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Abstract—Recent advancement of distributed renewable gener-
ation has motivated microgrids to trade energy directly with one
another, as well as with the utility, in order to minimize their
operational costs. Energy trading among microgrids, however,
confronts challenges such as reaching a fair trading price,
maximizing participants’ profit, and satisfying power network
constraints. In this paper, we formulate the direct energy trading
among multiple microgrids as a generalized Nash bargaining
(GNB) problem that involves the distribution network’s op-
erational constraints (e.g., power balance equations, voltage
limits). We prove that solving the GNB problem maximizes the
social welfare and also fairly distributes the revenue among
the microgrids based on their market power. To address the
nonconvexity of the GNB problem, we propose a two-phase
approach. The first phase involves solving the optimal power flow
problem in a distributed fashion using the alternative direction
method of multipliers to determine the amount of energy trading.
The second phase determines the market clearing price and
mutual payments of the microgrids. Simulation results on an
IEEE 33-bus system with four microgrids show that the proposed
framework substantially reduces total network cost by 37.2%.
Our results suggest direct trading need be enforced by regulators
to maximize the social welfare.

Keywords: Microgrid, direct energy trading, optimal power flow,
distributed optimization, ADMM, generalized Nash bargaining

NOMENCLATURE

N Set of buses
E Set of lines
G Graph of distribution network with N and E
M Set of microgrids
M Number of microgrids
t Discrete time slot index
T Set of time slots
Vi(t) Complex voltage of bus i ∈ N in time slot t
vi(t) |Vi(t)|2, bus i ∈ N
Iij(t) Complex current from i to j, line (i, j) ∈ E
lij(t) |Iij(t)|2, line (i, j) ∈ E
zij rij + ixij , impedance of line (i, j) ∈ E
rij Resistance of line (i, j) ∈ E
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xij Reactance of line (i, j) ∈ E
Sij(t) Pij(t) + iQij(t), line (i, j) ∈ E
Pij(t) Active power flow from buses i to j
Qij(t) Reactive power flow from buses i to j
eij(t) Exporting power from buses i to j
pi(t) Injected active power into bus i ∈ N
qi(t) Injected reactive power into bus i ∈ N
si(t) pi(t) + iqi(t), i ∈ N
ei(t) Net exporting power from microgrid i
ei (ei(t), t ∈ T )
πi Net payment of microgrid i
ub,i(t) Purchasing power of microgrid i from utility
us,i(t) Selling power of microgrid i to utility
ui (ub,i(t), us,i(t), t ∈ T )
bc,i(t) Battery charging power of microgrid i
bd,i(t) Battery discharging power of microgrid i
bi (bc,i(t), bd,i(t), t ∈ T )
gi(t) Fuel-based generation of microgrid i
gi (gi(t), t ∈ T )
di(t) Total real power demand of microgrid i
ri(t) Renewable generation of microgrid i
µb(t) Purchasing price from utility (time-of-use)
µs(t) Selling price to utility (feed-in tariff)
C̃i Internal cost of microgrid i
Ci min C̃i (the cost before direct trading)
βi Market access fee of microgrid i
β

∑
i∈M βi (total overhead cost)

Ci C̃i + βi
Coi minCi (obtained by solving P2)
δi Ci − Coi , reduced cost of microgrid i
γi δi − πi, profit of microgrid i after payment
m Iteration index

I. INTRODUCTION

In the face of climate change and fossil fuel depletion,
securing clean and sustainable energy resources is becoming
increasingly important for the future generations. Fortunately,
recent development of renewable generations (e.g., wind tur-
bine, photovoltaic (PV) panel) has made sustainable energy
economically viable. Unlike the conventional large-scale gen-
erators, renewable generators are often small-scale, and thus
appropriate for serving microgrids. However, the stochastic
nature of renewable energy sources and the fluctuations in
load demand can cause microgrids to experience intermittent
energy shortage or surplus. To this end, direct energy trading
among microgrids can be a viable solution to balance energy
and lower the operational cost [1].
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Direct trading is beneficial to both sellers and buyers
compared to the trading with the utility company by reducing
the intermediate trading steps. There exist, however, several
challenges in designing a direct energy trading mechanism.
First, it is difficult to reach an agreement on the trading price,
which should not be biased toward either sellers or buyers.
Second, it is crucial to determine the power flow from sellers
to buyers while satisfying the distribution network constraints.
Third, it would be desirable that direct trading can maximize
the social welfare (or equivalently, minimize the total cost
of energy generation and operation) so that regulators can
advocate direct energy trading with legitimate support.

There have been some efforts in the literature to resolve
the first challenge associated with trading price [2]–[7]. For
example, auction mechanism is applied for direct trading
among microgrids in [2]. A coalition of sellers and buyers is
considered in [3] to collectively trade energy with the utility
company and share the revenue using the Shapley value. The
concept of peer-to-peer trading between any pair of microgrids
using Nash bargaining solution is proposed in [7]. However,
[2]–[7] do not consider the distribution network constraints.

In resolving the second and third challenges associated
with physical constraints and optimal operation, several works
study the energy management system of microgrids and/or
distribution network, but without a market clearing mechanism
[8]–[14]. In these works, microgrids are assumed to cooperate
to minimize their aggregate cost in a distributed fashion. A
number of works have investigated the decentralized analysis
of the optimal power flow (OPF) for the energy trading in
a distribution network using different techniques such as the
predictor corrector proximal multiplier method [8] and the
alternative direction method of multipliers (ADMM) [13]–
[15]. A comprehensive survey of solving the OPF is given
in [16]. Recently, the authors in [13] consider power flow
constraints using dedicated DC connections to minimize the
total cost, but ignore the market clearing mechanism. The
combination of OPF and direct trading is proposed [17], but
a heuristic market clearing may not guarantee social welfare.

The aforementioned challenges have not been addressed
fully in a unified framework, and thus designing a direct
trading mechanism considering physical constraints and social
welfare is still an important problem. In particular, we need
to address the following questions: 1) how to determine a
systematic bargaining process in terms of the quantity and
price, which is not biased toward either sellers or buyers, 2)
how to perform direct energy trading for networked micro-
grids even if there is no dedicated distribution line between
two microgrids, and 3) how to design a market mechanism
which minimizes the total cost considering physical network
constraints and power flows in the distribution network.

In this paper, we provide a framework that can address
the above challenges. The proposed framework determines
the amount of direct energy trading and the corresponding
payment among microgrids, considering the operational con-
straints imposed by the distribution network. We formulate
the problem as a generalized Nash bargaining (GNB) problem
with a notion of market power [18]. We summarize our key
contributions mainly as follows.

• Direct Trading Framework: We design a general market
mechanism for direct trading among microgrids con-
sidering full AC power flow model for the distribution
network. Solving the GNB problem can incentivize mi-
crogrids to participate in direct trading rather than trading
with the utility company. We prove that solving the
GNB problem minimizes the total cost, and thereby the
proposed framework maximizes the social welfare while
each microgrid can maximize its own profit.

• Distributed Optimization Methods: We address the non-
convexity and obtain an optimal solution of the GNB
problem by first solving the OPF and then clearing the
market. To solve the OPF problem in a distributed man-
ner, we leverage ADMM to decouple the optimization
variables of the microgrids and the distribution network.
This enables us to determine the amount of energy trading
while concurrently solving the OPF. Then, the market is
cleared by using ADMM in a privacy preserving manner.
The proposed market mechanism ensures that the profit
of each microgrid is proportional to the amount of energy
exchange by exploiting the notion of market power.

Simulation results show that the proposed direct trading can
reduce the total network cost by 37.2% compared to the case
without direct trading. Furthermore, the costs are reduced by
9−42.8%, the revenues are increased by up to 73% depending
on microgrids. The power losses are also reduced by 20.6%.
Finally, all participating microgrids fairly achieve the same
trading profit per kWh.

Our work is in part related with [7], [19] but differs in
several aspects. First, the power flow and physical constraints
were not considered in [7]. Our work maximizes the social
welfare by leveraging the OPF to determine the direct trad-
ing payment and the quantity while satisfying the physical
constraints (see Proposition 1). Although the authors of [19]
addressed bilateral trading considering the OPF and PV, they
did not consider energy storage and thus may not be applicable
to general multi-period OPF where optimization variables are
coupled over time due to energy buffering in the distributed
storage. Furthermore, the objective function of the OPF in [19]
neglected the power losses, which can be substantial in the
distribution network. In addition, in [7], [19], all microgrids
achieve the same profits irrespective of the amount of energy
trading, e.g., either it is 10 kWh or 1 MWh, which raises a
fairness issue. To resolve this issue, we introduce the notion
of market power, which ensures that the trading profit per unit
energy is equal (see Proposition 2).

The rest of this paper is organized as follows. In Section II
we describe the overall system model including the distri-
bution network and the components within each microgrid.
We formulate our direct trading with power flow problem in
Section III. We develop distributed algorithms for solving the
OPF and clearing the market in Section IV. Simulation results
are provided in Section V. Conclusion is given in Section VI.

II. SYSTEM MODEL

In this section we present a system model for direct energy
trading among microgrids deployed in a distribution network.
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Figure 1. The system schematic of microgrids energy trading through the
distribution network.

A. Distribution Network Model

Consider a radial distribution network represented by a
graph G(N , E), where N is the set of buses and E ⊆ N×N is
the set of branches in the network. We consider a setM⊆ N
of M = |M| microgrids. Let 0 ∈ N denote the slack bus of G,
where the utility is connected as an external power source of
the distribution network. The overall structure of direct energy
trading among microgrids in a distribution network is shown
in Fig. 1. Let T = {1, . . . , T} denote the operational horizon,
which is divided into T time slots with equal duration (e.g.,
one hour) denoted by ∆t.

Assuming a balanced three-phase system, we provide the
per-phase analysis. For bus i ∈ N , let Vi(t) denote the com-
plex voltage in time slot t ∈ T , and let si(t) = pi(t) + iqi(t)
denote the complex power injection into bus i, where i2 = −1.
For line (i, j) ∈ E , let zij = rij + ixij denote the line
impedance, and Iij(t) denote complex current from bus i to
bus j in time slot t. For branch (i, j) ∈ E and time slot
t ∈ T we have Vi(t) − Vj(t) = zijIij(t). Let I∗ij(t) denote
the complex conjugate of Iij(t). Then, the complex power
flow in line (i, j) ∈ E is defined by Sij(t) = Vi(t)I

∗
ij(t) from

which the real power Pij(t) and the reactive power Qij(t) are
determined such that Sij(t) = Pij(t) + iQij(t).

The power balance equation for bus j ∈ N is given
by sj(t) = Sij(t) − zij

∣∣I∗ij(t)∣∣2 −∑k 6=i:(j,k)∈E Sjk(t). Let
lij(t) = |Iij(t)|2 and vi(t) = |Vi(t)|2. Using the branch
flow model in [20], we have the following equations with real
variables for all (i, j) ∈ E and t ∈ T ,

pj(t) = Pij(t)− rij lij(t)−
∑

k 6=i:(j,k)∈E

Pjk(t), (1)

qj(t) = Qij(t)− xij lij(t)−
∑

k 6=i:(j,k)∈E

Qjk(t), (2)

vj(t) = vi(t)−2(rijPij(t)+xijQij(t))+(r2ij+x
2
ij)lij(t), (3)

lij(t) =
Pij(t)

2 +Qij(t)
2

vi(t)
. (4)

We consider the following voltage tolerance constraint:

vmin
i ≤ vi(t) ≤ vmax

i , i ∈ N \{0}, (5)

where vmin
i and vmax

i are the minimum and maximum voltage
magnitude of bus i, respectively.

B. Microgrid’s Model

As shown in Fig. 1, the microgrids are interconnected by the
distribution network G through which energy can be traded.
For energy trading, only active power can be traded with the
utility company or with other microgrids. We assume that each
microgrid can be considered as a single bus, but our work can
be extended to the case where a microgrid corresponds to
multiple buses.

We assume that microgrid i ∈ M has its own renewable
or fuel-based distributed generator (DG), energy storage, and
local loads. The goal of each microgrid is to minimize its
total operational cost which includes the cost of purchasing
energy from the utility, battery degradation cost, and fuel-
based distributed generation operational cost. Similar to [7],
[8], one may also include demand response. For the sake of
simplicity, we assume fixed loads that can be forecasted with
reasonably good accuracy.

1) Power trading with the utility: Let ub,i(t) denote the
power purchased from the utility company by microgrid i and
µb(t) denote the purchasing price ($/MWh) in time slot t. Due
to the physical or contractual power limit, we have

0 ≤ ub,i(t) ≤ umax
b,i , i ∈M, t ∈ T , (6)

where umax
b,i denotes the maximum purchasing power of micro-

grid i. Let di(t) denote the load of microgrid i ∈ M in time
slot t. Due to the stochastic nature of the renewable generation,
the local generation level of a microgrid can exceed the total
local load demands. Then, the microgrid can sell its surplus
power to the utility at selling price ($/MWh) µs(t) in time
slot t. The amount of selling power, denoted by us,i(t), is
also subject to the physical or contractual power limit:

0 ≤ us,i(t) ≤ umax
s,i , i ∈M, t ∈ T , (7)

where umax
s,i denotes the maximum selling power of micro-

grid i. Then, the cost of purchasing power by microgrid i ∈M
from the utility during time period T is

Cu,i(ui) =
∑
t∈T

[
µb(t)ub,i(t)− µs(t)us,i(t)

]
∆t, (8)

where ui = (ub,i(t), us,i(t), t ∈ T ) is a power trading profile
of microgrid i ∈M with the utility.

2) Battery operation: The charging and discharging powers
of microgrid i ∈ M in time slot t, denoted by bc,i(t) and
bd,i(t), are limited by the capacity of power conditioning
system such that

0 ≤ bc,i(t) ≤ bmax
c,i , (9a)

0 ≤ bd,i(t) ≤ bmax
d,i , (9b)

where bmax
c,i and bmax

d,i are the maximum of charging power and
discharging power of the battery in microgrid i, respectively.
The stored energy in the battery Eb,i(t) changes according to
the following equation:

Eb,i(t+ 1) = Eb,i(t) +

(
ηc,ibc,i(t)−

1

ηd,i
bd,i(t)

)
∆t, (10)

where ηc,i and ηd,i are the charging and discharging efficien-
cies of microgrid i. Since battery degradation is known to be
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severe at both ends of the state-of-charge (SoC), i.e., either
empty or full, Eb,i(t) should be constrained by [21]

SoCmin
i ≤ Eb,i(t)

Emax
b,i

≤ SoCmax
i , (11)

where SoCmin
i and SoCmax

i denote the minimum and max-
imum SoC of the battery and Emax

b,i denotes the maximum
battery capacity in microgrid i.

Although the battery degradation depends on the SoC, the
degradation density function of the SoC is almost flat between
SoCmin

i and SoCmax
i [22], [23]. Thus, the battery degradation

cost can be computed by the amount of transferred energy:

Cb,i(bi) = cb,i
∑
t∈T

[
bc,i(t) + bd,i(t)

]
∆t, (12)

where bi = (bc,i(t), bd,i(t), t ∈ T ) and cb,i is the degradation
cost coefficient per unit energy.

3) Distributed generation cost: Let ri(t) denote renewable
generation of microgrid i ∈ M in time slot t. We assume
that ri(t) can be predicted reasonably well as in [7], [8].
Renewable generation is assumed to have zero marginal cost
in the short run [7]. On the other hand, fuel-based generation
such as fuel cell, distributed micro turbine or diesel generator
has a nonlinear cost function [8], [24]. We use the following
quadratic cost function for a fuel-based DG in microgrid i:

Cg,i(gi) =
∑
t∈T

(
κ2,igi(t)

2 + κ1,igi(t) + κ0,i
)

∆t, (13)

where gi = (gi(t), t ∈ T ), and the positive coefficients of
κ2,i, κ1,i, and κ0,i depend on the type of DG. The output
power of DG in microgrid i is bounded by

gmin
i ≤ gi(t) ≤ gmax

i , (14)

where gmin
i and gmax

i are the minimum and maximum gener-
ation capacities in microgrid i, respectively.

4) Total cost of microgrid: The active power balance equa-
tion at microgrid i ∈M in time slot t ∈ T is

ri(t)+gi(t)+ub,i(t)+bd,i(t) = di(t)+us,i(t)+bc,i(t), (15)

where di(t) is the real power demand of microgrid i in time
slot t. Then, the left-hand side corresponds to the power
generations and the right-hand side corresponds to the power
demands. Then, the internal cost function of microgrid i ∈M
is given by

C̃i(ui,bi,gi) = Cu,i(ui) + Cb,i(bi) + Cg,i(gi). (16)

5) Microgrid’s local optimization problem: If microgrid i ∈
M does not participate in direct energy trading with other
microgrids, it solves the following optimization problem:

P0: Microgrid’s Optimization without Direct Trading

minimize C̃i(ui,bi,gi)

subject to (6), (7), (9a)–(11), (14), (15),

variables {ui,bi,gi}.

Problem P0 is a convex problem since the objective function
and all constraints are convex. Problem P0 is solved by

microgrid i ∈M. The optimal value is denoted by Ci.

III. GNB FOR DIRECT ENERGY TRADING

In this section, we describe the framework of direct energy
trading by exploiting the concept of GNB. Although direct
trading can increase the total benefit of the microgrids, it is not
clear how to share the increased revenue among the microgrids
in a fair manner. In other words, the direct trading price should
be impartial to both sellers and buyers so that all participants
can agree on it. To resolve direct trading and bargaining, we
leverage GNB, which provides a fair Pareto optimal solution
that satisfies the four axioms as follows [18];

1) Individual rationality: The bargaining solution should
increase the benefits1 of all microgrids participating in
direct trading. Otherwise, they would not participate.

2) Pareto optimality: At the bargaining solution, one cannot
increase the benefit of a microgrid unless it decreases the
benefits of some other microgrids.

3) Independence of irrelevant alternatives: If the bargaining
solution is found on a subset of the feasible set of all
possible benefits, then the solution does not change for a
feasible set that contains the subset.

4) Independence of linear transformations: The bargaining
solution is invariant by scaling the benefits and the
minimum costs using a linear transformation.

GNB is an optimization problem of maximizing the Nash
product, as we will show in (27). The GNB problem differs
from the Nash bargaining by removing the axiom of symmetry,
and thus can capture the scenario where players have different
market powers.

A. Problem Formulation Using GNB

When microgrid i ∈M has energy surplus or deficit, it can
trade power through the distribution network G as shown in
Fig. 1. Let eij(t) denote the exporting power from microgrid i
to microgrid j. In a lossless power network, we have eij(t) +
eji(t) = 0. However, the power losses may not be negligible.
Specifically, in the distribution network, we have

eij(t) + eji(t) = rij lij(t). (17)

Note that the power losses depend on lij(t) = |Iij(t)|2, i.e.,
the solution of OPF. However, before solving the OPF, we do
not know the feasibility of direct trading between microgrids i
and j due to physical constraints. To overcome the complexity
to trace eij(t) for all tradable (i, j) pairs of microgrids, we
focus on the net exporting power ei(t) to all other microgrids,
which is defined as

ei(t) =
∑

j∈M\{i}

eij(t). (18)

If ei(t) is negative, then microgrid i will import power from
other microgrids through the distribution network. Thus, we
do not concern about where individual trading power goes to

1In game theory, the term utility is used. However, in this paper, we reserve
the utility to denote an electricity providing company.
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or comes from, but only the net export/import power flows.
Then, the net power injection into microgrid i becomes

pi(t) = ub,i(t)− us,i(t)− ei(t), i ∈M, t ∈ T . (19)

The power balance equation of (15) becomes

ri(t) + gi(t) + ub,i(t) + bd,i(t) (20)
= di(t) + ei(t) + us,i(t) + bc,i(t), i ∈M, t ∈ T .

We also have the following constraint∑
i∈M

ei(t) = 0, t ∈ T , (21)

which implies that the sum of all exporting powers should be
equal to the sum of all importing powers in time slot t. Let
ei = (ei(t), t ∈ T ) denote the trading profile of microgrid i ∈
M. To incentivize direct trading, the cost after direct trading
should be less than or equal to the cost before direct trading
Ci. To determine the cost after direct trading, we consider two
other factors: the distribution network access fee of microgrid
i, denoted by βi, and the direct trading payment of microgrid
i denoted by πi. Microgrid i participates in the direct energy
trading only if

C̃i(ui,bi,gi) + βi + πi ≤ Ci, i ∈M. (22)

We consider a non-profit organization called distribution
system operator (DSO), which manages and balances the
distribution network. The DSO should compensate power
losses in the distribution network by purchasing power from
the utility company through the slack bus. Thus, DSO imposes
an access fee βi for microgrid i ∈ M to cover the overhead
cost for direct trading. Let β =

∑
i∈M βi denote the total

overhead cost. Then, we have

β =
∑
t∈T

∑
(i,j)∈E

rij lij(t)ξ(t), (23)

where ξ(t) is a coefficient that accounts for the overhead cost
from the power losses and network maintenance. For example,
when ξ(t) is equal to µb(t), the access fee accounts for the
cost from power losses. Note that determining ξ(t) requires
the detailed analysis on the operational cost and is beyond the
scope of this paper. When the access fee βi is imposed in
proportion to the amount of direct trading, we have

βi =

∑
t∈T |ei(t)|∑

j∈M
∑
t∈T |ej(t)|

β, i ∈M. (24)

The access fee βi in proportion to the amount of traded energy
is one way of imposing the grid fee, and determining the
specific rule is an active ongoing research area, see [25]–
[27]. Then, the cost for microgrid i including the access fee
is defined by

Ci(ui,bi,gi) = C̃i(ui,bi,gi) + βi, i ∈M. (25)

Finally, the payment of one microgrid becomes the revenue of
the other microgrids, and the sum of payments is zero, i.e.,∑

i∈M
πi = 0. (26)

Then, the GNB problem is formulated as follows.

P1: Generalized Nash Bargaining (GNB) Problem

maximize
∏
i∈M

[
Ci − (Ci(ui,bi,gi) + πi)

]αi (27)

subject to (1)–(5), (6), (7), (9a)–(11), (14),

(19)–(22), (26),

variables {ei,ui,bi,gi, πi, i ∈M,P,Q,v, l, s},

where P = (Pij(t), (i, j) ∈ E , t ∈ T ), Q = (Qij(t), (i, j) ∈
E , t ∈ T ), v = (vi(t), i ∈ N \{0}, t ∈ T ), l = (lij(t), (i, j) ∈
E , t ∈ T ), s = (si(t), i ∈ N , t ∈ T ), and the positive
parameter αi denotes the market power of microgrid i ∈ M.
We introduce the market power αi to reflect the different
bargaining power of microgrids in the bargaining process.

For simplicity, we consider the case when constraint (22) is
satisfied with strict inequality for all i ∈M, i.e., all microgrids
can be better off by participating in direct trading. When
some microgrids turn out to have all zero trading profile ei
after solving the OPF, and thus have no need to trade energy,
those microgrids can be simply excluded and will not alter the
solution structure.

B. Analyzing Problem Structure

Even if we take logarithm of the objective function of
P1, it still belongs to nonconvex optimization because (4)
is a quadratic equality constraint, i.e., nonconvex constraint.
Furthermore, (25) is a nonconvex function because, even
though C̃i(ui,bi,gi) is a convex function of ui,bi,gi, the
access fee βi is a nonconvex function of the trading profiles
ej , j ∈M and all other variables associated with power flows.

Thus, instead of solving P1, we provide Proposition 1
stating that the solution of P1 also minimizes the total cost
of the distribution network, which gives us a way to detour in
solving P1 in two separate steps: solving the OPF and then
determining the market clearing. Then, we will show that this
two-phase approach is indeed the solution of P1.

Proposition 1 (Social Welfare Maximization): Let C∗i de-
note the optimal value of Ci(ui,bi,gi) at the solution of
P1. Then, the solution of P1 minimizes the total cost of the
distribution network, which is given by

∑
i∈M C∗i .

The proof is given in Appendix A.
Remark 1: The implication of Proposition 1 is as follows.

The myopic desire of maximizing one’s own benefit by direct
trading turns out to be beneficial to the entire society and
maximize social welfare. Thus, Proposition 1 underpins the
virtue of direct trading from the view point of regulators.

IV. DISTRIBUTED ALGORITHMS

In this section, we develop distributed algorithms that solve
P1 in two steps. Since the solution of P1 minimizes the total
cost as shown in Proposition 1, we first solve the OPF problem
in the distribution network. Subsequently, we determine the
payments among microgrids based on the solution of the
OPF problem. The problem structure and the corresponding
decomposition are shown in Fig. 2.
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P1

Coordinator-aided
Market Clearing Problem

GNB Problem (Main Problem)

OPF Problem (ADMM)

MG update (32) DSO update (33) MG update (40) DSO update (41)-(42)

P2 P3

Figure 2. Problem structure and the corresponding decomposition.

A. OPF and Its Relaxation

The OPF problem is given as follows:
OPF Problem

minimize
∑
i∈M

C̃i(ui,bi,gi) +
∑
t∈T

∑
(i,j)∈E

rij lij(t)ξ(t)

subject to (1)–(5), (6), (7), (9a)–(11), (14), (19)–(21),

variables {ei,ui,bi,gi, i ∈M,P,Q,v, l, s}.

Note that the cost function is equal to
∑
i∈M Ci(ui,bi,gi) =∑

i∈M
(
C̃i(ui,bi,gi) + βi

)
according to (23) and (24). The

distribution network constraints are given by (1)−(5), the
constraints of microgrids are given by (6), (7), (9a)−(11), (14),
and the power balancing constraints with trading are given by
(19)−(21).

The OPF problem is nonconvex due to the quadratic equality
constraint of (4). We apply convex relaxation by replacing (4)
with the inequality constraint:

lij(t) ≥
Pij(t)

2 +Qij(t)
2

vi(t)
, (28)

which gives us the following relaxed OPF problem.

OPF-r Problem

minimize
∑
i∈M

C̃i(ui,bi,gi) +
∑
t∈T

∑
(i,j)∈E

rij lij(t)ξ(t)

subject to (1)–(3), (5), (28),

(6), (7), (9a)–(11), (14), (19)–(21),

variables {ei,ui,bi,gi, i ∈M,P,Q,v, l, s}.
The OPF-r is a convex optimization problem, and the

relaxation is exact for radial networks as verified in standard
IEEE test buses and practical power networks [28], [29]. The
sufficient condition for the exactness is when the bus voltage
is kept around the nominal value, line impedance is not severe,
and the power injection at each bus is not too large. Thus, we
assume that convex relaxation is exact, which will be verified
by numerical experiments in Section V.

B. Distributed Algorithm for Solving OPF-r

In solving the OPF-r, we leverage ADMM that solves the
problems having the following form [30]

minimize f(x) + g(z)

subject to Ax+Bz = c,

x ∈ X , z ∈ Z,
(29)

where x, z, c are vectors, A and B are matrices, f(x) and
g(z) are convex functions, and X , Z are convex sets. The

augmented Lagrangian is given by

Lρ(x, z, λ) = f(x) + g(z) + λT(Ax+Bz − c)
+
ρ

2
||Ax+Bz − c||2,

where ρ > 0. Then, the distributed updates of the optimization
variables x, z, and the Lagrange multiplier (also called dual
variable) λ with an iteration index m are

x(m+1) = argmin
x∈X

Lρ(x, z
(m), λ(m)), (30a)

z(m+1) = argmin
z∈Z

Lρ(x
(m+1), z, λ(m)), (30b)

λ(m+1) = λ(m) + ρ(Ax(m+1) +Bz(m+1) − c).(30c)

The iteration of two-block ADMM converges to an optimal
solution of (29) [30]. In order to exploit ADMM, we refor-
mulate the OPF-r problem as follows.
P2: OPF-r Problem with ADMM

minimize
∑
i∈M

C̃i(ui,bi,gi) +
∑
t∈T

∑
(i,j)∈E

rij lij(t)ξ(t)

subject to MG: (6), (7), (9a)–(11), (14), (20),

NET: (1)–(3), (5), (19), (21), (28),

AUX: ei = êi,ui = ûi, i ∈M,

variables {ei,ui,bi,gi, êi, ûi, i ∈M,P,Q,v, l, s},

where the first and the second terms in the objective function
correspond to f(x) and g(z) in (29), respectively, with x =
(ei,ui,bi,gi, i ∈ M), z = (êi, ûi, i ∈ M,P,Q,v, l, s). The
constraints of MG, NET, AUX correspond to X , Z and Ax+
Bz = c, respectively. Then, the augmented Lagrangian L is

L(ei,ui,bi,gi, êi, ûi,λi, i ∈M,P,Q,v, l, s)

=
∑
i∈M

C̃i(ui,bi,gi) +
∑
t∈T

∑
(i,j)∈E

rij lij(t)ξ(t)

+
∑
i∈M

(λT
e,i(êi − ei) + λT

u,i(ûi − ui)

+
ρ

2
||êi − ei||2 +

ρ

2
||ûi − ui||2), (31)

where λi = (λe,i,λu,i) and λe,i, λu,i are dual variable vec-
tors for the constraints of ei = êi and ui = ûi, respectively.
Then, using the update rules of (30a)−(30c), we now develop
the following MGi update rule, DSO update rule, and the dual
variables update rule.

For MGi update, at the (m+ 1)th iteration, each microgrid
i ∈ M solves the following optimization problem with êi =

ê
(m)
i , ûi = û

(m)
i , and λi = λ

(m)
i .

MGi update

minimize C̃i(ui,bi,gi)

+λT
e,i(êi − ei) + λT

u,i(ûi − ui)

+
ρ

2
||êi − ei||2 +

ρ

2
||ûi − ui||2 (32)

subject to (6), (7), (9a)–(11), (14), (20),

variables {ei,ui,bi,gi}.

The MGi update is a convex optimization problem. The
solution variables of MGi update are labeled as ei = e

(m+1)
i
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and ui = u
(m+1)
i , which are used for DSO update below.

DSO update

minimize
∑
t∈T

∑
(i,j)∈E

rij lij(t)ξ(t)

+
∑
i∈M

(λT
e,i(êi − ei) + λT

u,i(ûi − ui)

+
ρ

2
||êi − ei||2 +

ρ

2
||ûi − ui||2) (33)

subject to (1)–(3), (5), (19),
∑
i∈M

êi = 0, (28),

variables {êi, ûi, i ∈M,P,Q,v, l, s}.

The DSO update is a convex optimization problem, and the
optimal solution can be obtained. Let the solution of DSO
update be labeled as ê

(m+1)
i and û

(m+1)
i . Using the solutions

of MGi update and DSO update, dual variables are updated
as follows.
Dual variable update

λ
(m+1)
e,i = λ

(m)
e,i + ρ(ê

(m+1)
i − e

(m+1)
i ), (34)

λ
(m+1)
u,i = λ

(m)
u,i + ρ(û

(m+1)
i − u

(m+1)
i ). (35)

Then, the iteration of the MGi update, the DSO update, and the
dual update converges to an optimal solution. The proposed
method using ADMM is scalable in the number of microgrids
due to the structure of the distributed algorithm where the mi-
crogrids and the DSO solve their own optimization problems
in parallel.

C. Market Clearing Problem

Next we address the market clearing problem. Let Coi denote
the optimal cost of microgrid i ∈ M obtained after solving
P2. The payment πi, i ∈ M can be determined using the
minimum cost Coi , i ∈ M. Note that we use Coi instead of
C∗i (which comes from the solutions of P1) because they may
not necessarily be the same. After substituting Coi into P1, we
have the following market clearing problem.

P3: Market Clearing Problem

maximize
∏
i∈M

[
Ci − (Coi + πi)

]αi (36)

subject to
∑
i∈M

πi = 0

variables {πi, i ∈M}.

Although P3 has a closed-form solution of (45) as shown in
the Appendix D, it requires Ci − Coi to be known by the
coordinator. In fact, we can solve P3 in a distributed manner
to preserve privacy using ADMM. By taking logarithm of (36),
we can have the following convex optimization problem:

minimize
∑
i∈M
−αi log(δi − πi) (37)

subject to
∑
i∈M

π̂i = 0 (38)

πi = π̂i, i ∈M (39)
variables {πi, π̂i, i ∈M},

where δi = Ci − Coi is the reduced cost of microgrid i by
participating in direct energy trading. Let Li = −αi log(δi −
πi) + λi(π̂i − πi) + ρ̃

2 (π̂i − πi)
2, and the augmented La-

grangian be L =
∑
i∈M Li. Then, we apply ADMM with

πi update, π̂i update and the dual variable λi update. Note
that this optimization is known as exchange ADMM due to
the constraint (38), and the ADMM iteration can be further
simplified as follows [30]. Microgrid i ∈ M solves the
following optimization problem:

π
(m+1)
i = argmin

πi

−αi log(δi − πi)− λ(m)πi (40)

+
ρ̃

2

(
π̂
(m)
i − πi

)2
.

Then, the π̂i update from the coordinator is given by

π̂
(m+1)
i = π

(m+1)
i − π̄(m+1), (41)

where π̄(m) = 1
M

∑
i∈M π

(m)
i . Finally, since λi, i ∈M are all

equal in the exchange ADMM [30], only λ need be updated,

λ(m+1) = λ(m) + ρ̃π̄(m+1). (42)

Now we analyze the property of the optimal solution of P3
by providing Proposition 2.

Proposition 2 (Fairness): If the market power αi is set in
proportion to the total traded energy, i.e.,

αi =

∑
t∈T |eoi (t)|∑

j∈M
∑
t∈T |eoj(t)|

, i ∈M, (43)

where eoi (t) is an optimal solution of P2, then each microgrid
has the equal trading profit per unit energy, denoted by Γ,
after market clearing,

Γ =

∑
i∈M δi∑

i∈M
∑
t∈T |eoi (t)|

.

The proof is given in Appendix B.

Remark 2: The implication of Proposition 2 is that the
trading profits per unit energy for sellers and buyers are all
equal, which is fair to both parties, by setting the market power
in proportion to the amount of traded energy.

Remark 3: Let γi = δi − πi denote the profit, which is
the cost difference before and after direct energy trading.
When the market power is the same, i.e., αi = 1/M , then
γi = 1

M

∑
j∈M δj . That is, the profit of each microgrid is

all equal irrespective of the total traded energy of micro-
grid i,

∑
t∈T |eoi (t)|. This is the case of [7] and becomes

unfair when the amount of total traded energy is different
across microgrids. Consider the following example. Suppose
that microgrid i sells 1 MWh while microgrid j sells only
1 kWh at the same time. In the problem formulation from
[7], their profits become the same, and this will discourage
the deployment of large scale renewables in the microgrids.
Thus, the notion of market power should be considered to
fairly allocate the profits obtained from direct trading.

To illustrate the implication of Proposition 2, we provide
the following corollary as an example.
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Figure 3. Information exchange between the DSO and microgrids.

Corollary 1: Suppose each microgrid has either a renew-
able generator or pure load without energy storage. The
distribution network is lossless. Then, the microgrids with
renewables always sell power, and the microgrids with loads
always purchase power. When these microgrids participate in
direct trading, the unit price of trading is 1

2 (µb(t) + µs(t)),
i.e., the average of the trading prices with the utility company.

The proof is given in Appendix C.

D. Equivalence of the Solutions

In Proposition 1, we showed that the solution of P1 mini-
mizes the total cost, which allows us to solve the OPF. Thus,
the solution of P1 is the sufficient condition for the solution
of P2. However, it is not clear whether the reverse is true, i.e.,
the solutions of P2 and P3 maximize P1. Indeed, this is true
as formally stated in Proposition 3.

Proposition 3 (Converse): Suppose that the solution of P1
exists. Then, the solutions of P2 and P3 maximize P1.
The proof is given in Appendix D.

E. Discussion on Information Exchange Model

In this section we describe how to implement direct energy
trading using a standard communication protocol. Implement-
ing the ADMM-based distributed algorithm requires iterations
between the DSO and microgrids. In doing this, we consider
IEC 61850 as discussed in [8], [31]. IEC 61850 is originally
designed for communications within substation automation
systems, but it can be used for information exchange between
the DSO and microgrids as well. In IEC 61850, each DER unit
corresponds to a logical device (LD), which is composed of
several logical nodes (LNs) [31]. To implement direct energy
trading, we use the LN named DER energy and/or ancillary
services schedule (DSCH) for each microgrid. The DSO reads
or writes an array of the timestamps and values using the IEC
61850 abstract communication service interface (ACSI) (e.g.,
GetDataValues and SetDataValues). Specifically, four DSCH

MG3

MG2

MG1

MG4

1    2     3    4     5    6    7     8    9   10   11  12   13  14  15  16   17  18

19   20  21  22

23   24  25  

26  27  28   29  30   31  32   33  

Figure 4. IEEE 33-bus test system for simulation.
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Figure 5. Purchasing price from the utility company ($/MWh).

LNs are used for ê
(m)
i , û

(m)
i ,λ

(m)
e,i ,λ

(m)
u,i so that the DSO

sends the control information to each microgrid i ∈ M in
solving P2 as shown in Fig. 3. Subsequently, each microgrid
i ∈M reports its local computation results of e(m)

i and u
(m)
i

to the DSO using the IEC 61850 report control block (RCB).
At convergence, we obtain e

(m)
i = ê

(m)
i , u(m)

i = û
(m)
i , which

are the amounts of direct energy trading and the trading with
the utility, respectively. The market clearing process can be
implemented using IEC 61850 in a similar manner.

V. PERFORMANCE EVALUATION

In this section, we provide numerical experiments to demon-
strate the virtue of the proposed direct trading technique
considering four microgrids interconnected in the IEEE 33-
bus test system [20], as shown in Fig. 4. We use the time-of-
use (ToU) pricing provided by California Independent System
Operator (CAISO) [8], as shown in Fig. 5, which serves as
the purchasing price from the utility company in our work.
The selling price to the utility is set as half of the purchasing
price. We consider two cases. In Case 1, each microgrid solves
P0, i.e., schedules its battery and/or DG to minimize the cost
function. In Case 2, microgrids trade energy directly (i.e.,
solve P1) in two steps: solving the OPF-r P2 and solving the
payment problem P3. All microgrids have batteries, loads and
DGs. Each microgrid has its own load profile and renewable
generation profile as shown in Fig. 6; microgrid 1 has PV
generation, microgrid 2 has no renewable generation, and
microgrids 3 and 4 have wind power generation. Note that
the PV generation is during daytime while the wind power
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Figure 6. Load and renewable generation profiles of different microgrids.

Table I
SIMULATION PARAMETERS.

Parameters Value / Component

Number of time slots per day 24
Battery size 3 MWh

Maximum battery power 1 MW
Battery charging efficiency 0.9

Battery discharging efficiency 0.9
Battery degradation cost $10/MWh
Maximum power of DG 3 MW

Maximum SoC 0.9
Minimum SoC 0.1

maximum voltage (p.u.) 1.05
minimum voltage (p.u.) 0.95

κ2 10
κ1 61.1

generations are mostly during nighttime. Table I summarizes
key parameters in the simulation.

Fig. 7 shows the power purchased from the utility company
before and after direct energy trading. It shows the amount
of power purchased from the utility company is substantially
reduced for all microgrids, especially, for microgrid 2 that
has no renewable generation. Instead, all microgrids directly
trade energy as shown in Fig. 8. Microgrid 1 exports power
during daytime while PV generation is more than the load,
but imports power at night. Microgrid 2 having no renewable
generation imports power all the time while microgrids 3 and
4 export power mostly in the morning and at night when they
have more wind power generation than the loads.

Fig. 9 shows the battery energy levels of four microgrids,
and we observe clear distinction before and after direct trading.
For example, after direct trading, microgrid 1 discharges from
16:00 to 20:00 to export power when ToU is high. The
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Figure 7. Power purchased from the utility company.
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Figure 8. Direct energy trading (positive for exporting).

batteries of other microgrids also show similar patterns. Inter-
estingly, the energy level trajectories are quite different before
direct energy trading but become almost identical after direct
energy trading. This is because the batteries are scheduled in
a coordinated way to minimize the total cost. Thus, our result
suggests the way of harmonizing the distributed batteries in a
distribution network using market mechanism. Fig. 10 shows
the fuel-based distributed generations, and all DGs operate
mainly from 15:00 to 21:00 during which ToU is very high.
Interestingly, all DGs run in the same manner. This is due to
the fact that all DGs have the same cost functions and their
operations are determined by solving the OPF. Finally, Fig. 11
shows the voltage profiles of the microgrid buses and confirms
that the solution of OPF satisfies the voltage constraints well.
Those buses which do not connect to any microgrids also
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Figure 9. Battery energy level of different microgrids.
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Figure 10. Fuel-based distributed generation of different microgrids.

satisfy the voltage constraints if the solution of P2 exists.
Otherwise, direct energy trading is not feasible.

Next, we present the costs before and after direct en-
ergy trading (DET) in Table II. The sum of costs cov-
ering all four microgrids is significantly reduced from
$2246.74 (Cost before DET) to $1588.66 (Cost after DET),
i.e., 29.3% of reduction. The power loss cost is also reduced
from $284 to $225 by 20.6%. The total network cost including
power loss cost is then reduced from $2530.74 to $1588.66 by
37.2%. Note that the cost after DET $1588.66 already includes
the power loss cost in the form of access fee. Finally, we
compare the results of GNB with Nash bargaining solution
(NBS) in [7]. Since NBS did not consider solving the OPF,
we apply NBS on top of our OPF solution of P2 for fair
comparison, i.e., our payment in P3 is replaced by NBS. Thus,
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Figure 11. Voltage profiles of the buses connected to microgrids.

Table II
MICROGRID (MG) COSTS ($) BEFORE AND AFTER DIRECT ENERGY

TRADING (DET) AND NASH BARGAINING SOLUTION (NBS) [7].

Metric MG1 MG2 MG3 MG4
Cost before DET 372.37 2175.40 16.69 −317.71

Cost with OPF 439.42 453.21 386.31 84.15
Access Fee βi 54.65 68.32 23.15 79.45

GNB Payment πi −281.14 1454.53 −460.30 −713.10
Cost after DET 212.93 1976.07 −50.84 −549.50

Profit γi 159.44 199.33 67.53 231.78
Quantity (MWh) 22.408 28.015 9.491 32.577
Profit per MWh 7.11 7.11 7.11 7.11
Market power 0.242 0.303 0.103 0.352
NBS Payment −286.22 1489.34 −557.29 −645.83

Cost with NBS 207.85 2010.88 −147.83 −482.23
Profit 164.52 164.52 164.52 164.52

Profit per MWh 7.34 5.87 17.33 5.05
Market Power 0.25 0.25 0.25 0.25

the total network cost remains the same but the payments of
microgrids are revised, and so is the cost of each microgrid
for fair direct energy trading; for example, the profit of
microgrid 3 is $164.52 under NBS but revised to $67.53 under
GNB. This payment adjustment of GNB guarantees fairness
in trading as stated in Remark 3 in Section IV-C.

Fig. 12 shows the convergence of the distributed algorithm
that solves P2 using ADMM. The convergence of the total
cost is fairly fast, i.e., the number of iterations is about 10
as shown in Fig. 12 (a). We also investigate the convergence
of ADMM variables in Fig. 12 (b) by observing max{||ei −
êi||∞, ||ui− ûi||∞, i ∈M} where || · ||∞ is the l∞ norm. The
speed of convergence is exponentially fast after 40 iterations.
Finally, we confirm that the exactness condition of (4) is well
satisfied as shown in Fig. 13; the left-hand side (LHS) and the
right-hand side (RHS) of (4) are exactly same for all cases of
the buses in all time slots.
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Figure 12. Convergence of total cost and ADMM variables.
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Figure 13. Verification of the exactness condition of (4). The ratio of LHS
and RHS is equal to 1 for all cases.

VI. CONCLUSION

In this paper, we investigated direct energy trading among
microgrids considering both the economical and technical
aspects of the distribution power market and network con-
straints. We formulated direct energy trading as a nonconvex
generalized Nash bargaining problem and showed that the
problem can be solved by decomposing it into two phases:
solving the OPF and solving the payment. In both cases,
we leveraged ADMM to decouple the optimization variables
of the DSO and microgrids, and to preserve the privacy of
microgrids. The proposed DSO-based market mechanism is
efficient in maximizing the social welfare and minimizing the
network loss, and also fair by guaranteeing the equal trading
profit per unit energy among microgrids. Simulation results
demonstrated that direct energy trading reduces the total cost
including the costs of all microgrids and network loss by
37.2% compared to the case without direct trading. Resolving
the stochastic uncertainties of loads and generations remains
as future work.

APPENDIX

A. Proof of Proposition 1

For notational simplicity, we omit the variables (ui,bi,gi)
in Ci. We prove by contradiction. Let {C∗i , π∗i , i ∈ M} be
obtained from the solution of P1. Suppose that

∑
i∈M C∗i

does not minimize
∑
i∈M Ci. Then, there exists C ′i such that∑

i∈M C ′i <
∑
i∈M C∗i .

Let ∆Ci = C ′i − C∗i . Then, we have∑
i∈M

∆Ci < 0. (44)

We consider another cost Ci and the payment πi such that
Ci = C∗i + ∆Ci for i = 1, . . . ,M and πi = π∗i − ∆Ci for
i = 1, . . . ,M −1, and πM = π∗M −∆CM + ε. Then, plugging
in Ci and πi gives us
M∏
i=1

[
Ci − (Ci + πi)

]αi

=

M−1∏
i=1

[
Ci − (C∗i + ∆Ci + π∗i −∆Ci)

]αi

×
[
CM − (C∗M + ∆CM + π∗M −∆CM + ε)

]αM

=

M−1∏
i=1

[
Ci − (C∗i + π∗i )

]αi

×
[
CM − (C∗M + π∗M + ε)

]αM
.

From (26) and (44), we have ε =
∑
i∈M∆Ci < 0. Thus

M∏
i=1

[
Ci − (Ci + πi)

]αi
>

M∏
i=1

[
Ci − (C∗i + π∗i )

]αi
.

This contradicts that C∗i and π∗i maximize P1, and it completes
the proof.

B. Proof of Proposition 2

By taking log and negating the objective function, we have
the following minimization problem

minimize
∑
i∈M
−αi log(δi − πi)

subject to
∑
i∈M

πi = 0

variables {πi, i ∈M}.

Then, the Lagrangian is given by

L =
∑
i∈M

(−αi log(δi − πi) + λπi) .

From ∂L
∂πi

= 0, we have πi = δi+
αi

λ . From
∑
i∈M πi = 0 and∑

i∈M αi = 1, we have 1
λ = −

∑
i∈M δi. Thus, the payment

of microgrid i is simply given by

πi = δi − αi
∑
j∈M

δj . (45)

Since the profit of microgrid i is defined as the reduced cost
after the payment, we have

γi = δi − πi = αi
∑
j∈M

δj . (46)

Thus, the total profit
∑
j∈M δj of direct trading is allocated

to each microgrid i based on its market power αi. Then, the
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profit per unit energy is

γi∑
t∈T |eoi (t)|

=

∑
i∈M δi∑

i∈M
∑
t∈T |eoi (t)|

= Γ. (47)

Finally, when substituting πi in (45) into (36), we have the
maximum value given by∏

i∈M

[
Ci − (Coi + πi)

]αi
=
∏
i∈M

[
αi
∑
j∈M

δj
]αi

.

Note that the maximum value only depends on
∑
i∈M δi, and

it is uniquely determined by solving P2.

C. Proof of Corollary 1

Since there is no energy storage, we only need to consider
a specific time slot t ∈ T . Let Ms and Mb denote a set of
selling microgrids and a set of buying microgrids, respectively.
When direct trading is not applied, a seller i ∈ Ms just
injects all renewable generation ri(t) into the grid at the unit
price of µs(t). Meanwhile, a buyer j ∈ Mb serves its local
load dj(t) by purchasing power at the unit price of µb(t).
Now, we consider how the price of direct trading is set. The
selling microgrids with renewable generation export all their
generations, i.e., ei(t) = ri(t) > 0, and the buying microgrids
import all their required loads, i.e., ej(t) = −dj(t) < 0.
For i ∈ Ms, the cost before trading is Ci = −µsri(t), and
the cost after trading is Ci = 0 because there is no trading
with the utility. Thus, we have δi = −µsri(t). Similarly, for
j ∈Mb, we have Cj = −µbdj(t), Cj = 0, and δj = µbdj(t).
Then, the total profit is

∑
i∈M δi =

∑
i∈Ms

−µs(t)ri(t) +∑
j∈Mb

µb(t)dj(t). Since the total selling and buying amounts
are the same,

∑
i∈Ms

ri(t) =
∑
j∈Mb

dj(t) assuming there is
no loss. The total profit is given by∑

i∈M
δi =

µb(t)− µs(t)
2

∑
i∈M
|ei(t)|. (48)

Next, we compute the unit selling price. From (43), (45) and
(48), we have πi

ri(t)
= −µb(t)+µs(t)

2 , where the negative sign
means selling. Similarly, for j ∈Mb, the unit buying price is
given by πj

dj(t)
= µb(t)+µs(t)

2 .

D. Proof of Proposition 3

Let {C∗i , π∗i , i ∈M} be the optimal solution of P1. Let Coi
be the optimal solution of P2. Recall that we do not claim Coi
is equal to C∗i since we do not know whether the solution of
P2 can be a part of the solution of P1. Nevertheless, we have
the property of

∑
i∈M C∗i =

∑
i∈M Coi from Proposition 1.

Then, we replace Ci in (27) with Coi , which transforms P1
into the form of P3. Let πoi be the optimal solution of P3.
Then, from the structure of the problem, it can be shown that
πoi = C∗i − Coi + π∗i , i ∈ M. This implies that the optimal
solution of P2 (Coi ) may not be equal to the optimal solution of
P1 (C∗i ) but the discrepancy can be compensated by adjusting
the payment πoi so that Coi +πoi = C∗i +π∗i . Then, the objective
function of P3 can be equal to that of P1, which completes
the proof.

Remark 4: One may think it is problematic if πoi is not
equal to π∗i . However, the profit of each microgrid, γi =

Ci − (Ci + πi), remains the same because of C∗i + π∗i =
Coi +πoi . This implies that the minimum cost Coi is a nominal
value because it is associated with ei but the payment is not
determined yet.
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[14] E. Münsing, J. Mather, and S. Moura, “Blockchains for decentralized
optimization of energy resources in microgrid networks,” in Proc. of
IEEE Conf. on Control Technology and Applications (CCTA), Aug. 2017.

[15] E. Dall’Anese, H. Zhu, and G. Giannakis, “Distributed optimal power
flow for smart microgrids,” IEEE Trans. on Smart Grid, vol. 4, no. 3,
pp. 1464–1475, Sept. 2013.

[16] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei, “A survey of distributed optimization and
control algorithms for electric power systems,” IEEE Trans. on Smart
Grid, vol. 8, no. 6, pp. 2941–2962, Nov. 2017.

[17] B. Kim, S. Bae, and H. Kim, “Optimal energy scheduling and transaction
mechanism for multiple microgrids,” Energies, vol. 10, no. 4, pp. 1–17,
2017.

[18] M. Osborne and A. Rubinstein, Bargaining and Markets, Academic
Press, 1990.

[19] J. Li, C. Zhang, Z. Xu, J. Wang, J. Zhao, and Y.J. Zhang, “Distributed
transactive energy trading framework in distribution networks,” IEEE
Trans. on Power Systems, vol. 33, no. 6, pp. 7215–7227, Nov. 2018.

[20] M. Baran and F. Wu, “Network reconfiguration in distribution systems
for loss reduction and load balancing,” IEEE Trans. on Power Delivery,
vol. 4, no. 2, pp. 1401–1407, Apr. 1989.

[21] Y. Choi and H. Kim, “Optimal scheduling of energy storage system
for self-sustainable base station operation considering battery wear-out
cost,” Energies, vol. 9, no. 6, pp. 1–19, 2016.

[22] S. Han, S. Han, and H. Aki, “A practical battery wear model for electric
vehicle charging applications,” Applied Energy, vol. 113, pp. 1100–1108,
Jan. 2014.



13

[23] K. Kim, Y. Choi, and H. Kim, “Data-driven battery degradation model
leveraging average degradation function fitting,” Electronics Letters, vol.
53, no. 2, pp. 102–104, Jan. 2017.

[24] H. Morais, P. Kadar, P. Faria, Z. Vale, and H. Khodr, “Optimal
scheduling of a renewable micro-grid in an isolated load area using
mixed-integer linear programming,” Renewable Energy, vol. 35, no. 1,
pp. 151–156, Jan. 2010.

[25] R. Hledik and J. Lazar, “Distribution system pricing with distributed
energy resources,” Future Electric Utility Regulation / Report No. 4,
Lawrence Berkeley National Laboratory, May 2016.

[26] M. Dupuy, “China power sector reform: Key issues for the worlds largest
power sector,” The Regulatory Assistance Program (RAP), Mar. 2016.

[27] L. Kristov, P. De Martini, and J. D. Taft, “A tale of two visions:
Designing a decentralized transactive electric system,” IEEE Power and
Energy Magazine, vol. 14, no. 3, pp. 63–69, May–Jun. 2016.

[28] S. Low, “Convex relaxation of optimal power flow, Part I: Formulations
and equivalence,” IEEE Trans. on Control of Network Systems, vol. 1,
no. 1, pp. 15–27, Mar. 2014.

[29] L. Gan, N. Li, U. Topcu, and S. Low, “Exact convex relaxation of
optimal power flow in radial networks,” IEEE Trans. on Automatic
Control, vol. 60, no. 1, pp. 72–87, Jan. 2015.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, Jan. 2011.

[31] Communication Networks and Systems for Power Utility Automation–
Part 7-420: Basic Communication Structure–Distributed Energy Re-
sources Logical Nodes, IEC Standard 61850-7-420, 2009.

Hongseok Kim (S06, M10, SM16) received the
B.S. and M.S. degrees in the School of Electrical
Engineering from Seoul National University in 1998
and 2000, respectively, and the Ph.D. degree in the
Department of Electrical and Computer Engineering
from the University of Texas at Austin in 2009. He
was a member of Technical Staff at Korea Telecom
from 2000 to 2005, a Post Doctoral Research Asso-
ciate with the Department of Electrical Engineering,
Princeton University, from 2009 to 2010, and a
member of Technical Staff at Bell Labs., Murray

Hill, NJ, USA, from 2010 to 2011. He is currently an Associate Professor with
the Department of Electronic Engineering at Sogang University, Seoul, Korea.
His research interests include Energy ICT and Smart Grid, specifically focused
on power system optimization and economics, applied machine learning,
optimal power flow, energy storage system, microgrid, demand response,
and next generation wireless networks. Dr. Kim was the recipient of the
Korea Government Overseas Scholarship from 2005 to 2008. He received
the Haedong Young Scholar Award from KICS in 2016. He served as an
Editor of the Journal of Communication Networks from 2015 to 2018, and
a Guest Editor of Energies in 2018–2019 for the special issue of Machine
Learning and Optimization with Applications of Power Systems I and II.

Joohee Lee received the B.S. and M.S. degrees
in the Department of Electronic Engineering from
Sogang University in 2017 and 2019, respectively.
Her research interests include transactive energy,
microgrid, P2P energy trading, optimal power flow,
and Energy ICT. She is now with SK Hynix.

Shahab Bahrami received the B.Sc. and M.A.Sc.
degrees both in Electrical Engineering from Sharif
University of Technology, Tehran, Iran, in 2010 and
2012, respectively. He received the Ph.D. degree
in Electrical & Computer Engineering from the
University of British Columbia (UBC), Vancouver,
BC, Canada in 2017. Dr. Bahrami continued to work
as a post-doctoral research fellow at UBC until Jan.
2018. He also worked as a post-doctoral research
fellow at the University of Tehran, Iran from May
2018 to Apr. 2019. Currently, he works as a post-

doctoral research fellow at UBC. Dr. Bahrami has received various prestigious
scholarships at UBC, including the distinguished and highly competitive
UBCs Four Year Fellowship (2013–2017), and the Graduate Support Initiative
Award from the Faculty of Applied Science at UBC (2014–2017). His research
interests include power flow analysis, demand response, optimization, and
algorithm design with applications to smart grid.

Vincent W.S. Wong (S’94, M’00, SM’07, F’16) re-
ceived the B.Sc. degree from the University of Man-
itoba, Winnipeg, MB, Canada, in 1994, the M.A.Sc.
degree from the University of Waterloo, Waterloo,
ON, Canada, in 1996, and the Ph.D. degree from the
University of British Columbia (UBC), Vancouver,
BC, Canada, in 2000. From 2000 to 2001, he worked
as a systems engineer at PMC-Sierra Inc. (now Mi-
crochip Technology Inc.). He joined the Department
of Electrical and Computer Engineering at UBC
in 2002 and is currently a Professor. His research

areas include protocol design, optimization, and resource management of
communication networks, with applications to wireless networks, smart grid,
mobile edge computing, and Internet of Things. Currently, Dr. Wong is an
Executive Editorial Committee Member of IEEE Transactions on Wireless
Communications, an Area Editor of IEEE Transactions on Communications,
and an Associate Editor of IEEE Transactions on Mobile Computing. He
has served as a Guest Editor of IEEE Journal on Selected Areas in Com-
munications and IEEE Wireless Communications. He has also served on the
editorial boards of IEEE Transactions on Vehicular Technology and Journal
of Communications and Networks. He was a Tutorial Co-Chair of IEEE
Globecom18, a Technical Program Co-chair of IEEE SmartGridComm’14,
as well as a Symposium Co-chair of IEEE ICC’18, IEEE SmartGridComm
(’13, ’17) and IEEE Globecom’13. He is the Chair of the IEEE Vancouver
Joint Communications Chapter and has served as the Chair of the IEEE
Communications Society Emerging Technical Sub-Committee on Smart Grid
Communications. He received the 2014 UBC Killam Faculty Research Fellow-
ship. He is an IEEE Communications Society Distinguished Lecturer (2019 -
2020).


