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Abstract—Different from a traditional wireless sensor network
(WSN) powered by non-rechargeable batteries, the energy man-
agement policy of a rechargeable WSN needs to take into account
the process of energy harvesting. In this paper, we study the
energy allocation for sensing and transmission in an energy
harvesting sensor node with a rechargeable battery and a finite
data buffer. The sensor aims to maximize the expected total
amount of data transmitted until the sensor stops functioning
subject to time-varying energy harvesting rate, energy availability
in the battery, data availability in the data buffer, and channel
fading. Since the lifetime of the sensor is a random variable, we
formulate the energy allocation problem as an infinite-horizon
Markov decision process (MDP), and propose an optimal energy
allocation (OEA) algorithm using the value iteration. We then
consider a special case with infinite data backlog and prove
that the optimal transmission energy allocation (OTEA) policy
is monotone with respect to the amount of battery energy
available. Finally, we conduct extensive simulations to compare
the performance of our OEA algorithm, OTEA algorithm, the
finite-horizon transmission energy allocation (FHTEA) algorithm
extended from [2], and the finite-horizon optimal energy alloca-
tion (FHOEA) algorithm from [1]. Simulation results show that
the OEA algorithm transmits the largest amount of data, and the
OTEA algorithm can achieve a near-optimal performance with
a low computational complexity.

Index Terms—Energy harvesting, wireless sensor networks,
resource allocation, Markov decision process (MDP).

I. INTRODUCTION

TRADITIONALLY, a wireless sensor network (WSN) is
composed of a large number of sensor nodes powered by

non-rechargeable batteries with limited energy storage capaci-
ties. As a result, a WSN can only function for a limited amount
of time. The idea of energy harvesting was proposed to address
the problem of finite lifetime in a WSN by enabling the sensor
nodes to replenish energy from ambient sources, such as solar,
wind, and vibrations [3], [4]. The design considerations of an
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energy harvesting WSN are different from a non-rechargeable
battery powered WSN in many ways. First, with a potentially
infinite amount of energy available to the sensor nodes, an
energy harvesting WSN can remain functional for a long
period of time. Hence, energy conservation is not the prime
design issue. Second, the energy management strategy for an
energy harvesting WSN needs to take into account the energy
replenishment process. For example, an overly conservative
energy expenditure may limit the transmitted data by failing
to take the full advantage of the energy harvesting process. On
the other hand, an overly aggressive use of energy may result
in an energy outage, which prevents some sensor nodes from
functioning properly. Third, the energy availability constraint,
which requires the energy consumption to be less than the
energy stored in the battery, must be met at all time. This
constraint complicates the design of an energy management
policy, since the current energy consumption decision would
affect the outcome in the future.

A lot of research efforts have been devoted to study the
energy management and data transmission in energy harvest-
ing WSNs. Kansal et al. in [5] proposed analytically tractable
models to characterize the complex time varying nature of
energy sources. Distributed algorithms were developed to
utilize the harvested energy efficiently. Sharma et al. in [6]
proposed energy management schemes for a single energy
harvesting sensor node that achieves the maximum throughput
and minimum mean delay. Gatzianas et al. in [7] presented
an online adaptive transmission scheme for wireless networks
with rechargeable batteries that maximizes total system utility
and stabilizes the data queue using Lyapunov techniques.
Huang et al. in [8] proposed an online algorithm that achieves
a close-to-optimal utility performance in finite capacity en-
ergy storage devices. The Lyapunov optimization techniques
with weight perturbation were used. In [9], utility-optimal
energy allocation algorithms were proposed for systems with
predictable or stochastic energy availability. Srivastava et al.
in [10] analyzed the limits of the performance of energy
harvesting sensor nodes with finite data and energy storage.
An energy management scheme was proposed that achieves
the optimal utility asymptotically. Mao et al. in [11] studied
the joint data buffer and rechargeable battery control problem
that aims to maximize the long-term average sensing rate of a
wireless sensor network. Joint rate control, power allocation,
and routing algorithms were proposed for both single hop
and multihop networks. Chen et al. in [12] addressed the
joint energy allocation and routing problem for network utility



maximization. An online solution was proposed that achieves
asymptotic optimality. Khouzani et al. in [13] proposed routing
and scheduling policies that do not require explicit knowledge
of the statistics of the energy replenishment or the traffic
generation processes. They were able to learn and adapt to
time variations in the physical and network environments
dynamically, so as to achieve the long-term optimal data
rates. In [14], energy management policies were identified that
guarantees a minimum average distortion while ensuring the
stability of the data buffer. Wang et al. in [15] considered
the near-optimal power control policies with a saturated data
queue in both the finite-horizon and infinite-horizon cases.

Some of the related works on energy harvesting WSNs
have formulated the energy management problem as a Markov
decision process (MDP) [16], [17]. Ho et al. in [2] proposed
a throughput-optimal energy allocation algorithm for a time-
slotted system under time-varying fading channel and energy
source by using MDP. In [18], a throughput-optimal energy
allocation policy was derived in a continuous time model
and suboptimal online waterfilling schemes were proposed to
address the dimensionality problem inherent in the MDP solu-
tion. Chen et al. in [19] studied the energy allocation problem
of a single node using the shortest path approach. A simple
distributed heuristic scheme was proposed that solves the
joint energy allocation and routing problem in a rechargeable
WSN. Li et al. in [20] proposed energy efficient scheduling
strategies for cooperative communications in energy harvesting
WSNs to maximize the long-term utility. Jaggi et al. in [21]
considered the node activation problem for a rechargeable
wireless sensor in the presence of temporal correlations in the
sensed phenomena, and proposed optimal policies by using
MDP. Kashef et al. in [22] studied a communication link
that operates over a Gilbert-Elliot channel. The problem of
maximizing the number of successfully delivered packets per
time slot was formulated as a MDP problem. The proposed
optimal policy was proved to exhibit the threshold structure
that depends on the channel state and the energy queue length.
Balsco et al. in [23] considered the transmission decisions of
an energy harvesting sensor node with random data arrival,
energy arrival, and channel conditions. A learning-theoretic
approach, as well as online and offline problems were studied.

Most of these results from [2], [6]–[9], [13]–[15], [18], [19],
[22] only considered the special case that there is either an
infinitely long data backlog or data buffer. Yet, it is more
practical to consider a finite data buffer. Besides, the energy
consumed in data sensing has always been overlooked in the
literature, such as in [23]. This motivates us to design an
optimal energy allocation (OEA) algorithm for energy har-
vesting WSNs which takes into account both the data sensing
energy consumption and the finite capacity of the data buffer.
However, these considerations introduce new challenges. For
instance, if the sensor node consumes an insufficient amount
of energy for sensing but an excessive amount of energy for
transmission, then the data buffer may be empty, which leads
to a reduction in the total amount of data transmitted. Thus,
the sensor node needs to maintain a good balance between the
energy consumed for sensing and the energy for transmission.
Moreover, different from [21], we assume that the sensor

nodes are always turned on, and we consider the case without
temporally correlated events.

In this paper, we consider a point-to-point wireless link
between an energy harvesting sensor node and a sink. The
channel and energy harvesting rate may vary over time. The
sensor node has a rechargeable battery and a data buffer with
finite capacity. Our objective is to maximize the expected
total amount of data transmitted until the sensor node stops
functioning. The sensor node needs to decide the amount of
energy it should allocate for sensing and transmission in each
allocation interval by taking into account the battery energy
level, data buffer level, energy harvesting rate, and channel
condition. The main contributions of our work are as follows:

• We study the energy allocation problem for sensing
and transmission in an energy harvesting sensor node.
We propose optimal energy allocation algorithms that
maximize the total amount of data transmitted over a
random length of time, for a general case with a finite data
buffer, and a special case with an infinite data backlog.

• For the general case, we formulate the problem as an
infinite-horizon discounted MDP and propose the OEA
algorithm by using the value iteration in MDP.

• For the special case, we prove that the optimal policy
has a monotone structure and propose an optimal trans-
mission energy allocation (OTEA) algorithm, which has
a lower complexity than the value iteration algorithm.
When applied to practical systems where the sensor needs
to allocate energy for sensing and the data buffer is finite,
the OTEA algorithm can also achieve a near-optimal
performance.

• We provide extensive simulation results to compare the
performance of the OEA algorithm, the OTEA algo-
rithm, the finite-horizon transmission energy allocation
(FHTEA) algorithm extended from [2], and the finite-
horizon optimal energy allocation (FHOEA) algorithm
from [1]. We study the impact of the average energy
harvesting rate, the battery capacity, the data buffer size,
the lifetime of the sensor node, and the data-sensing effi-
ciency (i.e., the amount of data that the sensor can sense
per unit energy) on the performance of total transmitted
data. The results show that the OEA algorithm transmits
the largest amount of data, and the OTEA algorithm
achieves a near-optimal performance.

Compared with the existing works in the literature [2],
[6]–[11], [13], [14], [18]–[20], [22], [24], [25], our system
model is more realistic because we take into account a finite
battery storage capacity, a finite data buffer, the unpredictable
nature of the energy harvesting rate and channel condition,
and the energy consumed for sensing, while the literature
mentioned above does not consider all of these practical issues.
In our earlier work in [1], we considered the energy allocation
problem in a finite horizon, where the lifetime of the sensor
is fixed. In this paper, however, we consider a more practical
setting, where the lifetime of the sensor is a random variable,
since the sensors are typically deployed in hostile outdoor
environments, and thus are highly susceptible to the random
physical destructions. Moreover, the optimal policies in an
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Fig. 1. The system model of an energy harvesting wireless sensor node
transmitting data to the receiver Rx of the sink. At allocation interval k,
the random variables are the energy to be harvested hk and the channel
gain αk . Due to channel feedback delay and the time required to track the
energy harvesting rate, we assume that the values of αk−1 and hk−1 are only
known at the beginning of allocation interval k. The optimization variables
(or actions) are the energy consumed for transmission ek and sensing sk . The
stored battery level is bk and the amount of data available in the buffer is
qk . x(sk) is the amount of data obtained by using sk amount of energy. The
amount of data transmitted in allocation interval k is min{µ(ek, αk), qk}.
Our problem is to optimally allocate ek and sk such that the expected total
amount of data transmitted till the sensor node stops functioning is maximized.

infinite-horizon MDP problem are typically stationary, and
thus are simpler to implement than those in a finite-horizon
MDP problem that vary in each allocation interval.

The rest of the paper is organized as follows: We describe
the system model in Section II and formulate our problem in
Section III. In Section IV, we first propose the OEA algorithm
that maximizes the expected total amount of data transmitted
using infinite-horizon MDP and then consider a special case
that assumes an infinite data backlog and no energy allocated
for sensing. In Section V, we discuss the possible extensions of
our model. In Section VI, we evaluate the performance of the
OEA algorithm and compare it with the OTEA algorithm, the
FHOEA algorithm, and the FHTEA algorithm. Conclusions
are given in Section VII.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an energy harvesting sensor
node [2], [6], [18], [25] which contains a rechargeable battery
with capacity bmax Joule and a data buffer with size qmax

Mbits. We assume that the system is time-slotted, where the
duration of a time slot, i.e., an allocation interval, is τ s.
Since sensor nodes are typically deployed in hostile outdoor
environments (e.g., for forestry fire and volcano monitoring
and detection, and battlefield surveillance [26]) in an unat-
tended and distributed manner, they are highly susceptible to
the physical destructions [27]–[29]. We let ν be the probability
that the sensor node can survive from the physical destruction
or hardware failure and continue to function in an allocation
interval, where ν ∈ [0, 1). For simplicity, we assume that ν is
fixed in all allocation intervals [23], [29]. Thus, the lifetime
K of the sensor node is a geometrically distributed random
variable with mean 1/(1−ν). Let k ∈ K , {0, 1, . . . ,K−1}
be the allocation interval index. The sensor node performs
sensing in the field, stores the sensed data in the buffer,
and transmits the data to the receiver Rx of the sink over
a wireless channel. Since the sensor node is exposed to
hazardous environment and easy to get destroyed, it aims to

maximize the total amount of data transmitted until the sensor
gets destroyed and stops functioning.

We consider an additive white Gaussian noise (AWGN)
channel with block flat fading. That is, the channel remains
constant for the duration of each allocation interval, but may
change at the slot boundaries. Let αk be the channel gain in
allocation interval k. We assume that the sink sends delayed
channel state information (CSI) of the previous allocation
interval back to the sensor node. At the beginning of allocation
interval k, the sensor node only knows the value of αk−1,
but not αk. The stored battery level is bk and the amount of
stored data in the data buffer is qk. During the whole allocation
interval k, the sensor node is able to replenish energy by hk,
which can be used for sensing or transmission in allocation
interval k + 1 onward. As a result, the sensor node does not
know the value of hk until the beginning of the next allocation
interval k + 1. In other words, at the beginning of allocation
interval k, the sensor node knows the value of hk−1, but not
hk.

If the channel gain is αk and the allocated transmission
energy is ek in allocation interval k, then the average instan-
taneous transmission power is ek

τ . We consider that the sensor
node is able to transmit µ(ek, αk) bits of data in allocation
interval k, where µ(ek, αk) is a monotonically non-decreasing
and concave function in ek given αk in general. One such
function is given by [30, pp. 172], [31], [32]:

µ(ek, αk) = τW log2

(
1 +

αkek
N0WτΓ

)
bits, (1)

where N0 is the power spectral density of the Gaussian noise,
W is the bandwidth of the channel, Γ is the signal-to-noise
ratio (SNR) gap used to measure the reduction of SNR with
respect to capacity, and it only depends on the error probability
requirements.

For sensing in allocation interval k, we let x(sk) be the
amount of data generated when sk units of energy are used for
sensing. In general, x(sk) is a monotonically non-decreasing
and concave function in sk. The data obtained by sensing in
allocation interval k will be stored in the data buffer until
they are transmitted in the subsequent allocation intervals. The
exact expressions of hk, αk, and x(sk) used for simulation
will be discussed in more details in Section VI. Since sensing
and transmission are the major tasks of a typical wireless
sensor node, we focus on the energy consumption of these
two aspects, and consider that other circuits in the sensor node
consume negligible energy.

At allocation interval k, the sensor node needs to choose
ek and sk, for all k ∈ K such that the expected total amount
of data transmitted is maximized. To achieve this goal, the
sensor has to maintain a good tradeoff between the energy
allocation for ek and sk. Given a fixed energy budget in an
allocation interval, if ek is too small, then the transmitted data
in allocation interval k will be small. However, if ek is too
large, then sk will be small such that insufficient amount of
sensing data is stored in the buffer for transmission in the next
allocation interval, which leads to a reduction in the amount
of data transmitted in future allocation intervals. In addition,
the total energy budget ek + sk in allocation interval k should
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Fig. 2. Timing diagram of a Markov decision process (MDP).

also be carefully controlled. If the energy management policy
is overly aggressive such that the rate of energy consumption
is greater than the rate of energy harvesting, the sensor node
may stop functioning because of the energy outage. On the
other hand, an overly conservative energy management policy
would limit the amount of data transmitted in each allocation
interval. Thus, it is a challenging problem to decide the values
of ek and sk optimally in each allocation interval k ∈ K.

III. PROBLEM FORMULATION

In this section, we formulate the problem of finding the
optimal energy allocation for sensing and transmission as
an MDP [16] [17], which consists of five elements: de-
cision epochs, states, actions, state transition probabilities,
and rewards. Referring to Fig. 2, the decision epochs are
k ∈ K = {0, 1, . . . ,K−1}. The state of the system is denoted
as y = (b, q, h, α), which includes the battery energy state b
and data buffer state q for the current allocation interval, as
well as the energy harvesting state h and channel state α in
the previous allocation interval. b, q, h, and α take discrete
values and are all bounded. We denote the state space as
Y = B × Q × H × A, where B is the set of battery energy
states, Q is the set of data buffer states, H is the set of energy
harvesting states, and A is the set of channel states. Y is
discrete and countable. Let yk denote the state of the system at
allocation interval k, i.e., yk = (bk, qk, hk−1, αk−1). First, for
the battery energy state in allocation interval k, the sensor node
harvests hk units of energy from the environment. On the other
hand, it consumes ek units of energy for data transmission and
sk units of energy for sensing. Because the battery energy
state is discrete, ek and sk also take discrete values. Since
the battery has a finite capacity bmax, the energy stored in the
battery is updated as

bk+1 = min{bk − (ek + sk) + hk, bmax}, ∀ k ∈ K. (2)

Eq. (2) ensures that the maximum stored energy bmax is not
exceeded. We assume that the initial energy b0 is known and
satisfies the constraint 0 ≤ b0 ≤ bmax. Moreover, the amount
of energy consumed for sensing and transmission must be no
more than the battery level:

ek + sk ≤ bk, ∀ k ∈ K. (3)

Second, for the data buffer state in allocation interval k, x(sk)
amount of sensing data is generated and queued up in the
data buffer if sk units of energy are allocated for sensing.
On the other hand, if the amount of data available in the
data buffer for transmission at allocation interval k is qk,
and ek units of energy are used for transmission, then the
amount of data transmitted and removed from the data buffer
at allocation interval k is given by min{µ(ek, αk), qk}. Since

the data buffer is finite with capacity qmax, the amount of data
in the buffer is then updated as

qk+1 = min{[qk − µ(ek, αk)]+ + x(sk), qmax}, ∀ k ∈ K,
(4)

where [z]+ = max{z, 0}. We assume that the initial amount of
data in the data buffer q0 is known and satisfies 0 ≤ q0 ≤ qmax.
Eq. (4) implies that if the sensor allocates too much energy
for transmission such that µ(ek, αk) > qk, then energy will be
wasted. Thus, the sensor should make a proper energy alloca-
tion decision at each allocation interval. Third, since the energy
harvesting rate and the current channel state information at
allocation interval k is not known to the sensor, we use two
independent first-order stationary Markovian models to model
hk

1 and αk [2], [20], [34]. The transition probability of these
two independent random variables are denoted as P (hk |hk−1)
and P (αk |αk−1).

Based on the current state yk at allocation interval k, an
action ak = (ek, sk) is taken for transmission and sensing
energy allocation from its feasible set U(yk). We have

ak ∈ U(yk) = {(e, s) | e+ s ≤ bk, e ≥ 0, s ≥ 0}, (5)

where U(yk) represents the feasible set of the action ak
given the current state yk at allocation interval k, and is
discrete and finite. In addition, it is possible to impose ad-
ditional constraints on ak. For example, a constraint on the
minimum amount of energy for sensing or transmission to
ensure a minimum amount of sensed data or transmitted data
for each allocation interval, respectively. Also, a maximum
transmission power constraint can be imposed.

The state transition probability P (yk+1 |yk,ak) is the
probability that the system will go into state yk+1 if action
ak is taken at state yk at allocation interval k. Due to
the independence between (bk+1, hk) and (qk+1, αk) for all
k ∈ K, we can simplify the state transition probability as

P (yk+1 |yk,ak)

= P (bk+1, qk+1, hk, αk | bk, qk, hk−1, αk−1, ek, sk)

= P (bk+1, hk | bk, hk−1, ek, sk)P (qk+1, αk | qk, αk−1, ek, sk)

= P (bk+1 | bk, hk, ek, sk)P (hk |hk−1)

×P (qk+1 | qk, αk, ek, sk)P (αk |αk−1), (6)

where

P (bk+1 | bk, hk, ek, sk) =

{
1, if Eq. (2) is satisfied,
0, otherwise, (7)

and

P (qk+1 | qk, αk, ek, sk) =

{
1, if Eq. (4) is satisfied,
0, otherwise. (8)

Eqs. (7) and (8) are due to the deterministic state element tran-
sitions described in Eqs. (2) and (4), respectively. Otherwise,
there will not be any state transitions as stated in the second
line of Eqs. (7) and (8).

1For example, it was shown in [33] that the stationary Markovian model is
suitable for modeling the solar energy harvesting rate. Moreover, the work in
[9] showed how to treat a stochastic model with an independent and identically
distributed (i.i.d.) energy source as an MDP.



Given the current state yk and the action ak,
Eαk [µ(ek, αk) |αk−1] is the expected amount of data
that can be transmitted when ek units of energy are used for
transmission. However, since the data available in the data
buffer for transmission at allocation interval k are qk, the
expected amount of data transmitted at allocation interval k
is given by Eαk [min{µ(ek, αk), qk} |αk−1]. We define the
reward at allocation interval k, r(yk,ak) to be the expected
amount of data transmitted at allocation interval k. That is,

r(yk,ak) = Eαk [min{µ(ek, αk), qk} |αk−1]. (9)

A decision rule prescribes a procedure for the selection of an
action in each state at a specified allocation interval. We denote
the most general decision rule, i.e., the randomized history
dependent decision rule [17, pp. 21] at allocation interval k
as δk. A general policy π = (δ0, δ1, . . . .δK−1) is a sequence
of decision rules to be used at all the allocation intervals.
A feasible policy should satisfy Eq. (5) at all the allocation
intervals. Let Π be the feasible set of π. Then, for any given
state y0 = (b0, q0, h−1, α−1) at the first allocation interval,
the expected total reward between the first allocation interval
till the sensor stops functioning with policy π ∈ Π is given
by [17, pp. 125]:

Jπ(y0) = E

{
EK

{
K−1∑
k=0

r(yk,ak)

}∣∣∣∣∣y0, π

}
, (10)

where E{·} denotes the statistical expectation taken over all
relevant random variables given initial state y0 and policy π.
EK{·} denotes the expectation with respect to the random
variable K, which is the lifetime of the sensor node. It should
be noted that with a different policy π and initial state y0, a
different action will be chosen in each allocation interval in
general, which results in a different state transition probability
when the expectation E{·} is computed.

Based on the geometric distribution of the lifetime K of the
sensor node with mean 1/(1 − ν), Eq. (10) is equivalent to
the objective function of infinite-horizon MDP with discounted
reward given by [17, Proposition 5.3.1]:

Jπ(y0) = E

{ ∞∑
k=0

νkr(yk,ak)

∣∣∣∣∣ y0, π

}
. (11)

Here, we can interpret ν as the discount factor of the model.
Since the sensor node will stop functioning at some time in
the future, the reward at allocation interval k is discounted by
a factor νk.

Lemma 1: Jπ(y0) defined in Eq. (11) is finite. That is
|Jπ(y0)| <∞.

Proof: Since

sup
a∈U(y),y∈Y

|r(y,a)|

= max
α∈A

{
Eα′ [min{µ(bmax, α

′), qmax} |α]
}
<∞, (12)

the objective function Jπ(y0) of the infinite-horizon MDP
converges to a finite value [17, pp. 121].

The sensor node aims to find an optimal sensing and
transmit energy allocation policy that maximizes the expected

total discounted reward given in Eq. (11). That is, given the
initial state y0, the sensor aims to obtain the optimal expected
total discounted reward J(y0) and the optimal policy π∗

defined as

J(y0) = max
π∈Π

Jπ(y0) and π∗ = arg max
π∈Π

Jπ(y0). (13)

A policy is said to be stationary deterministic if δk is
deterministic Markovian [17, pp. 21] and δk = δ for all k ∈ K
such that π = (δ, δ, . . .). For the rest of the paper, a general
policy is denoted by π, while a stationary deterministic policy
is denoted by δSD. For an infinite-horizon MDP, the only case
of interest is when an optimal stationary deterministic policy
exists. Thus, our objective is to find an optimal stationary
deterministic policy δSD∗, which maximizes the expected total
discounted reward in Eq. (11).

IV. ENERGY ALLOCATION ALGORITHMS

In this section, we obtain the optimal stationary determinis-
tic policies for energy allocation. First, we consider a general
case that takes into account a finite data buffer and the energy
allocated for sensing. Next, we study a special case where we
assume that there is an infinite data backlog.

A. General Case

In this subsection, we obtain the optimal stationary deter-
ministic policy for the general case. An OEA algorithm that
achieves the maximum expected total discounted reward in Eq.
(13) is proposed based on the value iteration algorithm [17,
pp. 161].

The optimal expected total discounted reward J(y) given
current state y satisfies the Bellman’s equation of optimality
[17]:

J(y) = max
a∈U(y)

r(y,a) + ν
∑
y′∈Y

P (y′ |y,a)J(y′)

 .

(14)
In Eq. (14), the first and second terms on the right hand side
represent, respectively, the immediate reward at the current
allocation interval and the expected total discounted future
reward if action a is chosen. Hence, Eq. (14) describes the
tradeoff between the current reward and the expected future
reward. As mentioned in Section III, for an infinite-horizon
MDP, the only case of interest is when an optimal stationary
deterministic policy exists.

Theorem 1: There exists an optimal stationary determinis-
tic policy δSD∗ that maximizes the right hand side of Eq. (14),
given by

δSD
∗
(y) = arg max

a∈U(y)

r(y,a) + ν
∑
y′∈Y

P (y′ |y,a)J(y′)

 .

(15)
Proof: Notice that the system state space Y is countable

and discrete, and U(y) is finite for each y ∈ Y . From [17,
Theorem 6.2.10], an optimal stationary deterministic policy
exists.



Algorithm 1 Optimal Energy Allocation (OEA) Algorithm for
Energy Harvesting Sensor Node.

1: Planning Phase:
2: Arbitrarily select J0(y) for each y ∈ Y , specify ε > 0, and set
n := 0.

3: For each y ∈ Y , compute Jn+1(y) by

Jn+1(y) := max
a∈U(y)

r(y,a) + ν
∑
y′∈Y

P (y′ |y,a)Jn(y′)

 .

(16)
4: If ||Jn+1 − Jn|| < ε(1−ν)

2ν
, go to line 5. Otherwise increment

n by 1 and go to line 3.
5: For each y ∈ Y , choose stationary ε-optimal policy

δSD
∗
(y) := arg max

a∈U(y)

r(y,a)+ν
∑
y′∈Y

P (y′ |y,a)Jn+1(y′)

,
(17)

and stop.
6: Sensing and Transmission Phase:
7: Set k := 0.
8: while k ≤ K − 1 do
9: Track the energy harvesting rate of the previous allocation

interval hk−1.
10: Track the energy available for use in the battery bk.
11: Track the amount of data in the buffer qk.
12: Obtain the channel feedback αk−1 from the sink.
13: Set y := (bk, qk, hk−1, αk−1).
14: Obtain action δSD

∗
(y) := (e∗(y), s∗(y)) based on the

optimal policy.
15: Consume e∗(y) amount of energy for transmission and s∗(y)

amount of energy for sensing.
16: Update battery energy bk+1 using Eq. (2) and the amount of

data in the buffer qk+1 using Eq. (4).
17: Set k := k + 1.
18: end while

We then propose the OEA algorithm in Algorithm 1. In the
planning phase, the sensor solves for the optimal stationary
deterministic policy δSD∗ based on value iteration algorithm,
and records it as a look-up table. Specifically, in line 2, we
initialize J0(y) for all y ∈ Y arbitrarily, specify the error
bound ε, and set the iteration sequence n to be 0. In line 3,
we compute Jn+1(y) for each y ∈ Y based on the knowledge
of Jn(y). In line 4, we first check whether ||Jn+1 − Jn|| <
ε(1−ν)

2ν holds where Jn+1 = (Jn+1(y), ∀y ∈ Y ) and
Jn = (Jn(y), ∀y ∈ Y ), and the norm function is defined
to be ||J || = max |J(y)| for y ∈ Y . If the inequality
holds, which means that the value iteration algorithm has
converged, then we proceed to obtain the optimal stationary
deterministic policy δSD

∗ in line 5 and stop. Otherwise, we
go back to line 3 and continue to iterate. In the sensing
and transmission phase, the sensor node chooses the action
δSD

∗
(y) = (e∗(y), s∗(y)) based on current system state y

and the optimal stationary deterministic policy δSD
∗ in line

14. That is, it consumes e∗(y) and s∗(y) amount of energy
for transmission and sensing, respectively.

For the convergence, Jn(y) generated in line 3 converges
in norm to J(y) for all y ∈ Y . The stationary policy δSD

∗

defined in line 5 is ε-optimal, and whenever the convergence
criterion ||Jn+1 − Jn|| < ε(1−ν)

2ν is satisfied, ||Jn+1 − J || <

ε/2 holds [17, Theorem 6.3.1(d)], where J = (J(y), ∀y ∈
Y ) is the vector of optimal expected total discounted reward
defined in Eq. (14). Besides, the convergence is linear at rate
ν [17, Theorem 6.3.3]. In practice, choosing ε small enough
ensures to obtain a policy that is very close to optimal.

The following property described in Lemma 2 is intuitive
and is used for establishing the structural result of the optimal
policy in Theorem 2. If more energy is available in the battery
(i.e., a larger b), we can allocate more energy for sensing and
transmission so that the total reward J increases. Similarly, if
more data are available in the data buffer for transmission (i.e.,
a larger q), we can then allocate less energy for sensing and
more energy for transmission, which would result in a larger
total reward J .

Lemma 2: (a) J(b, q, h, α) is increasing in battery state b
for any given data buffer state q, energy harvesting state h,
and channel state α. (b) J(b, q, h, α) is increasing in q for any
given b, h and α.

Proof: We prove Lemma 2 by mathematical induction.
In order to show that J(b, q, h, α) is increasing in b and q,
we aim to prove that Jn(b, q, h, α) generated by Eq. (16)
in Algorithm 1 is increasing in b and q for all n. Since for
any initialization J0(b, q, h, α), Jn(b, q, h, α) converges to the
same optimal expected total discounted reward J(b, q, h, α)
[17], we can select J0(b, q, h, α) which is increasing in b and
q. Assume Jn(b, q, h, α) is increasing in b and q. We expand
Eq. (16) as

Jn+1(b, q, h, α) = max
a∈U(y)

{
Eα′ [min{µ(e, α′), q} |α] +

νEh′,α′
[
Jn

(
min{b− (e+ s) + h′, bmax},

min{[q − µ(e, α′)]+ + x(s), qmax}, h′, α′
)
|h, α

]}
. (18)

Note that the first term on the right hand side of Eq. (18) is
independent of b and increasing in q, and the second term is in-
creasing in b and q based on the assumption that Jn(b, q, h, α)
is increasing in b and q. Therefore, Jn+1(b, q, h, α) is in-
creasing in b and q. By induction, Jn(b, q, h, α) is increasing
in b and q for all n. Thus J(b, q, h, α) = J∞(b, q, h, α) is
increasing in b for any given q, h and α. Moreover, it is
increasing in q for any given b, h and α.

B. Special Case: Infinite Data Backlog

In this subsection, we consider a special case where the
sensor has an infinite data backlog. As a result, we do not need
to consider the sensing energy s and the data buffer state q. So
the system state is left with three elements: the battery energy b
for current allocation interval, the energy harvesting rate h, and
the channel state α for the previous allocation interval. Based
on the current system state, the sensor will choose e units of
energy for transmission. We denote the expected optimal total
discounted reward as Ĵ(b, h, α), which satisfies the following
Bellman’s equation of optimality:

Ĵ(b, h, α) = max
0≤e≤b

{
Eα′ [µ(e, α′) |α] + νJ̄(b− e, h, α)

}
, (19)



where
J̄(b̂, h, α) = Eh′,α′ [Ĵ(min{b̂+ h′, bmax}, h′, α′) |h, α]. (20)

The first term on the right hand side of Eq. (19) represents
the immediate reward for allocating e units of energy for
transmission, and the second term represents the total future
discounted reward. Eq. (19) can be solved via the value
iteration algorithm as in Section IV-A. However, we can prove
some properties related to Ĵ(b, h, α) and J̄(b̂, h, α) in Lemmas
3 and 4, which leads to the monotone policy [17] in Theorem
2.

Lemma 3: (a) Ĵ(b, h, α) is concave in b for any given h
and α. (b) J̄(b̂, h, α) is concave in b̂ for any given h and α.

The proof of Lemma 3 is given in Appendix A. Since
µ(e, α′) is concave in e, Eα′ [µ(e, α′) |α] is also concave in e.
By applying Lemma 3(b), νJ̄(b−e, h, α) is concave in (b−e).
Thus, the concavities of the two terms in Eq. (19) translate into
a diminishing marginal reward for consuming energy at the
current allocation interval, and saving energy for the future
allocation intervals, respectively. Balancing these two terms
properly results in an optimal policy.

Lemma 4: Ĵ(b, h, α) is increasing in b for any given h and
α.

The proof is quite similar with the proof of Lemma 2, and
is omitted due to page limitation.

Theorem 2: For the optimal stationary deterministic policy

ê∗(b, h, α) = min

{
e′ ∈ arg max

0≤e≤b
{Eα′ [µ(e, α′) |α]

+ νJ̄(b− e, h, α)
}}

, (21)

it is monotone increasing in b for any given h and α. That is,
for any b′ ≥ b, we have

ê∗(b′, h, α) ≥ ê∗(b, h, α), ∀h ∈ H,∀α ∈ A. (22)

The proof of Theorem 2 is given in Appendix B. With this
monotone structure, we can significantly reduce the computa-
tional complexity of the value iteration algorithm, and propose
our OTEA algorithm in Algorithm 2. The planning phase of
the OTEA algorithm and OEA algorithm (i.e., Algorithm 1)
are similar. The main difference is the procedure in computing
Ĵn+1(b, h, α) in Eq. (23) in Algorithm 2, which has a lower
complexity than that of the OEA algorithm. Specifically, in
line 6 of Algorithm 2, for any given h ∈ H and α ∈ A, we
have ên+1(b + ∆b, h, α) ≥ ên+1(b, h, α) from the proof of
Theorem 2, where ∆b is the quantization resolution of battery
energy. When we compute Ĵn+1(b+ ∆b, h, α) and search for
ên+1(b + ∆b, h, α), we can find the optimal solution in the
interval of [ên+1(b, h, α), b+∆b] instead of the longer interval
[0, b + ∆b]. In the sensing and transmission phase, when we
apply our OTEA algorithm to a practical system, we still need
to take into account the energy for sensing. In this way, we
fix the percentage of energy allocated for sensing to be p in
line 19. Notice that the proper value of p can be obtained
by simulation-based approaches [35]. For example, we can
run the algorithm with different p, and find the optimal value
of p that achieves performance which is close to the optimal
performance of the OEA algorithm. The other operations in

Algorithm 2 Optimal Transmission Energy Allocation
(OTEA) Algorithm for Energy Harvesting Sensor Node.

1: Planning Phase:
2: Arbitrarily select Ĵ0(b, h, α) for each b ∈ B, h ∈ H, α ∈ A ,

specify ε > 0, ∆b > 0, and set n := 0.
3: for each h ∈ H, α ∈ A do
4: Set b := 0 and l := 0.
5: while b ≤ bmax do
6: Compute

Ĵn+1(b, h, α) := max
l≤e≤b

{
Eα′ [µ(e, α′) |α]

+νEh′,α′ [Ĵn(min{b− e+ h′, bmax}, h′, α′) |h, α]
}
, (23)

ên+1(b, h, α) := min

{
e′ ∈ arg max

l≤e≤b

{
Eα′ [µ(e, α′) |α]

+νEh′,α′ [Ĵn(min{b− e+ h′, bmax}, h′, α′) |h, α]
}}

.

7: Set b := b+ ∆b, l := ên+1(b, h, α).
8: end while
9: end for

10: If ||Ĵn+1 − Ĵn|| < ε(1−ν)
2ν

, go to line 11. Otherwise increment
n by 1 and go to line 3.

11: For each b ∈ B, h ∈ H, α ∈ A, choose stationary ε-optimal
policy

δ̂SD
∗
(b, h, α) := arg max

0≤e≤b

{
Eα′ [µ(e, α′) |α]

+νEh′,α′ [Ĵn+1(min{b− e+ h′, bmax}, h′, α′) |h, α]
}
, (24)

and stop.
12: Sensing and Transmission Phase:
13: Set k := 0.
14: while k ≤ K − 1 do
15: Track the energy harvesting rate of the previous allocation

interval hk−1.
16: Track the energy available for use in the battery bk.
17: Track the amount of data in the buffer qk.
18: Obtain the channel feedback αk−1 from the sink.
19: Choose the amount of energy for sensing to be ŝ∗ := pbk,

where p is the fixed percentage of energy for sensing.
20: Choose the amount of energy for transmission to be ê∗ :=

δ̂SD
∗
((1 − p)bk, hk−1, αk−1) based on the policy δ̂SD

∗

obtained in Step 11.
21: Consume ê∗ amount of energy for transmission and ŝ∗ amount

of energy for sensing.
22: Update battery energy bk+1 using Eq. (2) and the amount of

data in the buffer qk+1 using Eq. (4).
23: Set k := k + 1.
24: end while

the sensing and transmission phase are the same as that in the
OEA algorithm.

The running time of each iteration in the value iteration
algorithm is O(N2

stateNaction) [36], where Nstate is the total
number of system states, and Naction is the total number of
actions in the action space. In the general case discussed in
Section IV-A, there are |B| × |Q| × |H| × |A| system states,
and the maximum number of actions is equal to (|B|+1)|B|

2 .
Since many of the state transition probabilities in Eq. (6) are
equal to 0, the running time of each iteration in Algorithm
1 can be reduced to O(|B||Q||H|2|A|2 × (|B|+1)|B|

2 ). On the



other hand, the running time of each iteration in Algorithm
2 is O(|B||H|2|A|2 × |B|). Thus, we can see that Algorithm
2 has a lower computational complexity than Algorithm 1,
and meanwhile achieves a near-optimal performance when a
proper value of p is chosen, which will be shown later in the
simulation results in Section VI.

Although some energy is consumed and some delay is
incurred in order to compute the optimal policy, it should be
noted that since the optimal policy can be computed offline,
we can handle the computation-intensive operations before
the deployment of the sensor nodes. Specifically, we first
obtain the statistics related to the variations of the energy
harvesting state h and the channel state α. Next, with this
information, we compute the optimal policy π in the planning
phase in Algorithms 1 or 2 offline with computers. Then, we
load the optimal policy into the sensor nodes, and deploy
them for the sensing application. In the field, each node
determines its sensing and transmission decision in the sensing
and transmission phase in Algorithms 1 or 2 by checking the
optimal policy π as a table lookup, which has a small energy
consumption and delay.

V. MODEL EXTENSIONS

In this section, we discuss different possible extensions of
our model.

1) Network Model: In this paper, we consider the commu-
nication between a sender and a receiver. For the extension to
the multi-hop network model, issues such as scheduling and
routing should be considered [11], [13].

2) Time Scales: We assumed in this work that the variations
in wireless channel condition and energy harvesting rate are
in the same time scale. To improve the accuracy of the
modeling, we may consider a hierarchically structured problem
with two different time scales, and apply the multitime scale
Markov devision processes (MMDPs) [37]. Specifically, we
may consider a fast time-scale involving the channel state α
and the transmission decision e. Then, we may consider a
slow time-scale involving the energy harvesting state h and
the sensing decision s. The two time scales are coupled by
the battery energy state b and the data buffer state q.

3) Transmission Errors: Similar to the previous works (such
as [2], [14]) in energy harvesting sensor networks, we do not
take into account the details of the erroneous transmission in
the physical layer, which is an interesting direction for further
research. For the issues related to packet errors and retrans-
missions, we notice that they depend on the error control of
the link layer protocol [38], which is chosen according to the
requirements of the wireless sensor application.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our OEA,
OTEA, FHTEA, and FHOEA algorithms in terms of the total
amount of data transmitted. The FHTEA algorithm is extended
based on the algorithm proposed in [2]. The FHOEA algorithm
is from [1]. These two algorithms are used for comparison with
our proposed algorithms. We consider a band-limited AWGN
channel, where the channel bandwidth is W = 100 kHz and

B N G

PBN

PNB PGN

PGG

PNG

PBB

PNN

Fig. 3. A three-state Markov chain for the channel gain, where “B”, “N”, and
“G” represent the channel in the bad, normal, and good states, respectively.

the noise power spectral density is N0 = 10−18 W/Hz. The
channel state can be “G = Good”, “N = Normal”, or “B =
Bad”. It evolves according to the three-state Markov chain [39]
as shown in Fig. 3 with the transition matrix of the Markov
chain given by

Pα=

 PBB PBN PBG
PNB PNN PNG
PGB PGN PGG

=

 0.3 0.7 0
0.25 0.5 0.25
0 0.7 0.3

, (25)

where PXZ represents the probability of the channel state
evolving from state X to state Z, X and Z ∈ {B,N,G}.
The channel gain α at the “Bad”, “Normal”, and “Good”
states are equal to 2 × 10−13, 4 × 10−13, and 6 × 10−13,
respectively. We set the symbol error rate (SER) requirement
to be 10−3 [32]. Since the SNR gap Γ only depends on SER,
i.e., Γ = 1

3 (Q−1(SER4 ))2 [32], Γ is equal to 4. Unless specified
otherwise, we assume that the battery buffer size bmax = 30
J [10], [11], and the data buffer size qmax = 0.5 Mbits. The
initial amount of energy in the battery is 10 J and the initial
amount of data in the buffer is 0.1 Mbits. For tractability, we
assume that the energy harvesting rate hk takes values from
the finite set H = {H1, H2, H3} = {4, 8, 12} J/allocation
interval [4], and evolves according to the three-state Markov
chain with the state transition probability given by

Ph=

 PH1H1 PH1H2 PH1H3

PH2H1 PH2H2 PH2H3

PH3H1
PH3H2

PH3H3

=

 0.5 0.5 0
0.25 0.5 0.25
0 0.5 0.5

 ,
(26)

where PHiHj represents the probability of the energy harvest-
ing state going from state Hi to state Hj , ∀ i, j ∈ {1, 2, 3}.
The steady state probability is then given by [PH1 PH2 PH3 ] =
[0.25 0.5 0.25]. x(sk) is assumed to be a linear function of
sk given by x(sk) = γsk [19], where γ is the data-sensing
efficiency parameter (i.e., the amount of data that the sensor
can sense per unit energy). We adopt γ = 0.08 Mbits/J. For
the value iteration algorithm, we choose ε to be 10−3 and the
discount factor ν to be 0.95.

The FHTEA algorithm in [2] assumed infinite backlogged
data and neglected the sensing energy. For fair comparison, we
modify the FHTEA algorithm by allowing the data buffer to
be finite with size qmax. We assume that the sensor allocates
a fixed percentage of battery energy for sensing in each
allocation interval. The optimization problem is to maximize
the total amount of transmitted data with the energy allocated
for transmission in each allocation interval as the optimization
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Fig. 4. The total amount of data transmitted of OTEA algorithm under
different percentage of energy allocated for sensing p. Since the OEA
algorithm does not allocate a fixed amount of energy for sensing, its total
amount of data transmitted is independent of p.

variable. Besides, the FHTEA algorithm in [2] considered the
energy allocation over a finite horizon, where the lifetime of
the sensor node is known. So we fix the sensor lifetime in
the FHTEA algorithm to be equal to the mean of the sensor
lifetime in the OEA and OTEA algorithms. In the FHOEA al-
gorithm, the sensor takes into account the energy allocated for
sensing, but neglects the randomness of the sensor lifetime by
fixing the sensor lifetime to be a constant. By comparing with
the FHTEA algorithm and FHOEA algorithm , which have
a similar system model as the OEA and OTEA algorithms,
we can see clearly the performance gain by taking into the
account the limited size of the data buffer, the sensing energy,
and the randomness of the sensor lifetime.

Since the performance of the OTEA algorithm is related
to the fixed amount of energy allocated for sensing p, we
examine the total amount of data (computed in the expected
sense) transmitted by the OTEA algorithm under different
percentage of energy allocated for sensing, and compare with
the OEA algorithm. As shown in Fig. 4, with around 50% of
the available battery energy allocated for sensing, the OTEA
algorithm transmits the largest amount data, and it is close to
that of the OEA algorithm. This implies that we can apply the
OTEA algorithm, which has a lower complexity than the OEA
algorithm, and choose the optimal fixed percentage of energy
for sensing to achieve a near-optimal performance.

Moreover, the optimal percentage of energy allocated for
sensing for the OTEA algorithm depends on the data-sensing
efficiency γ, the average energy harvesting rate H̄ , and the
average channel gain ᾱ. With a larger γ, the sensor can sense
more data using the same amount of energy. Fig. 5 shows that
as γ increases, the optimal percentage of energy for sensing
decreases. Fig. 6 shows the optimal percentage of energy
allocated for sensing under different average energy harvesting
rate H̄ . As H̄ increases, the optimal percentage of energy
allocated for sensing actually decreases. Fig. 7 shows that the
optimal percentage of energy allocated for sensing increases
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Fig. 5. The optimal percentage of energy allocated for sensing under different
data-sensing efficiency γ for the OTEA algorithm.
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Fig. 6. The optimal percentage of energy allocated for sensing under different
average energy harvesting rate H̄ for the OTEA algorithm.

as average channel gain ᾱ increases. As ᾱ increases, the data
transmission is more efficient, and the sensor can allocate less
energy for transmission and more energy for sensing. When
ᾱ is very large, which means that the data transmission is
extremely efficient, the sensor would allocate almost all of the
incoming energy for sensing.

We then examine the total amount of data transmitted by the
OEA algorithm, the OTEA algorithm, the FHOEA algorithm,
and the FHTEA algorithm under different average energy
harvesting rates H̄ , where H̄ =

∑3
i=1HiPHi . For the OTEA

and FHTEA algorithms, the percentage of energy allocated
for sensing p is fixed to be 50%. In Fig. 8, we plot the total
amount of data transmitted against different average energy
harvesting rate for these three algorithms. We observe that
the OEA algorithm performs better than the OTEA algorithm,
the FHOEA algorithm, and the FHTEA algorithm, since the
OEA algorithm achieves the optimal performance by solving
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Fig. 7. The optimal percentage of energy allocated for sensing under different
average channel gain ᾱ for the OTEA algorithm.
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Fig. 8. The total amount of data transmitted of the four algorithms for
different average energy harvesting rates H̄ .

the problem (13). Moreover, the OTEA algorithm has a
better performance than the FHOEA and FHTEA algorithms.
It is because the OTEA algorithm takes into account the
randomness of the lifetime of the sensor node, while the
FHOEA and FHTEA algorithms just consider the lifetime of
the sensor node as a constant. Moreover, the total amount
of data transmitted by these four algorithms saturates as the
average harvesting rate is increased beyond a certain level.
It is because when the energy harvesting rate is larger than
the battery capacity, part of the harvested energy cannot be
accommodated, and is lost due to the overflow of the battery
energy.

Next, we examine the total amount of data transmitted of
the OEA and OTEA algorithms under different data-sensing
efficiency γ. As shown in Fig. 9, when γ is increased, the total
amount of data transmitted increases as well, because more
energy is left for data transmission. However, the performance
saturates as γ is increased beyond a certain value. To the
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Fig. 9. The total amount of data transmitted of the OEA algorithm and the
OTEA algorithm for different values of data-sensing efficiency parameter γ.
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Fig. 10. The total amount of data transmitted of the OEA algorithm and the
OTEA algorithm for different battery storage capacity bmax.

extreme when γ approaches infinity, it corresponds to the case
where the sensing is extremely efficient. The total amount of
data transmitted in this case provides an upper bound for the
performance of the OEA algorithm for the sensor node with
different sensing efficiency.

Fig. 10 shows the impact of the battery storage capacity
bmax on the total amount of data transmitted. We consider
that the value of h is taken from the set H = {20, 24, 28}
J/allocation interval. As shown in Fig. 10, the total amount
of data transmitted increases as the battery storage capacity
bmax increases. It is because with a larger battery storage
capacity bmax, the sensor node can manage the harvested
energy better since the sensor can save more energy for future
use if necessary. In other words, the sensor has more freedom
to manage the incoming energy when bmax is larger. The
total amount of data transmitted saturates when bmax goes
to large values because under current energy harvesting rates,
the battery energy level never exceeds some value, thus for
all the battery capacities bmax that are larger than that certain
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Fig. 11. The total amount of data transmitted of the OEA algorithm and the
OTEA algorithm for different data buffer size qmax.
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Fig. 12. The total amount of data transmitted of the OEA algorithm and the
OTEA algorithm for different values of discount factor ν.

value, the sensor has the same performance.
In Fig. 11, we study the impact of the data buffer size qmax

on the total amount of data transmitted by the OEA and OTEA
algorithms. We can observe that the total amount of trans-
mitted data increases when qmax increases. The performance
saturates when qmax is increased to a certain large value. This
means that the amount of data in the buffer never exceeds
a certain level under the optimal energy allocation policy.
Otherwise, we should have observed that the total amount
of transmitted data would continue to increase with the data
buffer size qmax.

Finally, we study the total amount of transmitted data of
the OEA algorithm and the OTEA algorithm under different
discount factors ν. Since 1/(1 − ν) represents the average
lifetime of the sensor node, a larger ν corresponds to a longer
lifetime, which leads to a larger total amount of data transmit-
ted. In Fig. 12, the total amount of data transmitted increases
as the discount factor ν increases. When ν approaches 1,
where the lifetime of the sensor node approaches infinity, the
total amount of transmitted data goes to infinity. Besides, the

number of iterations required for the value iteration algorithm
to converge depends on the value of ν. With a larger ν, a
larger number of iterations is required.

VII. CONCLUSIONS

In this paper, we studied the problem of maximizing the
expected total amount of data transmitted for an energy
harvesting sensor node under energy harvesting rate variations
and channel fluctuations in a time-slotted system. A finite
data buffer and the energy consumed for sensing data were
considered for the first time. In this case, the sensor should
achieve a good tradeoff between the energy consumed for
sensing and transmission so as to achieve a large amount of
total transmitted data. Since the lifetime of the sensor node
is a random variable with geometric distribution, we formu-
lated the problem as an infinite-horizon MDP. We obtained
the optimal energy allocation policy and proposed an OEA
algorithm based on value iteration in MDP. We also studied the
transmission energy allocation problem under the assumption
that there was infinite data backlog. We obtained structural
results for the OTEA policy and proved that the OTEA policy
was a monotonically increasing function of the available bat-
tery energy. Finally, we provided extensive simulation results
to compare the performances of the OEA, OTEA, FHOEA,
and FHTEA algorithms. We studied the impact of the average
energy harvesting rate, the data-sensing efficiency, the battery
capacity, the data buffer size and the lifetime of the sensor
node on the total amount of data transmitted. The results
showed that the OEA algorithm transmitted the largest amount
of data among the three algorithms. Moreover, we showed
that the OTEA algorithm can also be applied to a practical
system and achieves a near-optimal performance with a lower
computational complexity than the OEA algorithm, when the
fixed percentage of energy for sensing was chosen properly
using simulation-based approaches. An interesting topic for
future work is the extension of our model to a multi-hop setting
for data transmission.

APPENDIX

A. Proof of Lemma 3

We prove Lemma 3 by mathematical induction. The optimal
discounted reward Ĵ(b, h, α) is obtained by the value iteration
algorithm, given by

Ĵn+1(b, h, α) = max
0≤e≤b

{
Eα′ [µ(e, α′) |α] + νJ̄n(b− e, h, α)

}
,

(27)
where
J̄n(b̂, h, α) = Eh′,α′ [Ĵn(min{b̂+ h′, bmax}, h′, α′) |h, α].(28)

Since for any initialization Ĵ0(b, h, α), the sequence
Ĵn(b, h, α) generated by Eq. (27) converges to the optimal
discounted reward Ĵ(b, h, α), we can choose such Ĵ0(b, h, α)
that is concave in b for any given h and α. Assume Ĵn(b, h, α)
is concave in b for any given h and α . We denote the optimal
action that achieves Ĵn+1(b1, h, α) by e1, and the optimal



action that achieves Ĵn+1(b2, h, α) by e2. Then, we have

Ĵn+1(b1, h, α) = Eα′ [µ(e1, α
′) |α] + νJ̄n(b1 − e1, h, α), (29)

Ĵn+1(b2, h, α) = Eα′ [µ(e2, α
′) |α] + νJ̄n(b2 − e2, h, α). (30)

Since µ(e, α′) is concave in e for any given α′,
Eα′ [µ(e, α′) |α] is also concave in e because it is a weighted
sum of concave functions. We then prove that J̄n(b̂, h, α) is
concave in b̂. We can follow the procedure of the proof of
Lemma 2 and easily prove that Ĵn(b′, h′, α′) is increasing in
b′ for given h′ and α′ for all n. We already assume at the begin-
ning of the proof that Ĵn(b′, h′, α′) is concave in b′ for given h′

and α′. And b′ = min{b̂+h′, bmax} is a concave function in b̂
[40]. Thus, by applying the results of composition [40, (3.10)],
we can conclude that Ĵn(min{b̂+h′, bmax}, h′, α′) is concave
in b̂ for given h′ and α′, which indicates that J̄n(b̂, h, α) is
concave in b̂, since it is a weighted sum of concave functions.

Now combining Eq. (29) and (30), and using the concavity
of Eα′ [µ(e, α′) |α] and J̄n(b̂, h, α), we have

λĴn+1(b1, h, α) + (1− λ)Ĵn+1(b2, h, α)

≤ Eα′ [µ(eλ, α
′) |α] + νJ̄n(bλ − eλ, h, α), (31)

where eλ = λe1 + (1 − λ)e2, bλ = λb1 + (1 − λ)b2. Since
0 ≤ e1 ≤ b1 and 0 ≤ e2 ≤ b2, we have 0 ≤ eλ ≤ bλ. By
applying the definition of maximum and Ĵn+1(b, h, α) in Eq.
(27), we have

Eα′ [µ(eλ, α
′) |α] + νJ̄n(bλ − eλ, h, α)

≤ max
0≤e≤bλ

{
Eα′ [µ(e, α′) |α] + νJ̄n(bλ − e, h, α)

}
= Ĵn+1(bλ, h, α). (32)

Combining inequalities (31) and (32), we have

λĴn+1(b1, h, α) + (1− λ)Ĵn+1(b2, h, α)

≤ Ĵn+1(λb1 + (1− λ)b2, h, α). (33)

Inequality (33) shows that Ĵn+1(b, h, α) is concave in b for
given h and α. By induction, we can conclude that Ĵn(b, h, α)
is concave in b for given h and α for all n. Also, J̄n(b̂, h, α)
is concave in b̂ for all n. Hence, Ĵ(b, h, α) = Ĵ∞(b, h, α) is
concave in b for given h and α, and J̄(b̂, h, α) = J̄∞(b̂, h, α)
is concave in b̂ for given h and α .

B. Proof of Theorem 2

We prove Theorem 2 by applying [41, Theorem 2]. We aim
to prove that ên+1(b, h, α), which is defined as

ên+1(b, h, α) = (34)

min

{
e′ ∈ arg max

0≤e≤b

{
Eα′ [µ(e, α′) |α] + νJ̄n(b− e, h, α)

}}
,

is increasing in b for given h and α for all n. We drop the
arguments of h and α from all functions. We denote f(e) =
Eα′ [µ(e, α′) |α], and gn(b̂) = νJ̄n(b̂, h, α). Then, Eq. (27)
can be written as

Ĵn+1(b) = max
0≤e≤b

{f(e) + gn(b− e)} . (35)

Define el(b) and eu(b) to be the lower bound and upper bound
of the set of feasible actions e, respectively, when the available

energy in the battery is b. In Eq. (35), we have el(b) = 0
and eu(b) = b, which are both increasing in b. To apply [41,
Theorem 2], it is sufficient to show that f(e) + gn(b− e) has
increasing difference in (b, e), that is, for any b′ ≥ b, e′ ≥ e,

(f(e′) + gn(b′ − e′))− (f(e′) + gn(b− e′))
≥ (f(e) + gn(b′ − e))− (f(e) + gn(b− e)). (36)

Inequality (36) can be simplified as

gn(b′ − e′)− gn(b− e′) ≥ gn(b′ − e)− gn(b− e),
∀ b′ ≥ b, e′ ≥ e.

(37)

From the proof of Lemma 3, gn(b̂) = νJ̄n(b̂, h, α) is concave
in b̂ for all n. By applying the property of concave functions,
we have

gn(w+ ∆)− gn(w) ≥ gn(v+ ∆)− gn(v), ∀w ≤ v,∆ ≥ 0.
(38)

Substituting w = b− e′, v = b− e,∆ = b′ − b, we obtain Eq.
(37). Now, by applying the conclusion of [41, Theorem 2], we
prove that ên+1(b, h, α) is increasing in b for any given h and
α for all n. Thus, ê∗(b, h, α) = ê∞(b, h, α) is increasing in b
for given h and α.
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