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Abstract—Terahertz (THz) wireless systems aim to support
content-rich applications with ultra-high data rate. Due to
high molecular absorption, THz signals experience severe path
loss over long distance. To alleviate distance limitation, re-
configurable intelligent surface (RIS) can improve the cov-
erage range. Adaptive sub-band bandwidth (ASB) allocation
can mitigate absorption attenuation by allocating THz sub-
bands with variable bandwidth to the users. However, in ASB
allocation, since the bandwidth of sub-bands may not be known
a priori, accurate channel estimation is challenging. To over-
come this issue, in this paper, we propose a metapath-based
heterogeneous graph-transformer network (MHGphormer) to
bypass the channel estimation phase. We formulate a sum-rate
maximization problem with quality-of-service (QoS) constraints
in a RIS-aided multiuser multiple-input multiple-output (MU-
MIMO) THz system to optimize the precoding, phase shifts, and
ASB allocation. The proposed MHGphormer parameterizes the
mapping from input (e.g., location information, users’ minimum
data rate) to the optimized system parameters via unsupervised
learning. The proposed MHGphormer has the permutation
invariance/equivariance property. It can be applied to systems
with different number of users. Simulation results show that
our proposed MHGphormer achieves a higher system sum-rate
when compared with the homogeneous graph neural network,
unsupervised deep neural network, and alternating optimization
baseline algorithms.

Index Terms—Heterogeneous graph neural networks, mul-
tiuser multiple-input multiple-output, reconfigurable intelligent
surface, spectrum allocation, terahertz communication.

I. INTRODUCTION

With the advancement of the sixth-generation (6G) systems,
terahertz (THz) communication is envisioned as a promising
solution to provide users with ultra-high throughput [2]. While
the current fifth-generation (5G) systems can use millimeter-
wave technology in the 30 − 300 gigahertz (GHz) frequency
range, the THz band spectrum range (0.1 − 10 THz) enables
much higher data rate ranging from tens of gigabits to terabits
per second and lower latency of the order of microseconds [3].
These advantages create a unique opportunity to advance the
progress of many emerging applications, such as autonomous
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driving and extended reality. However, THz technology intro-
duces previously unexplored challenges, which require novel
approaches to address them.

Since the energy of higher frequency signals is more easily
absorbed by the atmospheric environment, they experience
more severe path loss [4]. For THz signals, in addition to the
spreading loss and the higher channel sparsity, atmospheric
absorption can significantly affect the propagation channel for
users, which can lead to performance degradation. Specific
frequencies in the THz band with the highest absorption
of electromagnetic radiation are called molecular absorption
coefficient peaks. They divide the THz spectrum into mul-
tiple ultra-wide THz transmission windows (TWs) [5]. The
spectrum range of each TW is further divided into a set of
sub-bands for allocation to the users [6]. For THz spectrum al-
location with multiple sub-bands, some works proposed equal
sub-band bandwidth (ESB) allocation. The authors in [5] in-
vestigated distance-dependent sub-band bandwidth allocation
by considering the inter-symbol and inter-band interferences in
multiple TWs. In [6], transmit power allocation and sub-band
assignment for a non-orthogonal multiple access-aided THz
system is studied. However, due to the frequency-selective
nature of THz signals, absorption loss variations within the
sub-bands are high in ESB allocation. As a result, new
techniques need to be explored for THz spectrum management.

Recently, adaptive sub-band bandwidth (ASB) allocation
has been proposed, in which the bandwidth allocated to each
sub-band can be different. This approach can further improve
the spectral efficiency and mitigate the absorption loss. In [7],
[8], joint sub-band assignment, ASB allocation, and power
control is investigated in multi-connectivity THz systems. The
authors considered single TW in [7] and multiple TWs in [8]
to solve a sum-rate maximization problem iteratively using
successive convex approximation. However, the joint use of
multiple-input multiple-output (MIMO) technique and ASB
allocation has not been investigated in [7], [8]. MIMO enables
a large number of antenna arrays to obtain a high directional
gain and form narrow beams to separate different users in the
spatial domain [9]. As a result, precoding design in MIMO
systems would be beneficial to alleviate the high absorption
attenuation over long distance in multiuser THz systems.

Another technology which has the potential to mitigate the
propagation distance limitation in THz systems is the recon-
figurable intelligent surface (RIS) [10]. RIS consists of passive
elements with adjustable phase shifts, which reflect the signals
in the desired direction and create an additional link between
the base station (BS) and users. Deploying a RIS can im-
prove the coverage of BS and mitigate the distance-dependent
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absorption loss in THz band. Most of the existing works
on RIS-aided multiuser MIMO (MU-MIMO) systems assume
perfect knowledge of channel estimation at the BS. In [11],
an alternating optimization (AO) technique and a majorization-
minimization-based algorithm are proposed for single-user and
multiuser RIS-aided MIMO systems, respectively, to optimize
the precoding and phase shifts. The authors in [12] proposed
a double-RIS-aided MIMO system for maximization of the
minimum signal-to-interference-plus-noise ratio (SINR) of all
users. In [13], imperfect knowledge of channel estimation is
considered, where a two time-scale transmission scheme is
proposed for RIS-aided massive MIMO systems. However,
since a passive RIS has no signal processing unit for channel
estimation, channel parameters need to be estimated indirectly
[14]. Moreover, ASB allocation in the THz band poses a new
challenge. In ASB allocation, the bandwidth within each THz
sub-band is unknown in advance. This makes it challenging to
determine the optimal duration and number of the pilot signals
in the training sequence to capture the high variations of THz
channel response for accurate channel estimation. In this paper,
we aim to address the following question: How should the
BS optimize the adaptive bandwidth allocation jointly with
precoding and RIS phase shifts in order to achieve a high
system sum-rate without channel estimation?

Recent works considered data-driven approaches to tackle
the challenges of channel estimation. The first line of work
focused on using deep learning techniques without explicit
channel estimation. In [14], the authors developed a homoge-
neous graph neural network (GNN) with one node type, which
maps the pilot signals received at the BS as input features
to the optimized precoding and phase shifts in a RIS-aided
multiuser multiple-input single-output (MU-MISO) system. In
[15], a two-tier homogeneous GNN with uplink pilot signals
as input is proposed for joint user scheduling, RIS phase
shifts, and precoding design. Further to the aforementioned
challenges of designing the pilots, pilot signal transmission in
the THz band incurs a significant amount of system overhead
due to a long training sequence transmission [16]. Since the
channels in many wireless systems are largely functions of
distance-dependent path loss [17], the second line of research
considered using other available system information to bypass
the channel estimation phase. In particular, location informa-
tion is utilized as input of deep neural networks (DNNs) for
wireless link scheduling [17], RIS phase shifts design [18],
and user association [19]. To determine the transmit power
and ASB allocation in regions where the molecular absorption
coefficient is nonlinear with respect to the frequency, the
authors in [20] applied an unsupervised DNN using the dis-
tances between users and BS to bypass the channel estimation.
However, DNNs do not comprehensively model the interaction
between network entities (e.g., BS, RIS, users) and require re-
training for networks with different number of users.

Recently, heterogeneous graphs have been utilized to model
complex systems in which different types of entities can in-
teract with each other [21]. Heterogenous GNNs can improve
the scalability of learning algorithms with high training perfor-
mance for resource allocation problems. In [22], an MU-MISO
system is modeled as a bipartite heterogeneous graph, and a

GNN is proposed to solve the precoding problem with different
network sizes. The authors in [23] proposed a heterogeneous
GNN for power allocation, which can be applied in multi-cell
multiuser networks with different number of users. However,
the aforementioned works (i.e., homogeneous GNNs [14],
[15] and heterogeneous GNNs [22], [23]) do not consider
spectrum management. Although they showed the benefits of
using GNNs, several issues have yet to be addressed. First,
channel gains are used as features of graph nodes and edges in
[22], [23], while THz channel estimation in ASB allocation is
challenging. Second, the homogeneous GNNs in [14], [15] do
not consider graph edges for modeling the network topology
and feature aggregation. Moreover, simple mean and max
operations are used for feature aggregation, which may not
be feasible in heterogeneous networks since different types of
nodes can have feature vectors with different dimensions and
contents [24]. Third, the proposed GNNs in [14], [15], [22],
[23] are based on the message passing framework, which is
prone to the over-smoothing problem [25]. This means that
increasing the number of layers can cause all node embeddings
to converge to a uniform embedding and limit the model
to capture deep structural information, which can lead to
performance degradation.

To address the aforementioned issues, in this paper, we
extend our previous work in [1] to study ASB allocation
with sub-band frequency reuse in a RIS-aided MU-MIMO
THz system. We formulate a joint optimization problem for
sum-rate maximization subject to the quality-of-service (QoS)
constraints of the users by optimizing the precoding, phase
shifts, and ASB allocation. Obtaining the optimal solution of
the formulated nonconvex problem with coupled optimization
variables is challenging. Moreover, due to the unique features
of THz channel, such as high molecular absorption and
spreading loss, as well as the unknown bandwidth of THz
sub-bands for ASB allocation, accurate channel estimation
within each sub-band is challenging. To this end, we propose
a metapath-based heterogeneous graph-transformer network
(MHGphormer) learning algorithm to solve the problem by
bypassing the channel estimation phase. The main contribu-
tions of this paper are as follows:

• Heterogeneous Graph Representation: We model the
RIS-aided MU-MIMO THz system as a heterogeneous
graph by defining the BS, RIS, and users as three types of
nodes. The input features of different node types include
the location information and users’ minimum data rate.
We also model the transmission links between nodes as
graph edges. The graph structure is determined based on
the distance information between the nodes.

• MHGphormer Key Advantages: Our proposed MHG-
phormer has several distinct advantages. First, it can learn
a mapping function between the input and system param-
eters in a heterogeneous network. It considers the hetero-
geneous information of all entities as different types of
graph nodes and models the transmission links between
them as graph edges. Combining and aggregating the
heterogeneous information of different node types based
on the structural information can improve the learning



performance. Second, our end-to-end learning algorithm
can bypass the channel estimation phase. It directly maps
the input features to the optimized system parameters via
unsupervised training. Third, our proposed MHGphormer
satisfies the permutation invariance/equivariance property.
That is, if the ordering of the users is permuted, the
same set of sub-band bandwidth and RIS phase shifts can
be used (i.e., permutation invariance), while the precod-
ing matrices are permuted accordingly (i.e., permutation
equivariance). Moreover, the parameter dimension of our
learning algorithm is scalable. Once the network has been
trained, it can be applied in systems with different number
of users.

• Performance Evaluation: For a RIS-aided MU-MIMO
THz system with six users, simulation results show that
our proposed MHGphormer can achieve a system sum-
rate that is 5.15%, 8.33%, and 8.82% higher than that
of homogeneous GNN learning algorithm [14], unsuper-
vised DNN learning algorithm [20], and AO algorithm
[26], respectively. Moreover, our proposed MHGphormer
has faster convergence in the training phase compared to
the learning-based baselines. We also show the perfor-
mance gains obtained from using RIS, MIMO, and ASB
for improving the sum-rate in multiuser THz systems.

The remainder of this paper is organized as follows. The
system model and problem formulation for RIS-aided MU-
MIMO THz systems are described in Section II. In Section
III, we present our proposed MHGphormer learning algorithm.
Simulation results are presented in Section IV. Conclusions are
given in Section V.

Notations: In this paper, we use R and C to denote the set
of real and complex numbers, respectively. We use boldface
upper-case letters (e.g., X) to denote two-dimensional matrices
or multi-dimensional tensors and boldface lower-case letters
(e.g., x) to denote vectors. IN represents an N ×N identity
matrix. x[a : b] denotes the elements ranging from the a-
th element to the b-th element of vector x. (·)T and (·)H
denote the transpose and conjugate transpose of a vector or
matrix, respectively. exp(·) denotes the exponential function.
j represents the imaginary unit satisfying j2 = −1. [·] denotes
the concatenate operation. diag(x) returns a diagonal matrix,
where the diagonal elements are the elements of vector x.
E(·) denotes the expectation. The mod operator returns the
remainder after division, and ⌊x⌋ denotes the floor function.
∥ · ∥ and ∥ · ∥F denote the norm of a vector and the Frobenius
norm of a matrix, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink RIS-aided MU-MIMO THz system
as illustrated in Fig. 1, where the system has one BS and a RIS
to serve U users. Let U = {1, . . . , U} denote the set of users.
The BS is equipped with a uniform planar array (UPA) antenna
which has Nt elements for THz signal transmission [27]. Each
user is equipped with an Nr-element uniform linear array
(ULA) antenna. The RIS has a UPA with L passive elements.
Let L = {1, . . . , L} denote the set of passive elements of the
RIS. A RIS controller is placed at the BS to control the RIS

HBR

HuR

HuB

RIS

BS

RIS 
Controller

U users

User u

Fig. 1: Illustration of a RIS-aided MU-MIMO THz system. In addition to the
direct link between BS and user u ∈ U with channel gain HBu, RIS creates
an additional link from BS-to-RIS and RIS-to-user with channel gains HBR

and HRu, respectively.

by adjusting the phase shifts [14], [15]. For the RIS, we use
Θ = diag (exp (jθ1) , . . . , exp (jθL)) ∈ CL×L to denote the
phase shift matrix, where θl ∈ R denotes the phase shift of
RIS element l ∈ L. We have the following constraint for the
phase shift of each RIS element:

C1 : 0 ≤ θl ≤ 2π, l ∈ L. (1)

We use θ = (θ1, . . . , θL) ∈ RL to denote the phase shifts
vector of the RIS elements.

A. THz Spectrum and Channel Model

The wide range of the THz spectrum band enables wireless
systems to provide ultra-high data rate. However, a major
challenge in the THz spectrum band is the high absorption
attenuation, which leads to severe path loss in signal transmis-
sion [28]. As illustrated in Fig. 2(a), THz signals experience
lower molecular absorption loss in THz TWs. In this paper, we
consider non-overlapping ASB allocation in a TW, as shown
in Fig. 2(b). Let S = {1, 2, . . . , S} denote the set of sub-
bands, where S is the total number of sub-bands. Let vectors
b = (b1, . . . , bS) ∈ RS and f = (f1, f2, . . . , fS) ∈ RS denote
the bandwidth of the sub-bands and their central frequencies,
respectively. Let bmax denote the maximum bandwidth of each
sub-band. We have the following constraint for the bandwidth
of each sub-band:

C2 : 0 ≤ bs ≤ bmax, s ∈ S. (2)

Let fstart and fend denote the start and end points of the
spectrum region for bandwidth allocation, respectively. We
consider bg as the fixed guard band bandwidth that separates
the sub-bands to mitigate the inter-band interference [7]. We
have:

fend = fstart +
∑
s∈S

bs + (S − 1)bg. (3)

Let btot = fend − fstart denote the bandwidth of the spectrum
region for allocation. We have the following constraint for the
total available bandwidth:

C3 :
∑
s∈S

bs = btot − (S − 1)bg. (4)
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Fig. 2: Illustration of the molecular absorption coefficient kabs(f). (a)
Molecular absorption coefficient peaks and TWs within the frequency range
of 0.1 − 0.5 THz. (b) Sub-band bandwidth allocation with total bandwidth
btot and guard band bg in a THz TW.

The central frequency of sub-band s ∈ S can be represented
as follows:

fs =


fstart +

b1
2
, s = 1,

fstart + (s− 1)bg +
∑s−1
i=1 bi +

bs
2
, s ∈ {2, . . . , S}.

(5)
Signal transmission in the THz band tends to be highly

directional for a couple of reasons. First, there are only
limited reflected components in the THz frequency range and
scattered components are negligible. This means that the line-
of-sight (LoS) constitutes the dominant component compared
to non-line-of-sight in the THz band [3], [5], [10]. Second, to
overcome the distance-dependent nature of molecular absorp-
tion loss, high-gain directional antennas are commonly used
instead of omni-directional antennas with low gains [29]. This
further reduces the number of available paths to a single path.
Moreover, using precoding with high array gains can provide
highly directional pencil beams, where each subarray generates
only one beam. As a result, we consider the LoS frequency-
selective fading model with the beam-squint effect for the
communication channels.1Let dBu, dRu, and dBR denote the

1In this paper, we consider the far-field channel model. In THz communi-
cation, the near-field effect can be modeled in communication channels. By
considering the propagation of the spherical wavefront for the RIS and BS,
the near-field effect can be modeled for users who are located in the Fresnel
regions of the RIS and BS [30]. The analysis of the near-field effect is beyond
the scope of this paper. Our proposed MHGphormer can be extended and
applied to THz systems with consideration of the near-field effect.

distances between user u ∈ U and BS, user u and RIS,
as well as BS and RIS, respectively. Let HBu ∈ CNr×Nt ,
HRu ∈ CNr×L, and HBR ∈ CL×Nt denote the BS-to-user
u, RIS-to-user u, and BS-to-RIS channel gains, respectively.
They can be represented as follows [31], [32]:

HBu(d, f) =
√
GBSGuα (dBu, f) exp (−j2πfτBu)

au
(
δABu, ϕ

A
Bu

)
aHB
(
δDBu, ϕ

D
Bu

)
, (6a)

HRu(d, f) =
√
Guα(dRu, f) exp (−j2πfτRu)

au
(
δARu, ϕ

A
Ru

)
aHR
(
δDRu, ϕ

D
Ru, f

)
, (6b)

HBR(d, f) =
√
GBSα (dBR, f) exp (−j2πfτBR)

aR
(
δABR, ϕ

A
BR, f

)
aHB
(
δDBR, ϕ

D
BR

)
, (6c)

where Gu and GBS denote the antenna gains for user u and
BS, respectively.

(
δABu, ϕ

A
Bu

)
,
(
δARu, ϕ

A
Ru

)
, and

(
δABR, ϕ

A
BR

)
are the azimuth and elevation angles of arrival for receiving
signals in BS-to-user u, RIS-to-user u, and BS-to-RIS trans-
missions, respectively. Similarly,

(
δDBu, ϕ

D
Bu

)
,
(
δDRu, ϕ

D
Ru

)
, and(

δDBR, ϕ
D
BR

)
denote the azimuth and elevation angles of de-

parture for transmitted signals in BS-to-user u, RIS-to-user u,
and BS-to-RIS transmissions, respectively. τBu, τRu, and τBR
denote the delay of BS-to-user u, RIS-to-user u, and BS-to-
RIS transmission paths, respectively. Moreover, au(·) ∈ CNr ,
aB(·) ∈ CNt , and aR(·) ∈ CL denote the array steering
vectors for user u, BS, and RIS, respectively. Due to the phase
shift changes made by RIS elements, we consider the beam-
squint effect, in which the array steering vector changes as the
frequency varies. Each element of the array steering vectors
for user u and BS with angles (δ, ϕ) can be calculated as
follows [13], [32]:

au[z] =
1√
Nr

exp
(
j2π

ϵuser

λ
(z − 1) cos(δ) sin(ϕ)

)
,

z ∈ {1, . . . , Nr}, u ∈ U , (7a)

aB [z] =
1√
Nt

exp

(
j2π

ϵBS

λ

(⌊
(z − 1)

Nx

⌋
cos(δ) sin(ϕ)

+ mod(z − 1, Ny) cos (ϕ)

))
, z ∈ {1, . . . , Nt},

(7b)

and each element of the array steering vector for the RIS with
angles (δ, ϕ) at frequency f can be calculated as follows:

aR[z] =
1√
L
exp

(
j2πf

ϵRIS

c

(⌊
(z − 1)

Lx

⌋
sin(δ) sin(ϕ)

+ mod(z − 1, Ly) cos (ϕ)

))
, z ∈ {1, . . . , L},

(8)

where ϵuser, ϵBS, and ϵRIS are the antenna element spacing
for a user, BS, and RIS, respectively, λ is the wavelength,
and c is the speed of light. Also, Nx and Ny denote the
number of elements per row (i.e., horizontal direction) and
number of elements per column (i.e., vertical direction) at the
BS, respectively. Similarly, Lx and Ly denote the number of
elements per row and per column at the RIS, respectively.
The path loss factor α(d, f) ∈ R with distance d between
transmitter and receiver at frequency f can be calculated as



follows [33]:

α (d, f) =

(
c

4πfd

)
︸ ︷︷ ︸
spreading loss

exp

(
−1

2
kabs(f)d

)
︸ ︷︷ ︸

absorption loss

, (9)

where kabs(f) is the molecular absorption coefficient which
can be calculated by using the information from the HITRAN
database [34], as illustrated in Fig. 2.

B. Achievable Data Rate
For the allocation of THz sub-bands to the users, a higher

spectral efficiency can be obtained when users reuse the sub-
bands [8], [20]. As a result, we consider sub-band frequency
reuse for all users and the effect of intra-band interference.
Note that the effects of inter-band interference are not con-
sidered in this paper. This is because the fixed guard bands
between THz sub-bands can control inter-band interference.
The achievable data rate (in bits/sec) for user u ∈ U using
sub-band s ∈ S can be represented as [8]:

ru,s =

∫ fs+bs/2

fs−bs/2
log2

(
1 + γHu,s

(
ρsINr

+

U∑
i=1,i̸=u

Γi,s

)−1

γu,s

)
df,

(10)

where ρs is the noise power in sub-band s and the central
frequency fs can be determined from (5). We consider the
noise power as a linear function of sub-band bandwidth [8],
which can be calculated by ρs = bsN0, where N0 is the noise
spectral density. The term Γu,s ∈ CNr×Nr for user u using
sub-band s can be determined by Γu,s = γu,sγ

H
u,s, where

γu,s ∈ CNr is given as:

γu,s = H pu,s

=
(
HBu(dBu, f) pu,s

+HRu(dRu, f) Θ HBR(dBR, f) pu,s
)
, (11)

where pu,s ∈ CNt is the precoding vector for user u ∈ U
using sub-band s ∈ S. We denote Pu ∈ CS×Nt as the
precoding matrix for user u by considering all sub-bands and
P = [P1, . . . ,Pu, . . . ,PU ] ∈ CU×S×Nt as the precoding
tensor at the BS, respectively. We denote H ∈ CNr×Nt as
the cascaded channel gain matrix. Since the rank of cascaded
channel gain matrix H is equal to one, we consider a sin-
gle data stream for signal transmission. The transmit power
constraint is as follows:

C4 :
∑
u∈U

∑
s∈S

||pu,s||22 ≤ Pmax, (12)

where Pmax denotes the maximum transmit power of the BS.
In order to guarantee that the minimum data rate requirement
of user u is satisfied, we have the following per-user QoS
constraint:

C5 :
∑
s∈S

ru,s ≥ ru,min, u ∈ U , (13)

where ru,min corresponds to the minimum required data rate
of user u.

C. Problem Formulation

In this paper, we consider sum-rate maximization to jointly
optimize the precoding matrices, THz sub-bands bandwidth
allocation, and phase shifts. We formulate the sum-rate maxi-
mization problem for a RIS-aided MU-MIMO THz system as
follows:

maximize
{P, b, Θ}

∑
u∈U

∑
s∈S

ru,s

subject to constraints C1 − C5.
(14)

Obtaining the optimal solution of formulated problem (14) is
challenging due to the following reasons. First, the formulated
problem (14) is nonconvex and the optimization variables (i.e.,
P, b, and Θ) are coupled. Second, calculating the objective
function in (14) is difficult because the limits of the integration
for determining ru,s in (10) depend on the optimization
variable b. Moreover, it is difficult to calculate the molecular
absorption coefficient kabs(f) since there is no closed-form
expression in terms of f for all spectrum regions in the THz
band. As a result, there is no closed-form expression for the
achievable data rate ru,s in (10) as a function of THz sub-band
bandwidth b, which makes it difficult to solve the formulated
problem by using conventional optimization techniques. To
address the aforementioned challenges, in the next section,
we propose a learning-based MHGphormer algorithm to solve
problem (14).

III. MHGPHORMER LEARNING ALGORITHM

In this section, we first model the RIS-aided MU-MIMO
THz system as a heterogeneous graph. We then develop
an unsupervised MHGphormer learning algorithm to solve
problem (14).

A. Heterogeneous Graph Representation

To solve problem (14) using a learning algorithm, we
consider the problem as finding an optimal mapping function
F(·), which parameterized the mapping between the input
data and the precoding matrices of users (i.e., P), sub-bands
bandwidth for BS (i.e., b) and the phase shifts at the RIS
(i.e., Θ) while guaranteeing the constraints in problem (14)
are satisfied. The mapping function F(·) can be represented
as follows:

{P,b,Θ} = F (X;Φ) , (15)

where Φ and X denote the set of neural network parame-
ters and input features, respectively. Solving problem (13) is
equivalent to obtaining the optimal mapping function F(·).
Utilizing the universal approximation property [35], neural
networks can be trained in a data-driven manner to learn the
optimal mapping function F(·). Since the target optimization
variables are coupled in problem (14), leveraging information
of heterogeneous network entities (i.e., BS, RIS, and users) can
improve the learning performance. Moreover, in the THz wire-
less systems, users may suffer from high molecular absorption
attenuation and spreading loss. As a result, the transmission
links between users, BS, and RIS, as well as the structural
information should be modeled in a fine-grained manner to



RIS

BS

User 𝜓𝑈

𝜓𝐵

𝜓𝑅

(a) (b)

v𝑅

v𝐵

v𝑈

v1

v2

Fig. 3: An illustration of heterogeneous graph G = {V, E,Ψ} for the RIS-
aided MU-MIMO THz system. (a) BS, RIS, and user as three types of nodes
(i.e., ψB , ψR, ψU ). (b) The graph structure of the RIS-aided MU-MIMO THz
system. It consists of users, BS, and RIS as graph nodes with heterogeneous
feature information and the transmission links between them as graph edges.

determine the optimized system parameters. To this end, we
consider the feature information of network entities (i.e., BS,
RIS, and users) as different types of graph nodes and model
the transmission links between them as graph edges.

As illustrated in Fig. 3, we model the system as an undi-
rected heterogeneous graph G = {V, E ,Ψ}. The heterogeneous
graph consists of U + 2 nodes, where the BS and RIS are
represented by nodes vB and vR, respectively, and the U
users are represented by nodes from v1 to vU

2. Let V =
{vB , vR, v1, . . . , vU} denote the set of nodes of the graph. As
shown in Fig. 3(a), we denote Ψ = {ψB , ψR, ψU} as the set of
node types, where ψB , ψR, and ψU represent the BS, RIS, and
user node types, respectively. Let E = {emn | vm, vn ∈ V}
denote the set of edge weights, where emn ∈ R denotes
the edge weight between graph nodes vm and vn ∈ V . We
consider weighted cross-type connectivity matrices [36], [37]
and model the transmission links as graph edges between
the nodes in the heterogeneous graph G. To construct the
undirected weighted graph, we consider the distances between
the graph nodes since the channel gain is a function of distance
based on (6). Let AψBψU

∈ R1×U , AψRψU
∈ R1×U and

AψBψR
∈ R1×1 denote the cross-type connectivity matrices

between BS and user, RIS and user, as well as BS and RIS
node types, respectively. For user graph node vu ∈ V , the
elements in the cross-type connectivity matrix between BS
and users node types are AψBψU

[1 , u] = eBu = 1
dBu

. The
elements in the cross-type connectivity matrix between RIS
and user node types are AψRψU

[1 , u] = eRu = 1
dRu

. The
only element in the cross-type connectivity matrix between
BS and RIS node types is AψBψR

[1, 1] = eBR = 1
dBR

. We
further apply the softmax function to normalize the cross-type
connectivity matrices as follows:

ÂtψU
[1, u] = softmax(AtψU

[1, u]) =
exp (AtψU

[1, u])∑U
i=1 exp (AtψU

[1, i])
,

t ∈ {ψB , ψR}, (16a)

2In the literature of heterogeneous GNNs, graph edges can also have
different types. In this paper, we consider transmission links as the only
edge type. Moreover, our proposed MHGphormer can be extended to handle
scenarios with multiple BSs and RISs. The transmission links between
different node types are modeled as graph edges. Other network technologies
such as unmanned aerial vehicles (UAVs) and satellites can be modeled as
different node types with heterogeneous feature information.
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Fig. 4: An illustration of metapaths and metapath instances in heterogeneous
graph G = {V, E,Ψ}. (a) Two metapaths of the heterogeneous graph (i.e.,
ψBψRψU and ψBψU ). (b) Examples of metapath instances vBvRv2, vBv1
for metapaths ψBψRψU and ψBψU , respectively.

ÂψBψR
= softmax(ABR) = 1. (16b)

We denote the set of cross-type connectivity matrices as
A = {ÂψBψU

, ÂψRψU
, ÂψBψR

} = {Âψmψn | ψm, ψn ∈ Ψ}.
Moreover, each node type of the heterogeneous graph has a
feature matrix. We use the geographical location information
of graph nodes and the users’ minimum data rate to construct
the feature matrices. To define the locations of graph nodes,
we consider a three-dimensional (3-D) Cartesian coordinate
system. Let gu, gB , and gR ∈ R3 denote the geographical
locations of user u ∈ U , BS, and RIS, respectively. The
location information of users can be obtained by the proposed
method in [38], where a simultaneous localization and map-
ping (SLAM) framework is proposed in RIS-aided systems to
estimate the location of mobile users without the intervention
of BS. Let XψU

∈ RU×4, XψB
∈ R1×3, and XψR

∈ R1×3

denote the feature matrices of user, BS, and RIS node types,
respectively. For each user node vu ∈ V , as well as BS and RIS
nodes vB , vR ∈ V , we define the feature matrices as follows:

XψU
[u, :] =

[
gTu , ru,min

]
, (17a)

XψB
[1, :] = [gTB ], (17b)

XψR
[1, :] = [gTR]. (17c)

We denote X = {XψB
,XψR

,XψU
} = {Xψm | ψm ∈ Ψ}

as the set of feature matrices for each node type. Based
on the cross-type connectivity matrices and feature matrices,
the proposed MHGphormer updates the features of the nodes
using all the information of different node types and graph
structural information. After the update, the obtained embed-
dings have sufficient information to determine the optimal
system parameters by learning the mapping function F(·).

B. Metapath-based Neighbour Feature Aggregation

In heterogeneous graphs with multiple node types, the
concept of metapath provides a powerful tool to capture
the information between different node types based on the
graph structural information [24], [39], [40]. A metapath in
heterogeneous graphs is defined as a path in the form of
P = ψmψl . . . ψn with ψm and ψn ∈ Ψ being the source
and destination node types, respectively. We denote a metapath
instance pPmn = vm . . . vn as a sequence of nodes following the
metapath P . Given node vm ∈ V and the metapath P in graph
G, the set of metapath-based neighbours NP

m = {vn | pPmn} is
defined as the set of nodes which connect with node vm via
instances of metapath P . The metapath-based neighbours at
different hops create the neighbourhood of node vm. Also, the
0-hop metapath-based neighbour of node vm is the node itself.
As an example in Fig. 4(a), consider metapaths ψBψRψU and



ψBψU in graph G. As shown in Fig. 4(b), user v2 ∈ V is
a 2-hop metapath-based neighbour of BS node vB ∈ V via
the metapath instance pB2 = vBvRv2. In addition, user node
v1 ∈ V is connected to BS node vB ∈ V via metapath instance
pB1 = vBv1 as a one-hop metapath-based neighbour.

Since a heterogeneous graph has multiple node types, nodes
can have feature information vectors with different dimen-
sions and different contents (e.g., location information, users’
minimum data rate). As a result, homogeneous GNNs with
one node type cannot be directly applied to heterogeneous
graphs [24]. To address this issue, we propose an MNFA
module to utilize all heterogeneous feature information from
different node types. Since the number of metapath instances
increases exponentially with the length of a metapath [39],
we propose an efficient feature aggregation module, which
can be used in networks with a large number of users.
The proposed MNFA module aggregates the neighbourhood
feature information only once in the pre-training step. This
leads to a significant reduction in computational complexity
compared to repeated neighbour aggregation in each training
epoch. Note that the number of hops for aggregating the
neighbourhood information is fixed as a hyperparameter and
can be determined based on the graph structure. In this paper,
since the heterogeneous graph of the system model has three
node types, we have 0-hop, 1-hop, and 2-hop metapath-based
neighbours. For instance, for the user node type, the 0-hop
metapath-based neighbour is the node itself (i.e., ψU ). For
the 1-hop metapath-based neighbours, we have the metapaths
from user to the BS and user to the RIS (i.e., ψUψB and
ψUψR), respectively. Finally, the metapath sequence user-
BS-RIS and the metapath sequence user-RIS-BS correspond
to the 2-hop metapath-based neighbours (i.e., ψUψBψR and
ψUψRψB), respectively. We consider the following sets of
metapaths for the neighborhood of user, BS, and RIS node
types, respectively:

PU = {ψU , ψUψB , ψUψR, ψUψBψR, ψUψRψB}, (18a)

PB = {ψB , ψBψU , ψBψR, ψBψRψU , ψBψUψR}, (18b)

PR = {ψR, ψRψU , ψRψB , ψRψUψB , ψRψBψU}. (18c)

Motivated by [39], [41], our proposed MNFA module
uses the multiplication of cross-type connectivity matrices to
determine the aggregated feature information for the metap-
ath instances. This weighted-mean aggregation module takes
into account the structural information between different
node types in heterogeneous graphs. Given metapath P =
ψmψlψk . . . ψnψr and feature matrix Xψr ∈ X , we perform
feature aggregation for node type ψm ∈ Ψ as follows:

XP
ψm

= Âψmψl
Âψlψk

. . . ÂψnψrXψr , (19)

where XP
ψm

denotes the aggregated feature matrix of node type
ψm ∈ Ψ for metapath P . In Fig. 5, the feature aggregation
of the user node type for different sets of metapath-based
neighbours is shown as an example. Note that the aggregated
results for shorter metapaths can be used as an intermediate
step for longer metapaths. As an example, for the metapaths
P1 = ψnψr and P2 = ψmψnψr, we first determine XP1

ψn

weighted-mean
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Fig. 5: An Illustration of the MNFA module for user node type. X
ψU
ψU

,

X
ψUψB
ψU

, XψUψR
ψU

, XψUψBψR
ψU

, and X
ψUψRψB
ψU

are the aggregated features

of NψU
U , NψUψB

U , NψUψR
U , NψUψBψR

U , and N
ψUψRψB
U as sets of

metapath-based neighbours, respectively.

and then determine XP2

ψm
= ÂψmψnX

P1

ψn
. Based on (19), all

the aggregated feature matrices of different node types can be
calculated by considering the pre-defined metapaths in (18).
For instance, for the user node type, we have XψU

ψU
∈ RU×4,

XψUψB

ψU
∈ RU×3, XψUψR

ψU
∈ RU×3, XψUψBψR

ψU
∈ RU×3, and

XψUψRψB

ψU
∈ RU×3 as the output of the MNFA module. After

performing feature aggregation in the pre-training step, we
encode the aggregated features for each node type into the
following representation:

XPU

ψU
=
[
XψU

ψU
,XψUψB

ψU
,XψUψR

ψU
,XψUψBψR

ψU
,XψUψRψB

ψU

]
,

(20a)

XPB

ψB
=
[
XψB

ψB
,XψBψU

ψB
,XψBψR

ψB
,XψBψRψU

ψB
,XψBψUψR

ψB

]
,

(20b)

XPR

ψR
=
[
XψR

ψR
,XψRψU

ψR
,XψRψB

ψR
,XψRψUψB

ψR
,XψRψBψU

ψR

]
,

(20c)

where XPU

ψU
∈ RU×16, XPB

ψB
∈ R1×17, and XPR

ψR
∈ R1×17

correspond to the aggregated feature matrices after encod-
ing for user, BS and RIS node types, respectively. Finally,
for each user node vu ∈ V , as well as BS and RIS
nodes vB , vR ∈ V , we define the aggregated feature vectors

as xaggu,ψU
=
(
XPU

ψU
[u, :]

)T
, xaggB,ψB

=
(
XPB

ψB
[1, :]

)T
, and

xaggR,ψR
=
(
XPR

ψR
[1, :]

)T
, respectively. Note that different

graph nodes have aggregated feature vectors with different
dimensions. This issue will be resolved in the next subsection.
The aggregated feature vectors are used as input of the
mapping function F(·) in (15) to train the MHGphormer.
Our proposed MNFA module has two distinct advantages.
First, it is performed offline in the pre-training step, which
allows the generalization of the proposed MHGphormer to
large-scale graphs. Second, we encode the features of different
neighbours at different hops into one representation for each
node. This can help infer the mutual relationships between
different metapath-based neighbours at different hops, which
is ignored in typical GNNs based on the message passing
framework.
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Fig. 6: The overall architecture of the proposed MHGphormer for heterogeneous graph G(V, E,Ψ) as input and system parameters {P,b,Θ} as output.

C. Feature Projection and Transformer-based Aggregation

Different node types in a heterogeneous graph may have
different dimensions of feature vectors. Moreover, their feature
vectors may lie in different feature spaces even with the same
dimension [40]. For instance, the location information of graph
nodes and the data rates of user nodes are incorporated as input
features, while these features cannot be directly combined
together. As a result, we need to project different types of
node features into the same latent space. We apply a type-
specific linear transformation for each node type to project
the feature information into the same latent space. For each
user node vu ∈ V with feature vector xaggu,ψU

, we have:

xFPu,ψU
= WUx

agg
u,ψU

+ oU , vu ∈ V, (21)

where WU ∈ RZFP×16 and oU ∈ RZFP are the learnable
projection weights for the user node type, and ZFP is a con-
stant dimension. All users share the same projection weights
WU and oU . Similarly, for BS vB ∈ V and RIS vR ∈ V
nodes, we have:

xFPB,ψB
= WBx

agg
B,ψB

+oB , xFPR,ψR
= WRx

agg
R,ψR

+oR, (22)

where WB ∈ RZFP×17, oB ∈ RZFP , WR ∈ RZFP×17,
and oR ∈ RZFP denote the learnable projection weights for
BS and RIS node types, respectively. This feature projection
module addresses the heterogeneity of a graph, which is
due to heterogeneous feature information of different node
types. After this step, the projected feature vectors of all
nodes share the same dimension. We denote the set of all
parameters for the feature projection module as ΦFP =
{WU ,oU ,WB ,oB ,WR,oR}.

To capture the mutual information of different node types
and metapaths, we leverage the self-attention mechanism
[42]. In heterogeneous graphs, different nodes have differ-
ent impacts on the feature information of other nodes. As
a result, by using the self-attention mechanism, we assign
different weights to different projected feature vectors. We first
concatenate the projected feature vectors as matrix XFP =[
xFP1,ψU

, . . . ,xFPU,ψU
,xFPB,ψB

,xFPR,ψR

]T
∈ R(U+2)×ZFP . Then,

we map the the projected feature vector xFPm =
(
XFP [m, :]

)T
of each node vm ∈ V into a query vector qm ∈ RZTA , a key
vector km ∈ RZTA , and a value vector vm ∈ RZFP , where

ZTA is a constant dimension. The mutual attention weight
between nodes vm and vn ∈ V is denoted by αmn. For node
vm, the final embedding vector xTAm ∈ RZFP is the weighted
sum of values of all the nodes plus a residual connection. The
residual connection can help mitigate the gradient vanishing
problem [39]. We have:

qm = WQx
FP
m , km = WKxFPm , vm = WV x

FP
m , (23a)

αmn =
exp

(
qTmkn

)∑
vt∈V exp (qTmkt)

, vm, vn ∈ V, (23b)

xTAm = β
∑
vn∈V

αmnvn + xFPm , vm ∈ V, (23c)

where WQ,WK ∈ RZTA×ZFP , WV ∈ RZFP×ZFP , and
β ∈ R are the learnable parameters. We denote the set of
parameters for the transformer-based aggregation module as
ΦTA = {WQ,WK ,WV , β}, which is shared for all the
nodes. Based on the obtained values, for each user node
vu ∈ V , as well as BS and RIS nodes vB , vR ∈ V , we
construct embedding vectors xTAu,ψU

= xTAu , xTAB,ψB
= xTAU+1,

and xTAR,ψR
= xTAU+2, respectively. To obtain the target system

parameters, the embeddings are used as input for the type-
specific DNNs.

D. Type-Specific Neural Network Design

Since the obtained embedding vectors have sufficient in-
formation from all other graph nodes, in the final step, we
propose three type-specific DNNs to determine the optimized
system parameters for each node type while guaranteeing
the constraints in problem (14). As illustrated in Fig. 6,
the neural networks fU (·;WU , DU ), fB (·;WB , DB), and
fR (·;WR, DR) are responsible for determining the precoding,
sub-band bandwidth, and phase shifts for user, BS, and RIS
node types, respectively. The last and the second last argu-
ments of the neural networks denote the number of layers and
the set of parameters for each neural network, respectively.
For neural networks fB (·;WB , DB) and fR (·;WR, DR), a
normalization layer, and an activation function are adopted
sequentially between two adjacent linear layers. We use the
rectified linear unit ReLU(x) = max (0, x) as the activation
function, which is computationally efficient during the back-
propagation process.



For the optimal precoding matrices, since existing soft-
ware packages can manage complex-valued operations using
Wirtinger calculus [43], all the learnable parameters in set WU

are initialized as complex values. This reduces the number
of multiplication operations and computational complexity
by using complex-valued arithmetic in the polar represen-
tation. We first feed the embedding vector xTAu,ψU

of user
node vu ∈ V to the network with output vector pfUu =

fU

(
xTAu,ψU

;WU , DU

)
∈ CSNt . To satisfy the transmit power

constraint C4, the output matrix PfU =
[
pfU1 , . . . ,pfUU

]T
∈

CU×SNt is fed through an activation function as follows:

P̂ =
√
Pmax

PfU

∥PfU ∥F
. (24)

Then, based on the normalized values p̂u = (P̂[u, :])T for
each user node vu ∈ V and the definition for the precoding
matrix in (11), we reshape the normalized values into a matrix
to construct the precoding matrix for each user as follows:

Pu =
[
p̂u[1 : S], p̂u[S + 1 : 2S], . . . ,

p̂u[S(Nt − 1) + 1 : SNt]
]
, u ∈ U . (25)

Note that all users share the same network fU (·;WU , DU )
to determine the final precoding matrices. This reduces the
computational complexity in the feed-forward networks as
well as the number of required training parameters [44].

For the optimal sub-band bandwidth allocation, the embed-
ding vector xTAB,ψB

of BS node vB ∈ V is fed to the network

with output vector bfB = fB

(
xTAB,ψB

;WB , DB

)
∈ RS . Next,

to guarantee constraints C2 and C3, we first normalize each
element of the output vector bfB as follows:

b̂[s] =
σ
(
bfB [s]

)
(btot − (S − 1)bg)∑

s′∈S σ (b
fB [s′])

, s ∈ S, (26)

where σ(x) =
1

exp(−x) + 1
denotes the element-wise sig-

moid activation function mapping the output onto the range
[0, 1]. Finally, to determine the sub-band bandwidth vector b,
we feed the normalized vector b̂ to the following activation
function:

b[s] = bmax − ReLU
(
bmax − b̂[s]

)
, s ∈ S, (27)

which ensures that each element is less than or equal to
bmax. During the learning procedure, by using (26) and (27),
constraint C2 is satisfied. The learning algorithm is trained
in a way in order to fully utilize the available bandwidth to
guarantee constraint C3.

For the optimal phase shifts, the embedding vector xTAR,ψR

of RIS node vR ∈ V is fed to the network with output vector
θfR = fR

(
xTAR,ψR

;WR, DR

)
∈ RL. Then, we consider the

obtained values as an input to the following activation function
in order to satisfy the phase shift constraint C1:

θ̂[l] = 2πσ(θfR [l]), l ∈ L, (28)

which maps the values onto the range of [0, 2π]. Finally, the

phase shift matrix is obtained as follows:

Θ = diag
(
exp

(
jθ̂[1]

)
, . . . , exp

(
jθ̂[L]

))
. (29)

We denote the set of parameters in the type-specific neural
network design step as ΦDNN = {WU ,WB ,WR}.

Remark 1: Our proposed MHGphormer satisfies the permu-
tation invariance/equivariance property. That is, if the ordering
of users is permuted, the same set of RIS phase shifts and
sub-band bandwidth can be used (i.e., permutation invariance),
while the set of precoding matrices is permuted in the same
manner (i.e., permutation equivariance). This is difficult to
be obtained by conventional fully connected networks, while
heterogeneous GNNs can satisfy one of these properties [23].
In MHGphormer, satisfying these properties only depends on
the structure of the transformer-based aggregation module,
since other modules (e.g., feature projection, feed-forward
networks, and normalization layers) are applied in a node-
independent manner for each node type. The proposed self-
attention mechanism in (23) satisfies the permutation equiv-
ariance property. For the permutation invariance property, the
residual connection is removed and the query vector in (23)
can be replaced by a learnable weight for each node (e.g.,
qm = wm ∈ RZTA , vm ∈ V). The proof that our proposed
MHGphormer satisfies the aforementioned properties can be
found in the Appendix.

Remark 2: In our proposed MHGphormer, all type-specific
nodes share the same modules for updating their features
during the learning procedure. This means that the parameter
dimension of the proposed MHGphormer does not depend
on the number of nodes in each specific node type. In
particular, all the user nodes share the same weights for feature
projection (i.e., WU ,oU ) and transformer-based aggregation
module weights (i.e., ΦTA) as well as the same neural network
architecture (i.e., fU (·;WU , DU )). As a result, the proposed
MHGphormer is adaptable to any arbitrary number of users.
When the proposed MHGphormer is trained, it can be applied
to systems with different number of users. This is different
from conventional fully connected networks, which require
their parameters to be scaled according to the number of users
and re-training for different scenarios.

E. Loss Function Design and Training

The mapping function F(·) is characterized by the network
parameters. We denote the set of all neural network parameters
by Φ = {ΦFP ,ΦTA,ΦDNN}. We reformulate problem (14)
as follows:

maximize
Φ

E

{∑
u∈U

∑
s∈S

ru,s − ζ
∑
u∈U

(
ru,min −

∑
s∈S

ru,s

)}
subject to {P,b,Θ} = F (X;Φ) , (30)

where the expectation is with respect to the distances between
network entities (i.e., BS, RIS, and users). The QoS constraint
C5 is added to the objective function in problem (30) as a
penalty term with penalizing weight coefficient ζ. To train the
proposed MHGphormer based on (30), we adopt mini-batch
gradient descent and define the loss function for each training



epoch as follows:

Lk(P,b,Θ;Φ) =
1

B

B∑
i=1

(
−
∑
u∈U

∑
s∈S

ru,s(i)

+ ζk
∑
u∈U

ReLU
(
ru,min −

∑
s∈S

ru,s(i)
))

, k = 1, . . . ,K,

(31)

where Lk(·) is the loss function of the k-th training epoch,
B and K denote the size of the mini-batch and the number
of training epochs, respectively, and ru,s(i) is the obtained
data rate of user u ∈ U using sub-band s ∈ S for the i-th
mini-batch sample. For QoS constraint C5 during the learning
procedure, if the constraint is not satisfied for user u, i.e.,(
ru,min −

∑
s∈S ru,s

)
> 0, then the penalty term enforces

network parameters Φ to be updated in a way to satisfy the
constraint. On the other hand, if

(
ru,min −

∑
s∈S ru,s

)
≤ 0,

the penalty term does not have an impact on the loss function.
Moreover, the penalizing weight coefficient ζk ≥ 0 in each
training epoch is updated as follows:

ζk+1 = ReLU

(
ζk +

1

B

B∑
i=1

∑
u∈U

(
ru,min −

∑
s∈S

ru,s(i)
))

.

(32)
The proposed MHGphormer is trained to minimize the

loss function (31) using Adam optimizer [45] in an unsuper-
vised manner3. To construct the training dataset, we generate
samples of users’ locations in order to obtain the distance
information and the channel model in (6). We uniformly
sample the training data from the training dataset. In the
testing phase, given the testing data, i.e., the locations and
the users’ minimum data rate as input, the trained network
with parameters Φ is used to obtain the precoding matrices,
RIS phase shifts, and sub-band bandwidth allocation without
channel estimation. The proposed MHGphormer learning al-
gorithm is summarized in Algorithm 1. Note that the channel
model in (6) is only for generating training samples. Once
the network has been trained at the BS, the geographical
location information as well as the users’ minimum data
rate are fed to the network to obtain the system parameters.
Additionally, the type-specific DNNs as well as both real and
complex weights in the network parameters Φ are trained
simultaneously through backpropagation to minimize the loss
function in (31).

F. Computational Complexity

We now present the computational complexity of our pro-
posed MHGphormer. For the MNFA module in the pre-
training step, the computational complexity is O(U) based
on the pre-defined metapaths in (18) for all node types. The
computational complexity of this step can be considered as a
constant when we determine the computational complexity of
the algorithm in the training phase. In the training phase, the
users share the same parameters. As a result, in the feature

3In this paper, we consider sum-rate maximization objective function.
However, other utility functions, such as max-min rate and energy efficiency,
can be adopted as the loss function of the proposed MHGphormer.

Algorithm 1 Proposed MHGphormer Learning Algorithm

1: Input: Heterogeneous graph G(V, E ,Ψ), set of feature matri-
ces X := {XψU ,XψB ,XψR}, metapaths sets {PU ,PB ,PR},
initialize network parameters Φ, mini-batch size B, number of
training epochs K, initialize penalizing weight coefficient ζ0.

2: Use MNFA module to obtain the aggregated feature information
vectors

(
xagg1,ψU

, . . . ,xaggU,ψU
,xaggB,ψB

,xaggR,ψR

)
.

3: Unsupervised Training:
4: Set training epoch counter k ←− 0.
5: while k ≤ K
6: Project the input features into the same latent space using (21)

and (22) and obtain
(
xFP1,ψU

, . . . ,xFPU,ψU
, ,xFPB,ψB

,xFPR,ψR

)
.

7: Capture and combine the mutual information of the node
types and metapaths by performing transformer-based ag-
gregation using (23) to calculate the embedding values(
xTA1,ψU

, . . . ,xTAU,ψU
,xTAB,ψB

,xTAR,ψR

)
.

8: Calculate the loss function (31) by passing the embedding
values of each node type to the designed DNNs fU (·), fB(·)
and fR(·).

9: Update Φ to minimize the obtained loss function Lk(·) using
Adam optimizer [45].

10: Update penalizing weight coefficient ζk using (32).
11: k ←− k + 1
12: end while
13: Training Output Trained network with parameters Φ
14: Testing Phase:
15: Use the trained network F(·;Φ) to solve problem (14) based on

input testing data.
16: Testing Output System parameters {P,b,Θ}.

projection step, the computation complexity for all node types
is O(ZFP ). For the transformer-based aggregation module, the
computational complexity is similar for all the nodes and is
denoted as O(ZFPZTA+Z

2
FP ). In the final step, we consider

that the dimension of hidden units for each neural network
is similar to its output dimension. As a result, the compu-
tational complexity of feed-forward networks for the user,
RIS, and BS node types are O(ZFPSNtNr + DpS

2N2
t N

2
r ),

O(ZFPL + DrL
2), and O(ZFPS + DbS

2), respectively.
Finally, after discarding the lower order terms, the overall
computational complexity of the training phase is as follows:

O(ZTAZFP + Z2
FP + ZFPSNtNr +DpS

2N2
t N

2
r + ZFPL

+DrL
2 + ZFPS +DbS

2), (33)

which shows that the computational complexity is independent
of the number of users U .

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
proposed MHGphormer learning algorithm and compare
it with three baseline schemes. The code is available at
https://github.com/Ali-Meh619/MHGphormer.

A. Experimental Setup

We simulate a RIS-aided MU-MIMO THz system where
the (x, y, z)-coordinates of the BS and the RIS locations in
meters are (25,−20,−5) and (0, 0, 0), respectively. The UPA
of the BS and UPA for the RIS are placed on the (x, z)-
plane and (y, z)-plane, respectively. Six users are randomly
and uniformly distributed within a rectangular area [0, 15] ×

https://github.com/Ali-Meh619/MHGphormer


TABLE I: List of Simulation Parameters

Parameters Value
THz spectrum range fstart − fend 0.380− 0.4 THz

Number of sub-bands S 5
Guard band bandwidth bg 0.75 GHz [7]

Sub-band maximum bandwidth bmax 4 GHz [8]
BS maximum power Pmax 30 dBm
Noise spectral density N0 −174 dBm/Hz [20]

Number of antennas at the BS Nt, Nx, Ny 32, 16, 2
Number of antennas at the user device Nr 2

Number of reflecting elements at RIS L, Lx, Ly 64, 8, 8
Antenna element spacing ϵuser, ϵBS, ϵRIS 395 µm

Antenna gain Gu, GBS 15, 25 dBi
User minimum data rate ru,min 12.5 Gbps

[0, 25] in the (x, y)-plane with z = −10. The ULA for each
user is configured parallel to the x-axis. As illustrated in Fig.
2(b), we consider the absorption coefficient values based on
HITRAN database [34] for the standard atmosphere with a
water vapor density of 1.5 g/m3 and 15◦C temperature.

Unless specified otherwise, based on the system setting
and simulation parameters in Table I, we generate 15,000
samples, where 12,000 samples are used for training, and the
remaining 3,000 samples are used for testing. To implement
the neural networks, we use PyTorch library [43] and Adam
optimizer [45]. The initial learning rate is set to 5 × 10−4.
The constant dimensions ZFP and ZTA are set to 1024 and
256, respectively. We consider the fully connected networks
in the final step with two layers, and the hidden dimension
unit is similar to the output dimension for each network. The
mini-batch size B and the number of training epochs K are
set to 256 and 250, respectively. The initial penalizing weight
coefficient ζ0 is equal to 12× 109.

We conduct simulations using a computing server with an
Intel Silver 4216 Cascade Lake @ 2.1GHz CPU and four
Nvidia Tesla V100 Volta GPUs with 128 GB memory. We
compare the performance of our proposed MHGphormer with
the following baselines:

• Homogeneous GNN learning algorithm: We extend
the proposed GNN algorithm in [14] for the RIS-aided
MU-MIMO THz system. In the proposed system, the
pilot signals and the locations of users are used to
jointly optimize the phase shifts and precoding matrices
in problem (14).

• Unsupervised DNN learning algorithm: We extend the
learning algorithm in [20] for the MU-MIMO THz system
and include a RIS. The distances between users, BS,
and RIS are used as input to the DNN to optimize the
precoding, phase shifts, and ASB allocation in problem
(14).

• AO Algorithm: We extend the AO algorithm in [26]
for the RIS-aided MU-MIMO THz system. The users’
precoding matrices are obtained by dual decomposition
method with block coordinate maximization, while the
phase shifts at the RIS are computed sequentially and are
obtained in a closed-form expression. For ASB allocation,
we use the obtained values in our proposed MHGphormer
as the bandwidth of the sub-bands.
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Fig. 7: (a) Convergence of the proposed MHGphormer learning algorithm and
the baseline schemes. (b) Convergence of the penalizing weight coefficient ζk
for QoS constraint C5.

B. Convergence of the MHGphormer Learning Algorithm

We first investigate the convergence of our proposed MHG-
phormer. We show the system sum-rate of the MHGphormer
and the baselines versus the number of training epochs in Fig.
7(a). Results show that our proposed MHGphormer learning
algorithm provides a system sum-rate that is 5.15%, 8.33%,
and 8.82% higher than that of GNN learning algorithm, DNN
learning algorithm, and AO algorithm, respectively. Moreover,
our proposed MHGphormer has a faster convergence com-
pared to the learning-based baselines. Fig. 7(b) shows that the
penalizing weight coefficient ζk in (32) converges to zero after
50 iterations, which implies that the QoS constraint C5 is satis-
fied. At the beginning of the training phase, the QoS constraint
C5 is not satisfied for the users, i.e.,

(
ru,min −

∑
s∈S ru,s

)
>

0. As a result, the penalizing weight coefficient increases based
on the update equation (32). Once the constraint is satisfied
for the users, i.e.,

(
ru,min −

∑
s∈S ru,s

)
≤ 0, the penalizing

weight coefficient decreases until it converges to zero.

C. Impact of Number of BS Antennas and RIS Elements

To examine the impact of MIMO signal transmission, we
plot the system sum-rate versus the number of antennas
at the BS, Nt, in Fig. 8. The number of elements in the
vertical direction is fixed (i.e., Ny = 2) and we vary the
number of elements in the horizontal direction (i.e., Nx). We
observe that increasing Nt improves the sum-rate for all the
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Fig. 8: System sum-rate versus the number of antennas Nt at the BS.
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Fig. 9: System sum-rate versus the number of reflecting elements L on the
RIS.

considered algorithms. This indicates that optimal precoding
design can provide users with high data rates in THz systems.
Moreover, Fig. 8 shows that the performance improvement
of the RIS-aided MU-MIMO THz system with the proposed
MHGphormer over the baseline schemes increases with the
value of Nt. In particular, when Nt is equal to 30 (i.e., Ny = 2,
Nx = 15), the proposed MHGphormer achieves a system
sum-rate that is 4.76%, 7.88%, and 8.02% higher than that of
homogeneous GNN, unsupervised DNN, and AO algorithms,
respectively.

In Fig. 9, we vary the number of reflecting elements L
in the RIS and investigate the system sum-rate. We vary the
number of elements in both vertical and horizontal dimensions
while they are equal (i.e., Lx = Ly). We observe that having a
RIS in the system can improve the system sum-rate for all the
algorithms. This is because the RIS creates an additional prop-
agation channel which improves the coverage area. In addition,
more reflecting elements in the RIS brings a higher flexibility
for controlling the phase shifts. Moreover, the performance
of the proposed MHGphormer improves with the value of L
compared to the baseline schemes. In particular, when L is
equal to 81 (i.e., Lx = Ly = 9), the proposed MHGphormer
achieves a system sum-rate that is 4.61%, 7.91%, and 8.07%
higher than that of GNN, DNN, and AO baseline schemes,
respectively.
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Fig. 10: System sum-rate versus the maximum sub-band bandwidth bmax.
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Fig. 11: System sum-rate versus the end frequency of spectrum allocation
region fend.

D. Impact of ASB Allocation and Molecular Absorption Co-
efficient

To study the impact of ASB allocation, we compare the
system sum-rate by varying the maximum sub-band bandwidth
bmax. We also consider ESB allocation with MHGphormer, in
which sub-bands have equal bandwidth (i.e., 3.4 GHz) and
the precoding matrices and phase shifts are optimized by our
proposed MHGphormer. In Fig. 10, by increasing bmax, the
system sum-rate for all the algorithms is improved compared
to ESB allocation. The reason for this is that larger bmax offers
more flexibility for ASB allocation. Our proposed MHG-
phormer achieves 8.75% higher system sum-rate compared to
the ESB allocation with MHGphormer when bmax is equal
to 5 GHz. Additionally, by increasing bmax, our proposed
MHGphormer learning algorithm shows better performance
compared to the baseline schemes in terms of system sum-
rate. In particular, the RIS-aided MU-MIMO system with the
proposed MHGphormer achieves a system sum-rate that is
5.21%, 7.43%, and 8.26% higher than that of GNN, DNN,
and AO algorithms, respectively.

To investigate the impact of the molecular absorption co-
efficient on the RIS-aided MU-MIMO THz systems, we vary
fend as the end point of the THz TW spectrum. In Fig. 11,
we observe that all the algorithms exhibit an improvement
in the system sum-rate as the fend increases. At first, this is
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due to an increase in the allocated bandwidth to each sub-
band. As shown in Fig. 2(b), the molecular absorption loss
kabs(f) decreases by increasing fend in the 0.395 − 0.405
THz spectrum range. When compared to other baselines, our
proposed MHGphormer shows the system sum-rate perfor-
mance improvement. When fend is equal to 0.4025 THz, the
RIS-aided MU-MIMO system with MHGphormer achieves a
system sum-rate that is 5.53%, 8.90%, and 10.91% higher than
that of GNN, DNN, and AO algorithms, respectively.

E. Investigating User Average Bitrate and Fairness Behaviour

In Fig. 12, we plot the average bitrate for each user in
descending order. That is, the user with the highest average
bitrate is referred to as user 1, while the user with the
lowest average bitrate is referred to as user 6. Considering
the QoS constraint C5 in problem (14), results show that the
users achieve higher bitrates in an RIS-aided MU-MIMO THz
system with the proposed MHGphormer learning algorithm
compared to GNN and DNN learning algorithms as well as AO
algorithm. This is because we model the network topology as
a heterogeneous graph in a fine-grained manner and consider
the transmission links as edges and the information of all
entities (i.e., BS, RIS, and users) as different types of nodes.
Aggregation of feature information of different node types in
our proposed MHGphormer leads to QoS improvement.

To investigate the fairness behaviour for the MHGphormer,
we vary the number of users and plot the fairness index in Fig.
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Fig. 14: System sum-rate for imperfect user location estimation.

13. The Jain fairness index is defined as

(∑
u∈U

∑
s∈S ru,s

)2
U
∑
u∈U

∑
s∈S r

2
u,s

,

which shows how fair the resources are allocated to the users in
terms of bitrate. Moreover, our MHGphormer is scalable with
respect to the number of users once it has been trained. To
investigate the fairness behaviour, we train the MHGphormer
and GNN learning algorithms with 6 users. The training of
DNN and the execution of the AO algorithm are conducted
separately for different number of users. Results show that
the fairness index decreases for all the algorithms in the RIS-
aided MU-MIMO THz system when we increase the number
of users. This is because an increase in the number of QoS
constraints in problem (14) results in a smaller feasible set.
Moreover, our proposed MHGphormer has better fairness be-
haviour compared to homogeneous GNN learning algorithm,
as well as DNN and AO algorithms, which require re-training
for scenarios with different number of users.

F. Impact of Imperfect User Location Estimation

Finally, we investigate the robustness of the proposed
MHGphormer to imperfect user location estimation based on
the statistical location estimation error in [46]. We denote
ĝu = gu+∆gu as the estimated location of user u ∈ U , where
∆gu is the location estimation error. We consider that the
elements in vector ∆gu follow Gaussian distribution with zero
mean and variance δ ∥gu∥22, where the coefficient δ ∈ [0, 1)
measures the significance of the error. In Fig. 14, we evaluate
the achievable system sum-rate under imperfect user location
estimation for all the algorithms. We observe the performance
degradations in all considered algorithms due to imperfect user
location estimation. In particular, when δ is equal to 0.1, the
proposed MHGphormer can retain 84.35% of the system sum-
rate that can be achieved with perfect user location estimation.

V. CONCLUSION

In this paper, we investigated the sum-rate maximization
problem for RIS-aided MU-MIMO THz systems. We studied
the joint optimization of precoding, phase shifts, and ASB
allocation. Since the THz sub-band bandwidth is not known
beforehand in ASB allocation, accurate channel estimation
is challenging. To overcome this issue, we proposed an
unsupervised MHGphormer learning algorithm to solve the
problem by bypassing the channel estimation phase. The



proposed MHGphormer directly maps the location information
and users’ minimum data rate as input to the optimized
system parameters. The MHGphormer has the permutation
invariance/equivariance property and can be applied to net-
works with different number of users. Through simulations, we
showed that our proposed MHGphormer learning algorithm
has a faster convergence compared to the learning-based
algorithms. For a RIS-aided MU-MIMO THz system with six
users, the proposed MHGphormer achieves a system sum-
rate that is 5.15%, 8.33%, and 8.82% higher than that of
homogeneous GNN, unsupervised DNN, and AO algorithms,
respectively. We also demonstrated the system sum-rate im-
provements obtained from using RIS, MIMO, and ASB in
multiuser THz systems. For future work, we plan to study the
impact of optimizing the number of sub-bands in multiple THz
TWs.

APPENDIX

Definition [47]: A transformation Tπ : Rd×N → Rd×N is a
permutation if Tπ(X) = XPπ , where matrix X ∈ Rd×N is
the input, Pπ ∈ {{0, 1}N×N | PT

π1N = 1TNPπ = IN} is the
permutation matrix, and 1N denotes an all-ones vector.

Definition [48]: An operator Oe : Rd×N → Rd×N is said
to be permutation equivariant if Tπ(Oe(X)) = Oe(Tπ(X))
for any permutation matrix Pπ . Moreover, an operator Oi :
Rd×N → Rd×N is permutation invariant if Tπ(Oi(X)) =
Oi(X) for any permutation matrix Pπ .

Proposition 1: MHGphormer with the proposed self-
attention mechanism in (23) is permutation equivariant.

Proof: In (23), the self-attention operator can be written as
follows:

Oe(Tπ(X))

= βWV Tπ(X) softmax
(
(WKTπ(X))

T
WQTπ(X)

)
+ Tπ(X)

= βWVXPπsoftmax
(
(WKXPπ)

T
WQXPπ

)
+XPπ

= βWVXPπsoftmax
(
PT
π (WKX)

T
WQXPπ

)
+XPπ

= βWVXPπP
T
π︸ ︷︷ ︸

IN

softmax
(
(WKX)

T
WQX

)
Pπ

+XPπ

=
(
βWVXsoftmax

(
(WKX)

T
WQX

)
+X

)
Pπ

= Tπ(Oe(X)).

Note that PπP
T
π = IN since Pπ is an orthogonal matrix.

Also, it can be shown that:

softmax
(
PT
πXPπ

)
= PT

π softmax(X)Pπ.

The softmax function is applied to the matrix input column-
wise, similar to the definition in (16).

Proposition 2: MHGphormer, which includes a self-
attention mechanism with learnable query matrix, is permuta-
tion invariant.

Proof: The self-attention operator with learnable query matrix
can be expressed as follows:

Oi(Tπ(X))

= WV Tπ(X)softmax
(
(WKTπ(X))

T
WQ

)
= WVXPπsoftmax

(
(WKXPπ)

T
WQ

)
= WVXPπsoftmax

(
PT
π (WKX)

T
WQ

)
= WVXPπP

T
π︸ ︷︷ ︸

IN

softmax
(
(WKX)

T
WQ

)
= WVXsoftmax

(
(WKX)

T
WQ

)
= Oi(X).
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