BS σ2

BS
|h

BS,d(OMA) |2
≤ Pmax

d(OMA)

)
until all subcarriers are

allocated and set xd(OMA),do
:= 1

18 end
19 D(tr) ←− {d | xd,d′ = 1 OR xd′′,d = 1, d′ ∈
D ∪ {do}\{d}, d′′ ∈ D\{d}}

20 Output: matrix X and set D(tr)∑
d′′∈D(tr-n)

xd′′,d ≤ 1, d ∈ D(tr-f)

xd,d′ ≤ bd,d′ , d ∈ D(tr-n), d′ ∈ D(tr-f) ∪ {do}∑
d∈D(tr-n)

∑
d′∈D(tr-f)∪{do}

xd,d′ ≤ |S|,

where the term
∑
d∈D(tr-n)

∑
d′∈D(tr-f) 2xd,d′ represents the

number of IoT devices that share subcarriers using NOMA,
and the term

∑
d∈D(tr) xd,do represents the number of IoT

devices that access subcarriers with OMA. Note that when
xd,d′ is equal to 1, the IoT device NOMA pair (or OMA IoT
device) can be allocated any of the available |S| subcarriers. To
solve this problem, we propose Algorithm 1. The IoT devices
are divided into two subsets for near and far IoT devices as
shown in Steps 4 – 6. Bipartite matching [32] is used for
pairing IoT devices from both sets to share subcarriers with
NOMA as shown in Steps 7 – 14. In particular, the steps for
constructing the matching graph are shown in Steps 8 – 13,
where there are two disjoint sets of vertices representing the
two sets of IoT devices. Edges are constructed between a pair
of vertices consisting a near and a far IoT device based on the
outcome of solving the NOMA power control problem (i.e.,
when the near and far IoT devices form an eligible NOMA pair
if bdn,df is evaluated according to (8) to be equal to 1). If there
are any remaining subcarriers that have not been allocated,
they can be assigned to IoT devices for access using OMA as
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shown in Steps 15 – 18. We obtain the NOMA pairing matrix
X and the set of IoT devices that are selected to use active
transmission mode D(tr). Hence, this set of devices will not
be considered when solving the backscattering subproblem.

To determine the computational complexity of Algorithm 1
that is used to solve the active transmission subproblem, let
the cardinality of those two sets be equal to D (i.e., |D(tr-f)| =
|D(tr-n)| = D). The computational complexity for sorting the
IoT devices according to the channel gain is O(D log(D)). In
addition, the computational complexity for solving the power
allocation problem for each pair of IoT devices is O(D2).
Furthermore, the computational complexity for solving the
bipartite matching problem with sets of size D and up to
D2 edges is O(D3). Finally, the computational complexity
of allocating the remaining subcarriers using OMA is O(|S|)
in the worst case. The overall computational complexity of
Algorithm 1 is O(D2 + D3 + |S|) = O(D3), assuming
|S| < D.

C. Backscattering Subproblem

In the second subproblem, we focus on the UE-IoT device
pairing and scheduling in the backscattering mode. Hence, our
objective is to have the maximum number of UE-IoT device
pairs that can communicate concurrently in the same time slot
while each pair meets the minimum SNR threshold expressed
in (21). In this subproblem, we consider associating UE relays
only with IoT devices that have not been assigned to use active
transmission after solving the active transmission subproblem.
We denote this set of IoT devices as D(bcs) = D\D(tr).

First, we associate each UE u (one by one) with an IoT
device du having the maximum channel gain (i.e., the nearest
IoT device in most cases). Let q denote a UE-IoT device pair.
Then, we form the set of UE-IoT device pairs Q by including
all UE-IoT device pair elements q = (du, u) for all u ∈ U .
The IoT device du associated with UE relay u is given by:

du = argmax
d∈Du

Gd,u, u ∈ U ,Du 6= ∅, (29)

Algorithm 2: UE-IoT Device Pairing and Scheduling
Algorithm

1 Input: γ(th)
u , D(bcs) ←− D \ D(tr), Gd,u for all

d ∈ D(bcs), u ∈ U
2 Q ←− ∅, U (bcs) ←− ∅, zd,u := 0 for all d ∈ D, u ∈ U ,
Du ←− D(bcs) for all u ∈ U

3 for u ∈ U do
4 if Du ! = ∅ then
5 Determine the IoT device du associated with UE u

according to (29) and the UE-IoT device pair
element q := (du, u).

6 Q ←− Q∪ {q}, U (bcs) ←− U (bcs) ∪ {u}
7 if u+ 1 ≤ |U| then
8 Du+1 ←− Du \ {d}
9 end

10 else
11 break
12 end
13 end
14 q := (du, u), where (du, u) := argmax

u
Gdu,u

15 if Gdu,u/σ
2
u ≥ γ

(th)
u then

16 // Qa (Ua) is the set of scheduled
UE-IoT pairs (UEs). Qb (Ub) is the
set of non-scheduled UE-IoT pairs
(UEs)

17 zdu,u := 1, Qa ←− {q}, Qb ←− Q \ {q}, Ua ←− {u},
Ub ←− U (bcs) \ {u}

18 while Qa! = Q do
19 γ(temp) := −1, q(temp) := NULL
20 for qb ∈ Qb do
21 // Evaluating SINR for the

non-scheduled UE-IoT pair
qb := (du′′ , u′′) given the set of
scheduled pairs Qa (denoted as
γqb|Qa)

22 γqb|Qa :=
Gd

u′′ ,u′′∑
u∈Ua

Gdu,u′′+σ2
u′′

23 // Gdu,u′′ is the interference
caused by scheduled IoT device
du on non-scheduled UE relay
u′′

24 if γqb|Qa ≥ γ
(th)
u then

25 for qa ∈ Qa do
26 // Evaluating SINR for

scheduled UE-IoT pair
qa := (du, u) assuming that
non-scheduled pair
qb : (du′′ , u′′) will be
scheduled (denoted as
γqa|qb)

27 γqa|qb :=
Gdu,u∑

u′∈Ua\{u} Gd
u′ ,u+Gd

u′′ ,u+σ2
u

28 // Gdu′ ,u (Gdu′′ ,u) is the
interference caused by
scheduled
(non-scheduled) IoT
device du′ (du′′) on UE
relay u

29 end
30 if γqa|qb ≥ γ

(th)
u for all qa ∈ Qa &&

1
|Qa|

∑
qa∈Qa

γqa|qb > γ(temp) then
31 γ(temp) := 1

|Qa|
∑
qa∈Qa

γqa|qb
32 q(temp) := qb, where qb := (du′′ , u′′)
33 end
34 end
35 end
36 if q(temp) ! = NULL then
37 zdu′′ ,u′′ := 1, Qa ←− Qa ∪ {q(temp)},

Qb ←− Qb \ {q(temp)}, Ua ←− Ua ∪ {u′′},
Ub ←− Ub \ {u′′}

38 else
39 break
40 end
41 end
42 end
43 Output: matrix Z

where Du is the set of IoT devices that can be paired with UE
u. Du includes all the IoT devices in D(bcs) except those that
have been paired with other UE relays. Then, we have the set
of UE-IoT device pairs Q = {q = (du, u) | u ∈ U ,Du 6= ∅}.
Note that each element q of the set Q is a pair of a UE relay
u and its associated IoT device du, i.e., q = (du, u). The
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backscattering subproblem can be formulated as follows:

maximize
Z, Y

∑
u∈U,Du 6=∅

zdu,u (30)

subject to constraints (16)−(18), (21)−(25).

Although the aforementioned problem is a BIP problem, it has
a lower number of binary variables to evaluate than problem
(27). The reason is that the maximum number of UE-IoT
device pairs |Q| is equal to min{|D||U|}. Hence, we only need
to solve for |Q|2+ |Q| binary variables. Assuming exhaustive
search, the computational complexity is given by O(2|Q|

2

).
To further reduce the computational complexity, we propose
a heuristic algorithm with polynomial complexity to schedule
the UE-IoT device pairs that can communicate concurrently
in a single time slot. The proposed UE-IoT device pairing and
scheduling algorithm to solve the backscattering subproblem
is shown in Algorithm 2. In Steps 3 – 13, we describe
the UE-IoT device pairing, which is based on associating
each UE u to an IoT device with the maximum value of
Gd,u. Steps 14 – 42 describe the heuristic algorithm for
determining the UE-IoT device pairs that are scheduled in
the current time slot. In particular, in Steps 14 – 17, the
UE-IoT device pair q = (du, u) with the maximum channel
gain Gdu,u is chosen as the first scheduled pair if and only
if the SNR is greater than the minimum threshold γ

(th)
u . We

introduce two intermediary sets Qa and Qb (Ua and Ub) to
represent the sets of scheduled and non-scheduled UE-IoT
device pairs (UE relays), respectively. In Steps 21 – 23, we
evaluate the SINR for one non-scheduled UE-IoT device pair
qb ∈ Qb given the set of scheduled UE-IoT device pairs
Qa. If the SINR is greater than the minimum threshold, then
we evaluate the SINR for all the scheduled UE-IoT device
pairs in set Qa assuming that the pair qb is scheduled as
shown in Steps 24 – 29. We choose a non-scheduled UE-IoT
device pair q(temp) that satisfies the following conditions: (a)
it meets the minimum SNR requirement given the previously
scheduled UE-IoT device pairs, (b) the previously scheduled
pairs can still meet the minimum SNR requirement if q(temp) is
scheduled, and (c) among all the non-scheduled UE-IoT device
pairs satisfying the previous two conditions, the average SINR
for all scheduled UE-IoT device pairs is maximum when the
UE-IoT device pair q(temp) is added to the scheduled UE-IoT
device pairs as shown in Steps 30 – 33. The steps described
in the while loop from Step 18 to Step 41 are repeated for
multiple iterations until either all the UE-IoT device pairs are
scheduled or none of the non-scheduled pairs can be scheduled
without causing the scheduled pairs not to meet the minimum
SNR requirement. After running this algorithm, we obtain the
UE-IoT pairing matrix Z. In summary, Algorithm 2 keeps
adding UE-IoT device pairs one-by-one until no more pairs
can be added without causing those already added pairs to
fail to meet the minimum SNR requirements.

To evaluate the computational complexity of Algorithm 2
that is used to solve the backscattering subproblem, we notice
that the maximum number of UE-IoT device pairs is bound
by the number of available UE relays., i.e., |U|. Hence, the
computational complexity of UE-IoT device pairing is O(|U|).

Algorithm 3: Communication Mode Selection Algo-
rithm

1 for t > 0 do
2 // Updating/Obtaining Information about

IoT Devices:
3 Update the set of IoT devices D: Add the newly arriving

IoT devices and remove the successfully served IoT
devices in time slot t− 1.

4 Obtain channel information hBS,d of the newly arriving
IoT devices.

5 if t mod T update
D == 0 then

6 Update channel information hBS,d of the IoT devices
which have not been served during previous time
slot t− 1.

7 end
8 // Updating/Obtaining Information about

UE Relays:
9 Obtain channel information hBS,u of the newly arriving

UEs to determine their eligibility for relaying IoT data
by checking whether Pu|hBS,u|2

σ2
BS

is greater than
decoding threshold γu,BS.

10 Update the set of UE relays U : Add the newly arriving
UEs that are ready (and eligible) to act as relays and
remove the UEs leaving the coverage area or
unavailable for relaying IoT data.

11 if t mod T update
U == 0 then

12 Update channel information hBS,u of the existing
active UE relays from previous time slot t− 1.

13 end
14 // Updating/Obtaining Information about

UE-IoT Device Links:
15 Obtain channel information hd,u of the new UE-IoT

device pairs.
16 if t mod T update

D,U == 0 then
17 Update channel information hd,u of the existing

UE-IoT device pairs from previous time slot t− 1.
18 end
19 // Communication Mode Selection:
20 Run Algorithm 1 to determine the IoT devices

communicating using NOMA active transmission.
21 Run Algorithm 2 to determine the IoT devices

communicating using backscattering and their
associated UE relays.

22 end

On the other hand, the UE-IoT device scheduling requires
(in the worst case) evaluating

∑|U|
j=1 j(|U| − j) SINR values

over the iterations in the while loop starting in Step 18. By
evaluating the aforementioned series summation, we obtain
the computational complexity of UE-IoT device scheduling
as O(|U|3). Hence, the overall computational complexity
of Algorithm 2 is given by O(|U|3 + |U|) = O(|U|3).
Consequently, our proposed suboptimal algorithm for solving
the communication mode selection problem has an overall
computational complexity of O(|D|3 + |U|3), compared to
O(2|D|

2|U|2) for obtaining the optimal solution.

D. Communication Mode Selection Algorithm

In this subsection, we present the overall communication
mode selection algorithm. Algorithm 3 shows the steps of the
communication mode selection for each time slot t. In Steps
2 − 7, the BS updates the set of IoT devices by including
the newly arriving IoT devices that have data to transmit and



11

estimates their channel gain hBS,d. The BS also removes those
IoT devices that were successfully served in the previous time
slot via either active transmission or backscattering. Since
most of the IoT devices are stationary, updating the channel
gain for those IoT devices which have not been served in
the previous time slots can be performed every T update

D slots
to reduce the channel estimation overhead. In Steps 8 − 13,
the BS updates the set of UE relays for the backscattering
communication mode by including (or removing) the UE
relays arriving (or leaving) the coverage area. Similarly, the
channel gains of the existing active UE relays hBS,u are
updated every T update

U slots. With new elements in the sets of
IoT devices and UE relays, new potential UE-IoT device pairs
are available for the backscattering mode as shown in Steps
14 − 18. For these new pairs, the BS estimates the channel
gain hd,u. For the existing pairs, the BS updates the channel
gain estimates every T update

D,U slots. Subsequently, the BS has
the necessary information to run Algorithm 1 for allocating
subcarrier of active transmission for some IoT devices and
considering the remaining IoT devices to use backscattering
mode by running Algorithm 2 as shown in Steps 19 − 21.
Note that the IoT devices that are not served in time slot t
are to be considered for communication mode selection in the
following time slot t+ 1.

IV. PERFORMANCE EVALUATION

For performance evaluation, we consider a 100 m × 100
m coverage area that is served by a single BS, where 50 IoT
devices and 25 UEs are placed uniformly (and the locations are
varied in each simulation run). We assume flat Rayleigh fading
channels. The total system bandwidth is divided into equal
bandwidth subcarriers. The number of subcarriers considered
for active transmission is set to 12, where each subcarrier has
a bandwidth of 3.75 kHz, following the bandwidth of narrow-
band subcarriers in narrowband IoT systems [33]. In addition,
one separate subcarrier of the same bandwidth is used for the
backscattering communication mode. The distance-dependent
path loss PL(distance) at carrier frequency fc = 900 MHz is
calculated by PL(distance) =

4πdreff
2
c

(3×108)2 (
distance
dref

)ψ , where dref

is the reference distance of 1 m and ψ is the path loss exponent
that is set to 3.5. The distance takes into account the heights
of BS, UEs, and IoT devices, which are 25 m, 1.5 m and
1.5 m, respectively [34]. We consider additive white Gaussian
noise with power spectral density −174 dBm/Hz and a receiver
noise figure of 5 dB and 7 dB at BS and UEs, respectively
[34]. We set the transmit power of the BS PBS to be 30 dBm.
The transmit power of UEs Pu is equal to 23 dBm [35, p.
481]. The maximum transmit power for the IoT devices is 14
dBm. Similar to [36], [37], the SNR threshold for successful
decoding at the BS and the UEs are set as γ(th)

BS = γ
(th)
UE = 2.

We also set |ζd| = 0.7 [38].
We compare the connection density supported by the pro-

posed communication mode selection scheme with schemes
where only one communication technology is available for
the IoT devices (either backscattering or active transmission).
We also consider two variants of the suboptimal algorithm.
The first variant of the suboptimal algorithm is to first solve
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Fig. 2. Connection density versus the number of UE relays |U| with complete
CSI (PBS = 30 dBm, |S| = 12 subcarriers, γ(th)

BS = γ
(th)
UE = 2).

the active transmission subproblem and then consider the non-
scheduled devices for UE-IoT device pairing in the backscat-
tering subproblem (as described in Section III). We denote
this variant as suboptimal-TB. The second variant is to first
solve the backscattering subproblem and then consider the
non-scheduled devices for NOMA pairing in the active trans-
mission subproblem. We denote this variant as suboptimal-BT.

A. Connection Density with Complete CSI

In this subsection, we evaluate the connection density of
our narrowband IoT system. The BS can obtain the CSI of all
links in the network (the BS-UE links, BS-IoT device links,
and UE-IoT device links), i.e., |hm,n| is known at the BS for
all m, n ∈ {BS} ∪ U ∪ D.

Fig. 2 shows the impact of the number of UE relays on
the connection density. With more UE relays available, more
IoT devices can be associated with nearby UE relays and
use backscattering for data transmission while satisfying the
minimum SNR requirement. Thus, the connection density can
be increased. We also note that the suboptimal algorithm
described in Section III (i.e., suboptimal-TB) outperforms the
other suboptimal variant suboptimal-BT. This indicates that
forming NOMA pairs requires having as many potential IoT
devices as possible that can use active transmission mode in
order to find more pairs of IoT devices with sufficient differ-
ence in channel quality. Hence, solving the active transmission
problem first in the suboptimal-TB algorithm provides more
NOMA pairing options than the suboptimal-BT algorithm.

In Fig. 3, we show the impact of varying the number
of active transmission subcarriers |S|. As the number of
subcarriers increases, more IoT devices can use active trans-
mission with either OMA or NOMA. Consequently, a higher
connection density can be achieved by both the optimal and
suboptimal algorithms. The proposed communication mode
selection scheme can increase the connection density by up
to 65% compared to using active transmission only. On the
other hand, Fig. 4 shows that increasing the minimum SNR
threshold for successful data decoding at the BS or UE relays
results in supporting a lower number of IoT devices.
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Fig. 3. Connection density versus the number of subcarriers |S| with complete
CSI (PBS = 30 dBm, |U| = 25 UEs, γ(th)

BS = γ
(th)
UE = 2).
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Fig. 4. Connection density versus the SNR decoding threshold γ
(th)
BS with

complete CSI (γ(th)
UE = γ

(th)
BS , PBS = 30 dBm, |S| = 12 subcarriers).

We also note that the proposed suboptimal-TB scheme
achieves a close performance to the optimal solution, espe-
cially when the communication resources are limited (e.g.,
|U| ≤ 30). In particular, the difference in supported connection
density by the optimal and suboptimal algorithms does not
exceed 2 devices per coverage area per time slot for most of
the simulation scenarios. However, the suboptimal algorithm
always has the advantage of its lower computational complex-
ity.

B. Connection Density with Partial CSI

In this subsection, we evaluate the connection density of a
narrowband IoT system with partial knowledge of the CSI. In
particular, we assume that the CSI of the BS-UE links and BS-
IoT device links is known. However, the CSI of the UE-IoT
device links is unknown due to the difficulty of estimating
h̃d,u. Given that the BS only obtains information about UE
and IoT devices locations, we assume that |hd,u| =

√
`d,u

(i.e., |h̃d,u|2 = 1).
In Figs. 5, 6, and 7, we compare the performance of the

proposed optimal and suboptimal algorithms with complete
and partial CSI by varying the number of UE relays, number
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Fig. 5. Connection density versus the number of UE relays |U| with complete
and partial CSI (PBS = 30 dBm, |S| = 12 subcarriers, γ(th)

BS = γ
(th)
UE = 2).
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Fig. 6. Connection density versus the number of subcarriers |S| with complete
and partial CSI (PBS = 30 dBm, |U| = 25 UEs, γ(th)

BS = γ
(th)
UE = 2).

of subcarriers, and SNR decoding threshold, respectively. The
unavailability of the CSI of UE-IoT device links causes both
algorithms to make incorrect UE-IoT pairing decisions for the
backscattering mode. Hence, some UE-IoT device pairs fail to
meet the minimum SNR requirements and the supported con-
nection density is reduced. However, the performance of both
algorithms is not significantly degraded due to the availability
of partial CSI. The difference in supported connection density
between the complete CSI and partial CSI cases with the
optimal algorithm does not exceed 4 devices per coverage area
per time slot. Moreover, the difference in supported connection
density between the complete CSI and partial CSI cases with
the suboptimal algorithm (suboptimal-TB) does not exceed 3
devices per coverage area per time slot.

C. Impact of Coverage Area

In this subsection, we study the impact of the BS transmit
power and coverage area on the number of scheduled UE-
IoT device pairs in the backscattering mode. We consider a
network with 30 IoT devices and 30 UE relays. We deploy
these IoT devices and UEs in three coverage areas of size 50
m × 50 m (high density), 100 m × 100 m (medium density),
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200 m × 200 m (low density). The supported number of IoT
devices via backscattering is depicted in Fig. 8. In the low
density scenario (200 m × 200 m coverage area), increasing
the BS transmit power enables associating more IoT devices to
potential UE relays. This is due to using a higher power beacon
signal which helps meeting the minimum SNR threshold for
the backscattered signal at the UE. By increasing the density of
the network (e.g., in 100 m × 100 m coverage area), increasing
the BS transmit power beyond some limit (i.e., PBS > 38
dBm) causes more interference among UE-IoT device pairs.
Consequently, fewer UE-IoT device pairs can be scheduled
for data transmission during the same time slot. In the high
density scenario (50 m × 50 m coverage area), increasing
the BS transmit power results in a consistent decrease in the
supported connection density. Lower BS transmit power (i.e.,
PBS ≤ 30 dBm) should be used to increase the number of
simultaneously scheduled UE-IoT device pairs.

D. Energy Efficiency Evaluation

In this subsection, we investigate the impact of the proposed
communication mode selection scheme on the system energy
efficiency. We consider a network consisting of |D| = 50
IoT devices, |U| = 20 UE relays, and |S| = 12 subcarriers.
We evaluate the energy efficiency for varying values of SNR
decoding thresholds γ(th)

BS and γ(th)
UE .

For active transmission mode, the consumed power of the
IoT device is equal to the sum of circuitry power (which is set
to be equal to 90 mW) and the transmit power [39]. We con-
sider that each IoT device is equipped with a power amplifier
that has an efficiency of 44%, i.e., the IoT device consumes
(1/0.44)Pd in order to transmit a signal with transmit power
Pd [39]. To calculate the data rate in bps/Hz of each IoT
device served using active transmission, we evaluate Rd =
log2(1+γd), where γd is the actual SNR based on the transmit
power of the IoT device (evaluated by solving problem (7)), its
assigned NOMA pair, and its decoding order. For IoT devices

that are decoded first, Rd1 = log2(1 +
Pd1
|h(tr)

BS,d1
|2

Pd2
|h(tr)

BS,d2
|2+σ2

BS

). For
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Fig. 8. Connection density versus the BS transmit power PBS with complete
CSI for different coverage areas (|D| = 30 IoT devices, |U| = 30 UEs,
γ
(th)
UE = 2).
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Fig. 9. Energy efficiency versus the SNR decoding threshold γ
(th)
BS with

complete CSI (γ(th)
UE = γ

(th)
BS , PBS = 30 dBm).

IoT devices that are decoded second, the data rate Rd2 is given

by log2(1 +
Pd2
|h(tr)

BS,d2
|2

σ2
BS

).
On the other hand, backscattering IoT devices act as

backscatter transmitters during communication with a power
consumption of 7.2003 mW [6]. For an IoT device d associated
with UE u, the achievable data rate Rd is evaluated by
log2(1 +

zd,uGd,u∑
k∈D\{d}

∑
v∈U\{u} zk,vGk,u+σ2

u
) which takes into

account the interference caused by other scheduled UE-IoT
device pairs.

We evaluate the energy efficiency of the system (in
bits/Hz/J) as the ratio of the aggregate data rate of the served
IoT devices to the aggregate power consumption of served IoT
devices. The proposed communication mode selection scheme
is compared with active transmission mode. Results in Fig.
9 show that our proposed scheme provides a higher energy
efficiency than the active transmission mode.

V. CONCLUSION

In this paper, we proposed a communication mode selec-
tion scheme. In this scheme, each IoT can either use active
transmission or backscattering for data transmission. UEs are
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utilized as relays to support the backscattering communication
mode by receiving the backscattered signals from nearby
IoT devices before forwarding the signals to the BS. This
enables more IoT devices to use this energy-efficient commu-
nication technology. We formulated the communication mode
selection as a connection density maximization problem. For
the IoT devices using active transmission, two devices can
share each subcarrier with power-domain NOMA. Meeting
minimum SNR requirements is insured while consuming the
minimum transmit power. On the other hand, for the IoT
devices using backscattering, they are associated with UE
relays. The maximum number of UE-IoT device pairs are
scheduled to communicate in the same time slot while meeting
the minimum SNR requirement for all the scheduled pairs. The
formulated problem is a BIP problem. An algorithm with high
computational complexity (O(2|D|

2|U|2)) is required in order
to solve this problem. Hence, we proposed a suboptimal algo-
rithm by decomposing the problem into two subproblems that
can be solved by bipartite matching and heuristic algorithms.
The suboptimal algorithm achieved close performance to the
optimal solution in the majority of simulation cases. In addi-
tion, the suboptimal algorithm has a polynomial computational
complexity of O(|D|3+ |U|3). Simulation results showed that
the proposed communication mode selection scheme enhanced
the connection density of narrowband IoT systems by up to
64% when compared with using a single communication mode
in a 100 m2 coverage area when assuming the availability of
complete CSI. To extend this work, we can consider enhancing
the suboptimal algorithm to reduce the optimality gap when
more UE relays are available in the system. We can also
consider dynamic subcarrier allocation so that the IoT devices
using different communication modes can share the same set
of subcarriers in a flexible manner. In addition, we can develop
incentive mechanisms for the UE relays using game-theoretic
approaches. Furthermore, we can consider developing dis-
tributed algorithms for establishing ad hoc networks among
the backscattering IoT devices and nearby UE relays, which
can receive the backscattered data signals and forward them
to the BS.
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