
1

Throughput Optimization for Grant-Free Multiple
Access with Multiagent Deep Reinforcement

Learning
Rui Huang, Student Member, IEEE, Vincent W.S. Wong, Fellow, IEEE, and Robert Schober, Fellow, IEEE

Abstract—Grant-free multiple access (GFMA) is a promis-
ing paradigm to efficiently support uplink access of Internet
of Things (IoT) devices. In this paper, we propose a deep
reinforcement learning (DRL)-based pilot sequence selection
scheme for GFMA systems to mitigate potential pilot sequence
collisions. We formulate a pilot sequence selection problem for
aggregate throughput maximization in GFMA systems with
specific throughput constraints as a Markov decision process
(MDP). By exploiting multiagent DRL, we train deep neural
networks (DNNs) to learn near-optimal pilot sequence selection
policies from the transition history of the underlying MDP
without requiring information exchange between the users. While
the training process takes advantage of global information, we
leverage the technique of factorization to ensure that the policies
learned by the DNNs can be executed in a distributed manner.
Simulation results show that the proposed scheme can achieve
an average aggregate throughput that is within 85% of the
optimum, and is 31%, 128%, and 162% higher than that of
acknowledgement-based GFMA, dynamic access class barring,
and random selection GFMA, respectively. Our results also
demonstrate the capability of the proposed scheme to support
IoT devices with specific throughput requirements.

Index Terms—Grant-free multiple access (GFMA), deep re-
inforcement learning (DRL), medium access control (MAC)
protocols, Internet of Things (IoT).

I. INTRODUCTION

Internet of Things (IoT) is a promising paradigm that
supports various types of applications, including smart home,
smart city, intelligent transportation systems, and eHealth [2].
Hence, IoT has been recognized as an important enabler of
Industry 4.0 [3]. While IoT benefits from the data provided by
a large number of devices [4], this also introduces challenges
to wireless communication systems. With limited resources,
wireless communication systems are required to support a
tremendous number of IoT devices. It is estimated that by

Manuscript received on Feb. 20, 2020; revised on Jul. 21, 2020; accepted
on Sep. 5, 2020. This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC). This paper has been
published in part in the Proceedings of the IEEE Global Communications
Conference (Globecom), Waikoloa, HI, Dec. 2019 [1]. The editor coordinating
the review of this paper and approving it for publication was Chuan Huang.
(Corresponding author: Vincent W.S. Wong.)

R. Huang and V. W.S. Wong are with the Department of Electrical and
Computer Engineering, The University of British Columbia, Vancouver, BC,
V6T 1Z4, Canada. (e-mail: {ruihuang, vincentw}@ece.ubc.ca).

R. Schober is with the Institute for Digital Communications, Friedrich-
Alexander University of Erlangen-Nuremberg, Erlangen 91058, Germany (e-
mail: robert.schober@fau.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

2023, there will be 14.7 billion machine-type connections
globally [5]. Besides, different IoT devices may have different
data rate or throughput requirements depending on their
applications and services [2]. Hence, wireless communication
systems have to enable efficient IoT data transmission such
that a large number of devices with different throughput
requirements can be supported.

Grant-free multiple access (GFMA) can tackle these emerg-
ing challenges in wireless systems by enhancing spectrum
efficiency and reducing access delay [6], [7]. In GFMA,
an IoT device selects a pilot sequence from a pre-allocated
resource pool, and transmits its data to the base station without
sending an access request to the base station a priori. The
base station sends an acknowledgement (ACK) to the device
upon successful decoding. The timing sequence diagram for
GFMA is illustrated in Fig. 1. Compared with the four-step
grant-based random access in Long Term Evolution (LTE),
grant-free multiple access has a two-step access procedure.
Hence, GFMA incurs a lower signaling overhead and reduces
the access delay of IoT devices during the random access
procedure. Moreover, when combined with non-orthogonal
multiple access (NOMA), multiple IoT devices can transmit
their packets simultaneously to the base station sharing the
same physical resource block (PRB) in GFMA systems [8].

To fully exploit the benefits of GFMA, two challenges
have to be overcome. First, due to the lack of centralized
scheduling, packet collisions occur when multiple IoT devices
select the same pilot sequence, which can lead to decoding
failure and throughput degradation. Therefore, each device
should choose a specific pilot sequence that distinguishes its
signal from the signals of other devices to ensure successful
channel estimation and decoding at the receiver [8]. Second,
heterogeneous IoT devices cannot coordinate their transmis-
sions or exchange information with each other. Each device
selects a pilot sequence independently without knowing the
selection decisions of the other devices. Moreover, due to the
lack of knowledge of the throughput requirements of the other
devices, an IoT device may greedily occupy too many network
resources such that the throughput requirements of the other
devices cannot be satisfied.

Various schemes have been proposed to resolve collisions
in the pilot sequence selection in GFMA systems [9]–[11].
The authors in [9] propose an ACK-based scheduling scheme,
where a device that experienced a packet collision selects a
new pilot sequence from the remaining pilot sequences, which
have not yet been selected by other devices, and retransmits

2

IoT device

Uplink transmission

Blind detection and

data decoding

Select pilot sequence

PRB information

via RRC signaling

Base station

Acknowledgement

Fig. 1. The timing sequence diagram for GFMA. The base station configures
the PRB via radio resource control (RRC) signaling [6]. Each IoT device then
selects a pilot sequence and transmits its packet to the base station. After
decoding, the base station informs the device about the decoding state by
sending an ACK.

the packet. The authors in [10] propose that the base station
reserves some of the pilot sequences for the retransmissions of
devices that have suffered a packet collision. The base station
then informs the devices about the reserved pilot sequences
by broadcasting an ACK. For ACK-based solutions [9], [10],
although collisions are resolved in the retransmission phase,
collisions can still occur when a device transmits a packet for
the first time as scheduling is performed only after a collision
has occurred. The authors in [11] propose a pilot sequence
allocation scheme, where the base station pre-assigns pilot
sequences to those devices that have higher probabilities
of transmitting packets in the next time slot. However, the
allocation scheme in [11] requires centralized scheduling and
accurate estimation of the transmit probability. In addition,
the aforementioned schemes do not take into account any
throughput requirements, and therefore may not be able to
support different types of IoT applications.

Deep reinforcement learning (DRL) is a model-free learn-
ing technique based on deep neural networks (DNNs). DRL
does not rely on a pre-established system model and is a
powerful tool for solving optimization problems with large
decision spaces [12], [13]. In contrast to multi-armed bandit
problem based solutions [14]–[16], DRL-based solutions can
be generalized and applied to problems with different system
models and objectives. For the problem at hand, using DRL, a
DNN can learn a distributed policy for pilot sequence selection
by exploiting the pilot sequence selection history for training.
Based on the pre-trained DNN, a device may avoid collisions
with other devices without requiring information exchange
between the devices.

By combining conventional multiagent reinforcement learn-
ing (MARL) with DNNs, multiagent DRL (MA-DRL) can
efficiently handle nonstationary multiagent decision processes
by jointly training multiple DNNs to jointly learn the policies
[17]–[19]. Nevertheless, to the best of the authors’ knowledge,
the application of DRL for the design of GFMA protocols
has not been considered yet. However, some insights can be
obtained from the application of DRL for distributed spectrum
access in cognitive radio [20]–[22]. The authors in [20] used
DRL to design a distributed multi-channel access scheme to
reduce the collision probability and maximize the channel
utilization. DRL was employed to study cooperative and non-

cooperative channel access of multiple users in [21]. The
authors in [21] showed that, by properly designing a coop-
erative reward function, DRL-based channel access schemes
may yield a better performance in terms of proportional
fairness compared with using individual reward functions.
The authors in [22] proposed a DRL-based channel access
scheme for heterogeneous wireless networks. The results in
[22] showed that, by using an MA-DRL framework along
with a cooperative reward function, the maximum aggregate
throughput and proportional fairness can be achieved. While
the aggregate throughput maximization and proportional fair-
ness, which are two special cases of α-fairness, have been in-
vestigated in [21], [22], the DRL frameworks proposed in the
aforementioned studies cannot be applied to wireless systems
where the users may have different throughput requirements.
The latter case can be regarded as a generalized case of
proportional fairness, where the users are prioritized based
on their specific throughput requirements. Compared with α-
fairness, in this case, it is more difficult for the DNNs to
learn the pilot sequence selection policies with respect to the
specific throughput requirements of the devices.

To address the aforementioned issues, in this paper, we
propose an MA-DRL based distributed pilot sequence s-
election scheme for aggregate throughput maximization in
GFMA systems, where we take into account different user
throughput requirements. Each IoT device knows neither
the pilot sequence selection decisions nor the throughput
requirements of the other devices. Due to the lack of global
information in each device, designing a distributed scheme
that fosters collaboration between IoT devices such that the
throughput requirements of different devices can be satisfied
is challenging. In this paper, we exploit the potential of
recurrent neural networks (RNNs) to handle the incomplete
information of the underlying decision process and investigate
their capability to learn the pilot sequence selection policies
such that the aggregate throughput is maximized while the
different throughput requirements are satisfied.

To be able to better tackle the nonstationarity and lack of
coordination between devices, we further propose an MA-
DRL training framework, in which the DNNs of all users are
jointly trained to learn the pilot sequence selection policies
with the help of global information at the base station. Using
the technique of factorization [18], [23], the policies learned
during joint training can be executed in a distributed manner.
Our contributions are as follows:
• We formulate the pilot sequence selection problem for

throughput optimization in GFMA systems with average
throughput constraints for the IoT devices. We apply
stochastic network optimization [24] and propose an
algorithm to obtain the optimal solution. While relying
on centralized scheduling, the optimal solution serves as
a benchmark when evaluating the performance of the
proposed DRL-based scheme.

• We model the pilot sequence selection process as a
Markov decision process (MDP) and propose a pilot
sequence selection scheme, where the DNNs are trained
based on DRL to learn the pilot sequence selection
policies from the transition history of the underlying

3

MDP for the IoT devices. We propose a deep recurrent
Q-network (DRQN) to take advantage of the capability
of RNNs to efficiently learn the temporal correlations of
system transitions in time series learning problems.

• Using the factorization technique, we propose a central-
ized training distributed execution framework. In the pro-
posed training framework, the DRQNs of all IoT devices
are jointly trained by leveraging global information at
the base station, whereas the policies learned during the
centralized training phase can be executed in a distributed
online manner.

• We conduct simulations to evaluate the performance
of the proposed scheme. Our results show that DNNs
are capable of learning near-optimal pilot sequence s-
election policies for IoT devices. For the considered
system, the proposed scheme can achieve an aggregate
throughput that is within 85% of the optimum. The
aggregate throughput of the proposed scheme is 31%,
128%, and 162% higher than that of an ACK-based
scheme [9], dynamic access class barring (ACB) [25],
and a random selection scheme, respectively. The pilot
sequence selection policies learned via DRL can also
accommodate different throughput requirements of the
IoT devices. Hence, the proposed scheme is capable of
supporting different IoT applications in GFMA systems.

The remainder of this paper is organized as follows. The
system model and problem formulation are introduced in
Section II. The DRL framework for pilot sequence selection is
presented in Section III. The DNN architectures and training
algorithm are presented in Section IV. Simulation results are
provided in Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a GFMA system with one base station serving
multiple users1. The base station and each user are equipped
with one antenna. Time is slotted into intervals of equal
duration. The time interval [t, t + 1) is referred to as time
slot t, where t ∈ T = {0, 1, 2, . . . , T − 1}. The base
station proactively controls the network resource allocation for
GFMA transmission in the considered system. In particular,
in each time slot, the base station assigns one PRB, i.e., one
time-frequency resource block, for GFMA transmission. We
assume the base station assigns K pilot sequences to the
PRB in each time slot, and K = {1, 2, . . . ,K} is the set
of pilot sequence indices. Welch bound equality sequences,
Grassmannian sequences, or other types of sparse spreading
sequences can be used as pilot sequences.

There are in total N users in the considered GFMA system.
The set of users is denoted by N = {1, 2, . . . , N}. All data
packets are transmitted using GFMA. At the beginning of
each time slot, the base station informs the users about the
PRB and the K available pilot sequences via radio resource
control (RRC) signaling. When a user decides to transmit, it
selects one of the K available pilot sequences and performs
uplink transmission. We assume that a user always has packets

1In the remainder of this paper, we use the terms users and IoT devices
interchangeably.

to send when it decides to perform uplink transmission. We
define binary variable gnk(t) ∈ {0, 1}, where gnk(t) is equal
to 1 if user n ∈ N selects the k-th pilot sequence, k ∈ K, in
time slot t ∈ T . Otherwise, gnk(t) is equal to 0. Since a user
can select at most one pilot sequence in each time slot, we
have ∑

k∈K

gnk(t) ≤ 1, n ∈ N , t ∈ T . (1)

User n does not transmit in time slot t if
∑
k∈K gnk(t) = 0.

We further define gn(t) , (gn1(t), gn2(t), . . . , gnK(t)) as the
pilot sequence selection vector of user n in time slot t. We
define nk(t) as the number of users that select the k-th pilot
sequence in time slot t. We have

nk(t) ,
∑
n∈N

gnk(t), k ∈ K, t ∈ T . (2)

Furthermore, S(t) denotes the set of users who select a pilot
sequence that is not chosen by other users in time slot t. That
is,

S(t) ,
{
n
∣∣∣ ∑
k∈K

1(nk(t) = 1)gnk(t) = 1, n ∈ N
}
, t ∈ T ,

where 1(·) is the indicator function.
At the receiver side, the base station estimates the channels

based on the received pilot sequences and then decodes the
packets of the users. For the users who select a pilot sequence
that is not chosen by other users, we assume the base station
can perform perfect channel estimation and apply multiuser
detection to mitigate the interference between the users [8],
[26] and decode their packets successfully. However, when
multiple users select the same pilot sequence, the base station
cannot estimate the channels of the users, and hence cannot
decode their packets [27]. In other words, we assume the base
station can only successfully decode the data of the users in set
S(t). For user n ∈ N , we define rn(t) to be a binary indicator
that specifies whether its signal is successfully decoded in time
slot t. We assume

rn(t) ,

{
1, if n ∈ S(t),

0, otherwise.
(3)

The base station sends an ACK to the user if its packet has
been successfully decoded.

We use the time average expectation of the number of
packets that are successfully received by the base station
as the performance metric to measure the average aggregate
throughput of the considered GFMA system. This metric has
also been adopted in [22]. Since there are K pilot sequences,
the maximum aggregate throughput of the considered system
is K packets per time slot, which is the achievable aggregate
throughput of the considered system in the absence of pilot
sequence selection collisions. We denote µn(t) as the average
throughput of user n up to time slot t. We have

µn(t) ,
1

t

t−1∑
τ=0

E[rn(τ)], n ∈ N , t ∈ T \ {0}, (4)

and µn(0) , 0, where E[·] is the expectation with respect to
the randomness of the pilot sequence selections of the other

4

users. Given (4), we have µn(t) ∈ [0, 1] for n ∈ N , t ∈ T .
Moreover, we assume that each user knows its own average
throughput but not that of the other users. This has two
main reasons. First, we consider the average throughput of
a particular user to be private information. Hence, from the
perspective of the mobile network operator, the base station
should not broadcast the average throughput of the users in
order to avoid the potential leakage of private information.
Second, broadcasting the average throughput of the users
incurs an additional signaling overhead, which scales with the
number of users K.

We denote user n’s average required throughput by µreq
n .

Hence, the constraint with respect to the average throughput
requirement of user n is given by

lim sup
T→∞

µn(T) = lim sup
T→∞

1

T

T−1∑
τ=0

E[rn(τ)] ≥ µreq
n , n ∈ N .

(5)
We assume that the average required throughputs of the IoT
applications can be categorized into different quality of service
(QoS) levels, and each of the QoS levels is pre-assigned with
a QoS flow identifier (QFI), which is a positive integer [28,
Section 5.7]. When sending a packet to the base station, a user
indicates its QFI in the packet header, and the base station is
informed about the average required throughput of the user
by checking the packet header [28, Section 5.8].

Our objective is to maximize the average aggregate through-
put in GFMA systems subject to user-specific throughput
constraints. This leads to the following optimization problem

maximize
gn(t), n∈N , t∈T

lim
T→∞

1

T

T−1∑
t=0

∑
n∈N

E[rn(t)]

subject to
∑
k∈K

gnk(t) ≤ 1, n ∈ N , t ∈ T ,

lim sup
T→∞

1

T

T−1∑
τ=0

E[rn(τ)] ≥ µreq
n , n ∈ N .

(6)
Problem (6) is a combinatorial optimization problem that
can be solved using stochastic network optimization with
virtual queues [24]. The details of this approach can be found
in the Appendix. However, the optimal solution of problem
(6) requires global information and centralized computation.
Besides, centralized scheduling is necessary for implementing
the optimal solution of problem (6) in GFMA systems. Hence,
in this paper, we propose a practical DRL-based online pilot
sequence selection scheme to obtain a suboptimal solution of
problem (6) in a distributed manner.

III. MA-DRL FRAMEWORK FOR GFMA SYSTEMS

With the recent advances in machine learning and artificial
intelligent, DRL has emerged as a powerful tool for devel-
oping solutions for combinatorial optimization problems. In
this section, we model the pilot sequence selection problem
as an MDP and propose an MA-DRL based framework to
solve problem (6) efficiently.

A. Modeling with MDP

As the pilot sequence selection of the N users in the
considered GFMA system is essentially a multiagent decision
making process, we model it as an MDP, which can be defined
by the tuple (S,A,P,R). The details are as follows:

1) State S: We define variable dk(t) ∈ {−1, 0, 1}, k ∈
K, as the indicator for the decoding state of the k-th pilot
sequence at the beginning of the current time slot t ∈ T .
dk(t) depends on the pilot sequence selection of the users
in the previous time slot t − 1. Specifically, dk(t) is equal
to 1 if the signal using the k-th pilot sequence was decoded
successfully in time slot t−1. We set dk(t) to −1 if the signal
using the k-th pilot sequence was not decoded successfully in
time slot t− 1. dk(t) is equal to 0 if no signal using the k-th
pilot was transmitted in time slot t − 1. In time slot t, the
global state s(t) consists of the decoding states of all pilot
sequences and the average throughput of all users up to time
slot t. We have

s(t) , (d1(t), . . . , dK(t), µ1(t), . . . , µN (t)), t ∈ T , (7)

where µn(t) is given in (4). After decoding the packets of
all users, the base station knows the decoding states of all
pilot sequences d1(t), . . . , dK(t), and it can track the average
throughput of all users µ1(t), . . . , µN (t). Therefore, global
state s(t) is available at the base station in each time slot.
We define S ⊆ {−1, 0, 1}K × [0, 1]N to be the set of all the
possible global states.

We assume the base station includes the information on
d1(t), . . . , dK(t) in the RRC signaling and broadcasts this
information to the users at the beginning of time slot t. Each
dk(t), k ∈ K can be encoded using 2 bits. Hence, for a GFMA
system with K pilot sequences, this incurs an overhead of 2K
bits for downlink signaling. However, apart from knowing the
decoding states of all K available pilot sequences, user n only
knows its average throughput µn(t). Therefore, we define the
local state of user n in time slot t as

sn(t) , (d1(t), . . . , dK(t), µn(t)), t ∈ T . (8)

We define Ŝ ⊆ {−1, 0, 1}K × [0, 1] as the set of all possible
local states of user n ∈ N . We note that as the state includes
the average throughput of the users, the state in one particular
time slot depends on the state of the previous time slot and
the pilot sequence selections of the users.

2) Joint Action A: In time slot t, the action profile of user
n is its own pilot sequence selection gn(t). To reduce the
dimensionality of the action space, we use the index of the
pilot sequence selected by user n in time slot t to indicate its
action. That is

an(t) ∈ Â = {0, 1, . . . ,K}, n ∈ N , t ∈ T , (9)

where an(t) = 0 means user n does not transmit in time slot
t. The joint action of all users in time slot t is given by

a(t) , (a1(t), . . . , aN (t)), t ∈ T . (10)

The joint action space A is equal to ÂN .

5

3) State Transition Probability P: The state transition
probability P(s(t + 1) | s(t),a(t)), t ∈ T is the probability
that given current state s(t) and joint action a(t), the next
state is s(t+ 1), where P(·) denotes the probability of event
(·). In the considered GFMA system, the next state s(t+ 1)
can be determined with probability (w.p.) one if the current
state s(t) and joint action a(t) are given. We denote the state
transition probabilities as P : S × S ×A → [0, 1].

4) Reward R: The reward is a real number that is deter-
mined based on the state and joint action of all users. In the
considered MDP, given the global state s(t) and joint action
a(t), all users receive an aggregate reward, which is defined
as follows

R(s(t),a(t)) ,
∑
n∈N

(
r̂n(t)− λn(t)(µreq

n − µn(t))
)
, t ∈ T ,

(11)
where the term r̂n(t) is given by

rn(t) =

1, the packet of user n has been success-
fully received,

−1, the packet of user n collided with those
of other users,

0, otherwise.
(12)

The term λn(t)(µreq
n − µn(t)) is the penalty resulting from

violating the throughput constraint of user n ∈ N . We set
λn(t) to a positive constant C when µn(t) < µreq

n , and equal
to zero when the throughput constraint is satisfied. That is,

λn(t) =

{
C, if µn(t) < µreq

n ,

0, otherwise.
(13)

We define R ⊆ R to be the set of rewards.

B. Global Q-Value Approximation with MA-DRL

To maximize the aggregate reward in the considered MDP,
the optimal joint action may be determined with conventional
Q-learning [29]. In Q-learning, the expected cumulative dis-
counted reward of taking the joint action a under state s is
given by the global Q-value QG(s,a), which is given by [29,
Section 3.5]

QG(s,a) = E
[∞∑
k=0

γk R(s(t+ k),a(t+ k))∣∣∣∣ s(t) = s, a(t) = a

]
, (14)

where γ ∈ [0, 1] is the discount factor. The global Q-value is
updated during the decision process. Given state s(t) in time
slot t, the users choose joint action a(t), receive an aggregate
reward R(s(t),a(t)), and the next state is s(t+ 1). Then, the
global Q-value is updated as follows

QG(s(t),a(t))← E
[
R(s(t),a(t))

+ γ max
a′∈A

QG(s(t+ 1),a′)

∣∣∣∣ s(t) = s, a(t) = a

]
. (15)

Estimating the global Q-value is beneficial in a multiagent
decision process as the global state s(t) and joint action a(t)
contain the information about all the users. Hence, the global
Q-value can capture the impact of the action of a user on
other users, and therefore can handle the nonstationary case
of a multiagent decision process [30], [31]. To determine the
action a(t) that maximizes the expected cumulative discount-
ed reward, in conventional Q-learning, a Q-table is required
to store the global Q-values of all possible actions for a
given state s(t). However, the size of the Q-table increases
with the cardinalities of the action and state spaces. This
makes Q-learning costly in terms of computation and memory,
especially for IoT devices.

Deep Q-learning [12] has been proposed to tackle the
aforementioned issues. In deep Q-learning, the Q-value is ap-
proximated by DNNs through the establishment of a mapping
between a given state and the corresponding Q-values of all
possible actions. A DNN module with learnable parameters
Φ can be employed to approximate the global Q-values. In
fact, Φ is a vector that collects the weights and biases of the
neurons within the DNN module.

The learnable parameters Φ are updated based on the
system transition history to improve the accuracy of the
Q-value approximation. This is referred to as the train-
ing phase of the DNN. In current time slot t, the system
transition history consists of the system transition tuples
(s(τ),a(τ), R(s(τ),a(τ)), s(τ + 1)) with time index τ ∈
{0, 1, . . . , t− 1}, which describes the system transition from
time slot τ to time slot τ + 1. We denote the global Q-value
for s(τ) and a(τ), which is approximated by a DNN with
parameters Φ, as QG

Φ(s(τ),a(τ)). In each training iteration,
we store the parameters of the DNN resulting from the previ-
ous training iteration, which we denote as Φ̂. Then, the target
global Q-value is given by R(s(τ),a(τ))+γmax

a∈A
QG

Φ̂
(s(τ +

1),a) [12]. The update of Φ is determined by minimizing
the temporal difference (TD) error between the target and the
approximated global Q-value [12]. That is,

arg min
Φ

1

2

(
R(s(τ),a(τ))+γ max

a∈A
QG

Φ̂
(s(τ + 1),a)

− QG
Φ(s(τ),a(τ))

)2
. (16)

To solve problem (16), we apply a stochastic gradient de-
scent (SGD) algorithm to update parameters Φ. Specifically,
parameters Φ are updated as follows [32]

Φ←Φ− α∇QG
Φ(s(τ),a(τ))

(
R(s(τ),a(τ))

+ γ max
a∈A

QG
Φ̂

(s(τ + 1),a)−QG
Φ(s(τ),a(τ))

)
, (17)

where α is the learning rate. The gradient ∇QG
Φ(s(τ),a(τ))

in (17) is determined using the backpropagation algorithm [33,
Ch. 6]. After updating parameters Φ with a sufficient number
of system transition tuples, the optimal joint action can be
determined based on the pre-trained DNN as follows

a(t) = arg max
a∈A

QG
Φ(s(t),a). (18)

To obtain the optimal joint action based on (18), we feed s(t)
into the DNN and determine a(t) based on the output of the
DNN.

6

C. Local Q-Value based on Factorization

To estimate the global Q-value, it is necessary for the users
to know the joint action a(t) and the global state s(t) [30],
[31]. However, as communication (or coordination) between
the users in the considered GFMA system is not possible,
a user cannot obtain knowledge about the actions of the
other users or their local states to estimate the global Q-
value directly. This means that an MARL algorithm that relies
solely on the global Q-value cannot be implemented in the
considered GFMA system in a distributed manner.

To tackle the aforementioned difficulties, rather than di-
rectly estimating the global Q-value, we propose that each
user maintains a local DNN module to estimate the impact
of its own action on the global Q-value. With the local
DNN module, which is characterized by parameters Φn,
each user n ∈ N can obtain a local Q-value denoted by
QΦn

(sn(τ), an(τ)) based on its local information, i.e., its
action an(τ) and its local state sn(τ).

To ensure that the local Q-value estimated by the local DNN
module of user n can capture the impact of user n’s action
on the global Q-value, a mapping between the global Q-value
and the local Q-value should be learned. To obtain such a
mapping, we adopt the idea of factorization in MARL and
multiagent systems [23], [34], [35], according to which, for a
given state, an action of a user that leads to a larger global Q-
value should also result in a larger local Q-value. In particular,
let a−n(τ) denote the actions of all users in set N except for
user n in time slot τ . Given the global state s(τ) and the local
state sn(τ), the local Q-value approximated by the local DNN
module of user n is a factorization of the global Q-value if
[34, Ch. 3]

QΦn
(sn(τ), an(τ)) > QΦn

(sn(τ), a′n(τ))

⇔ QG
Φ(s(τ), (an(τ),a−n(τ)))

> QG
Φ(s(τ), (a′n(τ),a−n(τ))), (19)

where an(τ), a′n(τ) ∈ Â and a−n(τ) ∈ ÂN−1. To obtain
such a factorization, we use a monotonic function F (·) such
that

QG
Φ(s(τ),a(τ)) = F

(
QΦ1

(s1(τ), a1(τ)),

· · · , QΦN
(sN (τ), aN (τ))

)
. (20)

The monotonic function in (20) should satisfy the following
condition

∂F
(
QΦ1(s1(τ), a1(τ)), · · · , QΦN

(sN (τ), aN (τ))
)

∂QΦn
(sn(τ), an(τ))

> 0.

(21)
Any monotonic function F (·) that satisfies constraint (21)
guarantees that the resulting local Q-value is a factorization
of the global Q-value as specified in (19).

We emphasize that the factorization of the global Q-value is
the key to the design of a distributed pilot sequence selection

DRQN

of User 1 …

Global

Q-value

DRQN

of User N

Factorization Module

Local Q-values

Global state

Local state …

DRQN

of User n

TD

error

Local state Local state

Local

Q-value

Action

Centralized training

at the base station
Distributed execution

at user n

DRQN

parameters

Value

Gradient (Parameter update)

Fig. 2. The overall network architecture. The DRQNs of all users are jointly
trained at the base station. The base station sends the updated parameters
of the pre-trained DRQNs to the users. The users can then select pilot
sequences in a distributed manner. The forward propagations for determining
the Q-values and the TD-error are denoted by solid blue arrows, while the
backpropagations for updating the learnable parameters are denoted by dashed
red arrows.

scheme based on MA-DRL. The factorization of the global
Q-value in (20) leads to the following property

arg max
a∈A

QG
Φ(s(τ),a(τ)) =

(
arg max
a1∈Â

QΦ1(s1(τ), a1),

. . . , arg max
aN∈Â

QΦN
(sN (τ), aN)

)
.

(22)

Equation (22) shows that the joint action that maximizes the
global Q-value corresponds to the individual actions that max-
imize the local Q-value of each user n ∈ N . In other words,
each user can determine its own action that maximizes the
global Q-value by greedily selecting the action that maximizes
its local Q-value, which is

an(t) = arg max
an∈Â

QΦn
(sn(t), an). (23)

To obtain an(t) in (23), user n feeds sn(t) into its DNN and
determines an(t) based on the output of the DNN. This does
not require knowledge of the actions of the other users or the
global state, and therefore can be implemented in a distributed
manner.

IV. DNN ARCHITECTURE AND PROPOSED SCHEME

In this section, we propose an architecture for the DNN
modules to approximate the global and local Q-values. We
also present an online pilot sequence selection scheme, in
which the pilot sequence selections are determined based on
the outputs of pre-trained DNN modules.

A. Overall Network Architecture

The overall network architecture of the proposed DNN
module for approximating the global Q-value is illustrated
in Fig. 2. The DNN module consists of two parts:

7

• Deep Recurrent Q-Network (DRQN): DRQN is a recur-
rent neural network (RNN)-based DNN module that can
aggregate experience from the system transition history.
We use DRQNs to generate the Q-values based on the
states of the users.

• Factorization Module: The factorization module is a
multi-layer perceptron (MLP) module which guarantees
that the local Q-values of the users are the factorization of
the approximated global Q-value. To this end, the factor-
ization module is trained to approximate the monotonic
function F (·) in (20) by taking advantage of the global
information, i.e., the global state s(t).

In particular, each user maintains one local DRQN to
determine the approximated local Q-value (right-hand side
of Fig. 2), based on which the user can select its pilot
sequence. Meanwhile, the training of the DRQNs of all users
is performed by the base station. During the centralized
training phase at the base station (left-hand side of Fig. 2),
the DRQNs of all users are jointly trained based on global
information. The advantages of using centralized training in
wireless systems are two-fold. First, the base station, which
is equipped with powerful hardware, can efficiently train the
DNNs for the users. Second, the users (i.e., IoT devices) can
prolong their battery lifetime by not being involved in the
energy-consuming training phase. The factorization module
is employed only during the training phase to ensure that the
global Q-value can be properly factorized. After training, the
base station sends the learnable parameters of the DRQNs
to the users. The users select the pilot sequences based on
the outputs of the DRQNs in a distributed manner without
relying on global information. Note that the base station does
not know which pilot sequence selections of the users lead
to collisions. Moreover, the base station cannot differentiate
between the users that remain silent and the users that suffer
from collisions. This prevents the base station from knowing
the joint action a(τ). Hence, in practice, user n may include
the history of its action an(τ) in its data packet, so that the
base station can obtain the complete system transition history.

The proposed training framework falls into the category
of centralized training distributed execution frameworks in
distributed DRL and MA-DRL [13], [36]. We combine con-
ventional MARL, in particular, the factorization technique,
with DRL. The advantage of the proposed framework is
that the distributed and user-specific pilot sequence selection
policies can be learned during the centralized training process.
Moreover, compared with conventional centralized MARL,
the proposed learning framework is able to better handle the
large joint action space with the help of DNNs. The details
of the network architecture are presented in the following
subsections.

B. DRQN Design
The DRQNs of all users have the same network architecture

as illustrated in Fig. 3. For each user n ∈ N , the DNN layers
in the DRQN and their functionalities are as follows:

1) Input Layer: The input layer collects the local state and
feeds it to the DNN. For the DRQN of user n, the input is
the local state sn(t), which is a vector of size K + 1.

LSTM

unit

Output

layer

State

Q-values

vector

…

Input

layer

LSTM

layer

ReLU

…

Fully

connected

…

…

Fully

connected

LSTM

unit

The

action

with the

maximum

Q-value

…
…

…

⋮⋮

Fig. 3. The proposed network structure for DRQN, which consists of an
input layer, an LSTM layer, and an output layer.

2) Long Short-Term Memory (LSTM) Layer: The local
state sn(t) collected by the input layer is fed into an LSTM
layer. LSTM layer is a type of RNN. Using LSTM layer, the
information about the system transition history can be learned
and stored in its recurrent states. Therefore, LSTM layer
can learn the temporal correlations of the system transitions
more efficiently than feedforward neural networks. For the
same reason, LSTM layer is capable of overcoming the lack
of complete information in the underlying MDP [13]. In
particular, we use an LSTM layer with D hidden units to
aggregate the information from the system transition history
and approximate the Q-values. The outputs of the LSTM layer
are its hidden states.

3) Output Layer: The LSTM layer is connected to the
output layer to generate the Q-values. Specifically, we use
two fully connected (FC) layers with one rectified linear unit
(ReLU) layer to generate the Q-values based on the hidden
states of the LSTM layer. The output is a vector of size K+1.
For k ∈ K, the (k + 1)-th entry of the output vector is the
local Q-value for selecting the k-th pilot sequence in time slot
t for local state sn(t), while the first entry is the local Q-value
for not transmitting in time slot t.

C. Factorization Module Design

The DNN architecture of the factorization module is shown
in Fig. 4. To obtain the desired function F (·) for global Q-
value factorization, we use an MLP network-based universal
approximator (see the blue box in Fig. 4) to approximate
function F (·), while the weights and biases of the MLP
network are generated by four FC layers (see the green
box in Fig. 4). As shown in [37], an MLP network with
one hidden layer can serve as a universal approximator. In
particular, the input layer of the MLP network has N neurons
and each neuron takes respectively one of the local Q-values
approximated by the DRQNs of the N users as input. The
hidden layer of the MLP network has H neurons. There is one
neuron in the output layer as the global Q-value is a scalar.
We denote the weight between the j-th neuron of the hidden
layer and the n-th neuron of the input layer and the bias of the
j-th neuron of the hidden layer in time slot τ as vjn(τ) and
bj(τ), respectively. We denote the weight between the j-th
neuron of the hidden layer and the neuron of the output layer
in time slot τ as wj(τ). The bias of the neuron of the output
layer in time slot τ is referred to as b0(τ). Then, function F (·)

8

DRQN

of User 1
…

Global

Q-value

DRQN

of User N

Biases

…

…

Weights

Bias

Local State Local State…

Factorization

Module

Local Q-values

MLP Network

…

…

Abs.

ValueFC

layer

FC

layer

…

Abs.

ValueFC

layer

…

FC

layer

Four FC Layers

Hidden Layer

Input Layer

Output Layer

Global

State

Weights

Factorization

Module

MLP Network

Four FC Layers

Fig. 4. DNN architecture for the factorization module located at the base
station. The factorization module, which is indicated by the red box in the
figure, consists of two parts: (i) a universal approximator for obtaining the
monotonic function F (·), which is an MLP network with one hidden layer
as indicated by the blue box in the figure, and (ii) four FC layers, i.e., the
green box in the figure, for generating the weights and biases of the MLP
network. Each FC layer in the factorization module takes the global state as
input.

obtained with the MLP network can be expressed as follows
[37]

F (QΦ1
(s1(τ),a1(τ)), . . . , QΦN

(sN (τ),aN (τ)))

= b0(τ) +

H∑
j=1

wj(τ)h
(
bj(τ)

+
∑
n∈N

vjn(τ)QΦn(sn(τ), an(τ))
)
, (24)

where h(·) is the sigmoid function.
Recall that, in order to ensure that the local Q-value is

a factorization of the global Q-value, function F (·) should
satisfy condition (21). This means that function F (·) should
be entry-wise monotonic increasing with respect to the inputs
QΦn

(sn(τ), an(τ)), n ∈ N . For the function approximated
by the universal approximator (24), since the sigmoid function
h(·) is monotonically increasing, condition (21) is satisfied if
the weights, i.e., wj(τ) and vjn(τ), in time slot τ ∈ T are all
positive [37]. Hence, we emphasize that the key to obtaining
a function F (·) which possesses the desired factorization
property is to enforce the positivity of the weights of the MLP
network during the training phase.

As the global Q-value QG(s(τ),a(τ)) depends on the
global state s(τ), it is intuitive to let the approximated
monotonic function F (·) depend on the global state as well.
Therefore, we use DNNs to generate the weights and biases of
the universal approximator in time slot τ based on the global
state s(τ). By doing this, we let the weights and biases of
the universal approximator depend on the specific state in
the time slot, so that the monotonic function F (·) can be
adjusted with respect to different states, e.g., the different
achieved throughputs of the users. This makes the universal
approximator more flexible. To take the effect of state s(τ)
on the weights and biases into account, we replace τ in their

arguments in (24) by s(τ). The universal approximator (24)
can then be written in the following matrix notation

F
(
QΦ1(s1(τ),a1(τ)), . . . , QΦN

(sN (τ),aN (τ))
)

= W (s(τ)) h
(
V (s(τ)) Q(s(τ),a(τ)) + b(s(τ))

)
+ b0(s(τ)), (25)

where function h(·) in (25) is the element-wise sigmoid
function and

Q(s(τ),a(τ)) =

[
QΦ1

(s1(τ),a1(τ))

· · · QΦN
(sN (τ),aN (τ))

]>
∈ RN×1,

(26)

V (s(τ)) =

 v11(s(τ)) · · · v1N (s(τ))
...

. . .
...

vH1(s(τ)) · · · vHN (s(τ))

 ∈ RH×N ,

(27)

b(s(τ)) =
[
b1(s(τ)) b2(s(τ)) · · · bH(s(τ))

]> ∈ RH×1,
(28)

and

W (s(τ)) =
[
w1(s(τ)) w2(s(τ)) · · · wH(s(τ))

]
∈ R1×H .

(29)
The weights V (s(τ)), W (s(τ)) and biases b(s(τ)), b0(s(τ))
in time slot τ are generated by multiple DNNs separately
to improve the representational capacity of the universal
approximator [19].

In particular, we use one FC layer to generate the weights
V (s(τ)). The input of this FC layer is the global state s(τ),
and the output is a vector of size HN . The output vector is
then rearranged into an H ×N matrix. The weights V (s(τ))
are obtained by taking the absolute values of all elements
of the output matrix. We use a similar method to obtain the
weights W (s(τ)) as well. Note that by taking the absolute
values, we ensure that the weights in (24) are all positive, and
therefore the desired factorization property is achieved. We
employ one FC layer to obtain the biases b(s(τ)). This FC
layer takes s(τ) as input, and the output is a vector b(s(τ))
of size H . It is not necessary to make the biases positive as
the signs of the biases will not affect the monotonicity. We
use a similar method to obtain the bias b0(s(τ)). The output
dimension of the FC layer for b0(s(τ)) is equal to 1.

D. Joint Training Algorithm

We use Φ0 to denote the vector that contains the learnable
parameters of the factorization module. Since the monotonic
function F (·) in time slot τ depends on both the global state
s(τ) and the parameters Φ0, we denote it as Fs(τ),Φ0

(·).
Based on the proposed network architecture, the parameters
Φ used to approximate global Q-value QG

Φ(s(τ),a(τ)) are
now given by Φ = (Φ0,Φ1, . . . ,ΦN), which includes the
parameters of the N DRQNs and the parameters of the
factorization module. The training algorithm is summarized

9

Algorithm 1 Offline Training Algorithm for MA-DRL Frame-
work in Each Training Iteration

1: Sample a minibatch of system transition tuples
(s(τ),a(τ), R(s(τ),a(τ)), s(τ + 1)), τ ∈ T ′b .

2: for n ∈ N do
3: Determine QΦn

(sn(τ), an(τ)) and max
an∈Â

QΦn
(sn(τ +

1), an) with the DRQN of user n.
4: end for
5: Determine the approximated global Q-value
QG

Φ(s(τ),a(τ)) based on (30).
6: Determine the target global Q-value yGΦ(s(τ +

1), R(s(τ),a(τ))) based on (31).
7: Update the parameters Φ using SGD (34).

in Algorithm 1. In Line 5, the approximated global Q-value
for state s(τ) and joint action a(τ) is given by

QG
Φ(s(τ),a(τ)) =Fs(τ),Φ0

(
QΦ1(s1(τ), a1(τ)),

. . . , QΦN
(sN (τ), aN (τ))

)
. (30)

To obtain QG
Φ(s(τ),a(τ)), we first feed the local state

sn(τ), n ∈ N , in time slot τ into the DRQN of user n.
QΦn

(sn(τ), an(τ)) can be obtained by selecting the value
of the entry of the output that corresponds to an(τ). Then,
we feed the global state s(τ) into the factorization mod-
ule. With the outputs of the four FC layers, the weights
V (s(τ)),W (s(τ)) and the biases b(s(τ)), b0(s(τ)) which
yield the monotonic function Fs(τ),Φ0

(·). QG
Φ(s(τ),a(τ)) can

now be obtained based on (25) with QΦn
(sn(τ), an(τ)), n ∈

N , as inputs of the monotonic function.
The base station can now jointly train the factorization

module and the DRQNs based on the TD-error of the global
Q-value approximation. In Line 6, for the system transition
tuple with time index τ , the target of the global Q-value
approximation is

yGΦ(s(τ + 1), R(s(τ),a(τ)))

= R(s(τ),a(τ)) + γ max
a∈A

QG
Φ(s(τ + 1),a)

= R(s(τ),a(τ)) + γ max
a∈A

Fs(τ+1),Φ0

(
QΦ1

(s1(τ + 1), a1),

. . . , QΦN
(sN (τ + 1), aN)

)
(a)
= R(s(τ),a(τ)) + γ Fs(τ+1),Φ0

(
max
a1∈Â

QΦ1(s1(τ + 1), a1),

. . . , max
aN∈Â

QΦN
(sN (τ + 1), aN)

)
.

(31)

Equality (a) holds since given state s(τ + 1) and param-
eters Φ0, the weights and biases in monotonic function
Fs(τ+1),Φ0

(·) are constants. Given the local state sn(τ + 1)
and parameters Φn, the output of the DRQN of user n is a
constant vector of size K+1, meaning that we only have K+1
options for the value of QΦn(sn(τ + 1), an) for user n. As
function Fs(τ+1),Φ0

(·) is entry-wise monotonically increasing,
the maximum can be obtained by selecting the maximum
element, max

an∈Â
QΦn

(sn(τ + 1), an), in the output vector of

user n’s DRQN as the input of function Fs(τ+1),Φ0
(·).

To obtain the target global Q-value (31), we feed the local
states of time slot τ + 1 into the DRQNs of the users accord-
ingly and the value of max

an∈Â
QΦn

(sn(τ + 1), an), n ∈ N , can

be obtained by selecting the action that corresponds to the
entry with the maximum value in the output. Then, we feed
the global state s(τ + 1) into the factorization module. Based
on the outputs of the four FC layers, we obtain the weights
V (s(τ + 1)),W (s(τ + 1)) and biases b(s(τ + 1)), b0(s(τ +
1)), and determine the monotonic function Fs(τ+1),Φ0

(·).
Fs(τ+1),Φ0

(max
a1∈Â

QΦ1
(s1(τ+1), a1), · · · , max

aN∈Â
QΦN

(sN (τ+

1), aN)) can now be obtained by using max
an∈Â

QΦn
(sn(τ +

1), an), n ∈ N , as the input of the monotonic function.
Then, the TD-error for the global Q-value approximation with
respect to the system transition tuple with time index τ is
given by

LG(s(τ),a(τ), R(s(τ),a(τ)), s(τ + 1))

=
1

2

(
yGΦ(s(τ + 1), R(s(τ),a(τ)))−QG

Φ(s(τ),a(τ))
)2
.

(32)

In a practical system, the base station maintains the system
transition history, which is referred to as the replay in the
DRL literature [12], [17]. In each training iteration, the base
station samples a minibatch that contains multiple system
transition tuples from the replay. The base station determines
the TD-error in (32) for the tuples within the minibatch, and
then updates the parameters Φ. To efficiently train the LSTM
layer, instead of randomly sampling the system transition
tuples from the long-term replay, we sample the system
transition tuples of m consecutive time slots and feed the
corresponding system transition history sequentially into the
DNN module to update the parameters. By doing this, the
hidden states of the LSTM layer can be carried forward
throughout the entire training iteration to learn the temporal
correlations from the system transition history. We note that
training the LSTM layer with minibatches sampled from the
replay is known to suffer from initial recurrent state mismatch
[13], which may lead to inaccurate Q-value approximation.
In particular, the minibatches sampled in two consecutive
training iterations (i.e., the previous training iteration and the
current training iteration) may represent the system transition
history of two different time periods. This means the temporal
correlations within the system transition history sampled in
the previous training iteration may significantly differ from
the ones sampled in the current training iteration. Therefore,
the hidden states of the LSTM layer generated based on the
system transition history sampled in the previous training
iteration may not be able to accurately approximate the Q-
values with respect to the system transition history sampled
in the current training iteration.

To overcome the initial recurrent state mismatch, the hidden
states of the LSTM layer should be initialized properly in
each training iteration. We use the first l consecutive system
transition tuples within the sampled minibatch to initialize the
hidden states of the LSTM layer, so that the hidden states can
be initialized based on the temporal correlations of the system

10

transition history sampled in the current training iteration
(which is also referred to as the burn-in method [13]). This
is accomplished by sequentially feeding the state history of
the first l time slots into the DRQNs. Thus, the hidden states
can be initialized and carried forward. Subsequently, we use
the state history of the remaining m− l consecutive time slots
to update the learnable parameters. The TD-errors of global
Q-value approximation are determined only for the states of
the remaining m− l time slots and then averaged. We use T ′b
to denote the set of the time indices of the system transition
tuples within the minibatch, excluding the first l transition
tuples. For the sampled minibatch, the TD-error of the global
Q-value approximation is

LG =
1

m− l
∑
τ∈T ′

b

LG(s(τ),a(τ), R(s(τ),a(τ)), s(τ + 1)).

(33)

Then, in Line 7, all learnable parameters Φ are updated using
SGD [18]:

Φ← Φ− α

m− l
∑
τ∈T ′

b

(yGΦ(s(τ + 1), R(s(τ),a(τ)))

− QG
Φ(s(τ),a(τ)))∇QG

Φ(s(τ),a(τ)).
(34)

The training in (34) is an end-to-end learning process. That
is, in each training iteration, the DRQNs of all users as well
as the factorization module are jointly trained based on the
TD-error of global Q-value approximation.

E. Proposed Online Scheme

As shown in (22) and (23), a user can determine its pilot
sequence selection in a distributed manner by leveraging its
local information and the pre-trained DRQN. In particular,
the base station sends the parameters of user n’s DRQN, i.e.,
Φn, back to user n ∈ N . Each user maintains a local DRQN.
Upon receiving the parameters Φn from the base station, user
n updates the parameters of its local DRQN to be the same as
Φn. User n then applies an ε-greedy policy to select its pilot
sequence. Specifically, the pilot sequence selection of user n
in the current time slot t is determined by [12]

an(t) =

arg max
an∈Â

QΦn(sn(t), an), with probability 1− ε,

random selection, with probability ε,
(35)

where ε = εmin + (εmax − εmin)e−G/εdecay , and εmin, εmax, and
εdecay are constants. G is the training iteration counter. The
ε-greedy policy is adopted to avoid overfitting. To determine
action an(t) = arg max

an∈Â
QΦn(sn(t), an) in the current time

slot t, user n feeds the local state sn(t) into the DRQN, and
determines the pilot sequence selection in time slot t based
on the output of the DRQN.

F. Discussion

The framework in Fig. 2 is scalable as the number of DRQN
modules can be varied according to the number of users

without changing the subsequent training algorithm. We note
that the learnable parameters of the DNNs have to be updated
if the values of N or K change. However, the base station can
effectively avoid frequent re-training of the DNNs by using
user clustering. Assume the base station serves N ′ users with
K ′ pilot sequences, but has pre-trained DNNs for N users and
K pilot sequences. In this case, the base station can divide the
users into dN

′

N e clusters, where each cluster contains N users.
The base station then allocates K orthogonal pilot sequences
to each cluster of users. This means that different clusters are
allocated with different pilot sequences, and hence there is no
pilot sequence collision between users in different clusters.
This requires dN

′

N eK orthogonal pilot sequences. By doing
this, the pre-trained DNNs can be re-used within each cluster
of users, without invoking re-training.

We note that one user cluster may not have exactly N
users when N ′ is not a multiple of N or N ′ is less than N .
Moreover, one user cluster may not be allocated with exactly
K pilot sequences when K ′ is not a multiple of K or K ′

is less than K. In both cases, the DNNs of the users within
this particular user cluster have to be re-trained. The reason is
that, as the number of users or pilot sequences in a particular
cluster changes, the pilot sequence selection policies of the
users within this cluster should be updated in order to adapt
to the new network setting. To this end, the DNNs have to be
re-trained to learn new pilot sequence selection policies.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
scheme. We simulate a GFMA system serving users with three
different throughput requirements. Therefore, the users can be
categorized into three groups (or types), i.e., Group I, Group
II, and Group III, based on their throughput requirements.
Throughout the simulations, we set the numbers of users in
Group I, Group II, and Group III to be η1N , η2N , and η3N ,
respectively, where the coefficients η1, η2, η3 ∈ (0, 1) and
η1 + η2 + η3 = 1. As the maximum aggregate throughput for
the considered system is equal to K packets per time slot, we
assume the total numbers of successful packet transmissions
per time slot required by Group I, Group II and Group III users
to be ζ1K, ζ2K, and ζ3K, respectively, where the coefficients
ζ1, ζ2, ζ3 ∈ (0, 1) and ζ1 + ζ2 + ζ3 ≤ 1. Hence, given N and
K, the throughputs required by each user in Group I, Group II,
and Group III are given by ζ1K

η1N
, ζ2Kη2N , and ζ3K

η3N
, respectively.

We set ζ1
η1

> ζ2
η2

> ζ3
η3

such that users in Group I have the
highest throughput requirement, while Group III users have
the lowest throughput requirement. The number of users is
at least two times as large as the number of pilot sequences
in the considered GFMA system. In each time slot, the base
station trains the DNN modules for 20 iterations. The detailed
parameter settings used for simulations are shown in Table I.

We compare the proposed DRL-based scheme with the
following benchmark and baseline schemes2

2While a DRL-based spectrum access scheme is proposed in [21], the
system model and problem setting of [21] is different from the framework
we considered in this paper. Hence, we have not included the performance
comparison with [21] in this paper.

11

TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of hidden units in LSTM D 64

Discount factor γ 0.995
Dimensions of the first and second FC

layers in the DRQN
64× 128 and
64× (K + 1)

Step size used in SGD α 0.01
Number of neurons in the hidden layer

of the MLP network H 64

Number of tuples in minibatch m 80
Number of tuples in minibatch for

initializing hidden states l 40

Constant in the reward function C 50
εmin, εmax, and εdecay in ε-greedy policy 0.05, 0.95, and 2000

Coefficients η1, η2, and η3 of the
numbers of users in Group I, II, and III 0.25, 0.5, and 0.25

Coefficients ζ1, ζ2, and ζ3 for the
throughput requirements 0.35, 0.3, and 0.075

• The optimal scheme, which is obtained with the Lya-
punov drift-plus-penalty algorithm as shown in the Ap-
pendix. We set V = 1 when evaluating the perfor-
mance. With the optimal scheme, the maximum aggre-
gate throughput can be achieved and the throughput
requirements of all the users can be satisfied.

• Dynamic ACB with optimal parameter setting [25]: In
this scheme, the base station first determines the number
of pilot sequences allocated to Group I users, such that
the pilot sequence collision probability of Group I users
is minimized. The base station continues to do the same
for Group II users and then allocates the remaining pilot
sequences to Group III users.

• ACK-based scheme [10]: In this scheme, the base station
reserves the pilot sequences that have been selected by
multiple users in the previous time slot for the retransmis-
sions of users that have suffered a packet collision. We
assume no collision will happen in the retransmissions
after the ACK has been sent to the users.

• Random selection scheme: Here, each user randomly
selects one pilot sequence from the available ones.

A. Average Aggregate Throughput

Fig. 5 shows the evolution of the average aggregate through-
put versus the time slots. We simulate N = 12 users sharing
K = 6 pilot sequences. The throughput requirements of
three of the users are set to ζ1K

η1N
= 0.7 packets per time

slot (Group I users), six of the users require ζ2K
η2N

= 0.3
packets per time slot (Group II users), and the remaining three
users require ζ3K

η3N
= 0.15 packets per time slot (Group III

users). The proposed scheme achieves 85% of the optimal
average aggregate throughput after 800 time slots, which is
31%, 128%, and 162% higher than that of the ACK-based
scheme, the ACB-based scheme, and the random selection
scheme, respectively. A gap exists between the aggregate
throughput of the proposed scheme and the optimal scheme
due to errors in the Q-value approximation and the ε-greedy
policy in (35). In time slot 1000, we reset the system, i.e.,
we set the average throughput of all users back to zero. We

0 200 400 600 800 1000 1200 1400 1600

Time Slot

1

2

3

4

5

6

A
ve

ra
ge

 A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
tim

e
sl

ot
)

Optimal scheme
Proposed scheme
ACK-based scheme
Dynamic ACB scheme
Random selection scheme

85% of the optimum

Reset the system
at the 1000-th time slot

31%

128%
162%

Fig. 5. Average aggregate throughput versus time slots. We set N = 12
and K = 6. The proposed scheme achieves 85% of the optimal average
aggregate throughput.

6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Pilot Sequences

0

5

10

15

20

25

30

35

A
ve

ra
ge

 A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
tim

e
sl

ot
)

Optimal scheme
Proposed scheme
ACK-based scheme
Dynamic ACB scheme
Random selection scheme

35%

164%
208%

(a)

12 14 16 18 20 22 24

Number of Users

0

1

2

3

4

5

6

A
ve

ra
ge

 A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
tim

e
sl

ot
)

Optimal scheme
Proposed scheme
ACK-based scheme
Dynamic ACB scheme
Random selection scheme

35%

124% 276%

(b)

Fig. 6. Average aggregate throughput versus (a) the number of pilot sequences
and (b) the number of users. The performance of the proposed scheme is
evaluated after the DNNs have been trained for 1500 time slots.

observe that the proposed scheme quickly recovers from the
new initial state after 150 time slots and retains the average
aggregate throughput which is 85% of the optimum.

Fig. 6(a) illustrates the average aggregate throughput versus
the number of pilot sequences K, where we set the number
of users to 2K. The performance of the proposed scheme is
evaluated after the DNNs have been trained for 1500 time
slots. The proposed scheme can achieve an average aggregate
throughput that is 35%, 164%, and 208% higher than that
of the ACK-based scheme, the ACB-based scheme, and the
random selection scheme, respectively, when the number of

12

0 200 400 600 800 1000 1200 1400 1600

Time slot

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 T
hr

ou
gh

pu
t p

er
 U

se
r

(p
ac

ke
t p

er
 ti

m
e

sl
ot

)

User 1 (Group I)
User 2 (Group I)
User 3 (Group I)
User 4 (Group II)
User 5 (Group II)
User 6 (Group II)
User 7 (Group II)
User 8 (Group II)
User 9 (Group II)
User 10 (Group III)
User 11 (Group III)
User 12 (Group III)
New user 1 (Group II)
New user 2 (Group II)
New user 3 (Group II)

The average throughput
constraints are satisfied after
600 time slots

Change the throughput
requirement of Group I users to 0.5

Add three new Group II
users to the system

The average throughput
constraints are satisfied
again after 200 time slots

Fig. 7. Average throughput per user versus number of time slots for the proposed scheme. At the 1000-th time slot, we add three new users to Group II and
change the throughput requirement of Group I users to 0.5 packets per time slot.

Proposed Scheme Optimal Scheme Dynamic ACB Scheme ACK-based Scheme Random Selection Scheme
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 T
hr

ou
gh

pu
t p

er
 U

se
r

(p
ac

ke
t p

er
 ti

m
e

sl
ot

)

Group I users with average throughput requirement 0.7 packets per time slot
Group II users with average throughput requirement 0.3 packets per time slot
Group III users with average throughput requirement 0.15 packets per time slot
All users

Fig. 8. Average throughput per user for users with different throughput requirements for different schemes. We set N = 12 and K = 6. The optimal solution
and the proposed scheme can satisfy all average throughput requirements.

pilot sequences is 28. The near-linear increases in the average
aggregate throughputs show that the probabilities of pilot
sequence selection collision of all schemes do not change
significantly as long as the ratio of the number of users
to the number of pilot sequences is fixed. Fig. 6(b) shows
the impact of the number of users on the average aggregate
throughput when the number of pilot sequences is K = 6.
The performance of the proposed scheme is evaluated after
the DNNs have been trained for 1500 time slots. All schemes
except for the optimal scheme suffer from a performance
degradation as the number of users N increases. The reason
for this is that the probabilities of pilot sequence collisions
increase with N for all these schemes when the number
of pilot sequences K is fixed. However, compared with the
ACK-based scheme, the ACB-based scheme, and the random
selection scheme, a lower collision probability can be achieved
under the proposed scheme. In fact, the proposed scheme
can achieve an average aggregate throughput that is 35%,
124%, and 276% higher than that of the ACK-based scheme,
the ACB-based scheme, and the random selection scheme,
respectively, when the number of users is 16.

B. Average Throughput of the Users

Fig. 7 shows the evolution of the achievable average
throughput per user of the proposed scheme versus the time
slots. We simulate N = 12 users sharing K = 6 pilot se-
quences. The results in Fig. 7 show that after convergence the
average throughput requirements of all users are satisfied. In
the proposed scheme, as all users receive the same aggregate

reward, the successful transmission of a user benefits all users,
while all users receive a penalty if a collision occurs or the
throughput requirements are violated. Under the factorization-
based MA-DRL framework, the DRQNs of the users are
encouraged to learn the cooperative pilot sequence selection
policies, such that a user can estimate the impact of its actions
on other users from a system-level perspective. Fig. 7 also
shows that joint training based on the factorization module can
ensure that the policies learned during the centralized training
phase can be efficiently executed in a distributed manner
without having to rely on global information. Furthermore,
in the 1000-th time slot, we have added three new Group
II users into the system to illustrate the capability of the
proposed scheme to adapt to a new network setting. We
also change the throughput requirement of Group I users
from 0.7 packets per time slot to 0.5 packets per time slot.
We observe that, after the DNN modules have been trained
for 200 time slots, the average throughputs of the three
new users reach approximately 0.3 packets per time slot.
Moreover, the average throughput of Group I users decrease
to approximately 0.5 packets per time slot. These results show
that the proposed scheme can adapt to new network topologies
and new throughput requirements.

In Fig. 8, we compare the average throughput of the
users for different schemes in the aforementioned setting.
The performance of the proposed scheme is evaluated after
the DNNs have been trained for 1500 time slots. For both
the optimal scheme and the proposed scheme, all users can
satisfy their average throughput requirements. For the ACB-

13

Proposed Scheme ACK-based Scheme Random Selection Scheme
0

0.1

0.2

0.3

0.4

0.5
A

ve
ra

ge
 T

hr
ou

gh
pu

t p
er

 U
se

r
(p

ac
ke

t p
er

 ti
m

e
sl

ot
)

Fig. 9. Average throughput per user for different pilot sequence selection
schemes for the case without user-specific throughput requirement. We set
N = 12 and K = 6.

based scheme, Group I users can achieve a higher average
throughput than Group II users as the base station allocates
more pilot sequences to Group I users. However, the users in
Group I and II consume too many resources such that there is
no resource left for the users in Group III to transmit. For both
the ACK-based scheme and the random selection scheme, all
users achieve the same average throughput as the throughput
requirements are not taken into account in these two schemes.

We note that user-specific throughput requirement has not
been addressed in the ACK-based scheme and the random
selection scheme. Hence, for a comprehensive performance
comparison, we evaluate the performance of the proposed
scheme, the ACK-based scheme, and the random selection
scheme for the case when there is no user-specific throughput
requirement. The results for the average throughput per user
of all these schemes are shown in Fig. 9. For the proposed
scheme, we set coefficients λn(t) in the reward function in
(11) to zero. Hence, the reward function is now given by

R(s(t),a(t)) ,
∑
n∈N

rn(t), t ∈ T . (36)

The reward function corresponds to the achievable aggre-
gate throughput (i.e., the number of successfully transmitted
packets per time slot) of the system. We observe that the
proposed scheme achieves the highest average throughput per
user among all considered schemes. In particular, the average
throughput per user of the proposed scheme is 34.6% and
222.1% higher than that of the ACK-based scheme and the
random selection scheme, respectively.

Next, we investigate the average throughput of the users for
different numbers of pilot sequences, and the results for the
users with the highest throughput requirement, i.e., Group I
users, are shown in Fig. 10. We set the number of users to
2K. For the optimal scheme and the proposed scheme, the
throughput requirements of all users are satisfied for all con-
sidered numbers of pilot sequences. Because of the centralized
scheduling, for the optimal scheme, the average throughput of
Group I users is exactly the same as the requirement. For the
proposed scheme, Group I users tend to consume slightly more
resources compared with the optimal scheme and therefore
have a higher average throughput. For the ACK-based scheme,
the ACB-based scheme, and the random selection scheme,
the requirements of Group I users cannot be satisfied due to
the relatively high probability of pilot sequence collision. We

6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Pilot Sequences

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 T
hr

ou
gh

pu
t p

er
 U

se
r

(p
ac

ke
ts

/ti
m

e
sl

ot
)

Proposed scheme: Group I users
Optimal scheme: Group I users
Dynamic ACB scheme: Group I users
ACK-based scheme
Random selection scheme

Fig. 10. Average throughput per user for different pilot sequence selection
schemes versus the number of pilot sequences. We show the results of the
users in Group I, while the performance of the users in Group II and Group
III show a similar behavior.

observe that, in the proposed DRL-based scheme, the DRQNs
learn the near-optimal pilot sequence selection policies for a
given number of pilot sequences. This also demonstrates the
advantages of DRL as a model-free learning technique.

VI. CONCLUSION

In this paper, we proposed a DRL-based scheme for max-
imizing the aggregate throughput of GFMA systems, while
taking into account the throughput requirements of the users.
We first formulated the aggregate throughput maximization
problem, where we accounted for user-specific throughput
constraints. To obtain a distributed solution, we proposed
an MA-DRL based scheme under a centralized training
distributed execution framework. By fully exploiting global
information, such as the states and actions of all the users,
during the centralized training phase, the DRQNs of the
users are jointly trained to learn the cooperative pilot se-
quence selection policies. By combining factorization with
MA-DRL, the pilot sequence selection policies learned via
centralized training can be efficiently executed by each user
in a distributed manner. Our results showed that the proposed
scheme can achieve a significant higher aggregate throughput
than three previously reported schemes. The proposed scheme
can also accommodate users with heterogeneous throughput
requirements, and therefore has the potential to be deployed
in GFMA systems supporting multiple IoT applications and
services.

For future work, the extension of the proposed scheme by
taking into account unsaturated traffic and the diverse quality-
of-service requirements of IoT devices is an interesting topic.
Furthermore, it may be possible to exploit mean-field theory
[38], [39] to improve the scalability of the proposed scheme
and to study the throughput optimization in large-scale GFMA
systems.

APPENDIX

We apply stochastic network optimization to transform
problem (6) into an optimization problem that can be solved

14

in each time slot. We use a virtual queue [24] to take into
account the throughput requirement of user n. The dynamic
of the virtual queue of user n is given by

qn(t+ 1) , max [qn(t)− rn(t) + µreq
n , 0] . (A-1)

We define q(t) , (q1(t), . . . , qN (t)) as the vector of the
backlogs of the queues of all users. We use the following
Lyapunov function to measure the backlogs:

L(q(t)) ,
1

2

∑
n∈N

qn(t)2. (A-2)

We have the following upper bound on the conditional Lya-
punov drift [24]

∆L(q(t)) = E[L(q(t+ 1))− L(q(t)) | q(t)]

≤ E

[∑
n∈N

(µreq
n)2 + rn(t)2

2

∣∣∣∣∣ q(t)

]
+
∑
n∈N

qn(t)µreq
n

− E

[∑
n∈N

qn(t)rn(t)

∣∣∣∣∣ q(t)

]

≤ B +
∑
n∈N

qn(t)µreq
n − E

[∑
n∈N

qn(t)rn(t)

∣∣∣∣∣ q(t)

]
, (A-3)

where B is a constant that bounds the first term on
the right-hand side of the above inequality. We add
V E
[
−
∑
n∈N rn(t)

∣∣ q(t)
]

to both sides of the inequality,
where V > 0 is a parameter representing the importance of
aggregate reward maximization. The following bound on the
Lyapunov drift-plus-penalty equation can be derived

∆L(q(t)) + V E

[
−
∑
n∈N

rn(t)

∣∣∣∣∣ q(t)

]

≤ B − E

[∑
n∈N

qn(t)rn(t)

∣∣∣∣∣ q(t)

]

+
∑
n∈N

qn(t)µreq
n + V E

[
−
∑
n∈N

rn(t)

∣∣∣∣∣ q(t)

]
.

(A-4)

Given the observed q(t), as µreq
n and B are constants in

time slot t, minimizing the right-hand side of (A-4) can be
accomplished by solving the following problem

maximize
gn(t), n∈N

∑
n∈N

(qn(t) + V) rn(t)

subject to
∑
k∈K

gnk(t) ≤ 1, n ∈ N .
(A-5)

The optimal solution of problem (A-5) can be obtained in
each time slot using the Lyapunov drift-plus-penalty algorithm
[24]. In particular, the objective function of problem (A-5) can
be regarded as a weighted summation of the rewards rn(t)
of all users, where the weight is determined by the virtual
queue of the user and the positive constant V . To obtain
the optimal solution, we sort the users in descending order
of their backlog, i.e., q̂(t) , (q̂1(t), q̂2(t), · · · , q̂N (t)). By
selecting the top K users in descending order of backlog
and assigning one unique pilot sequence to each of the K
users, the optimum of problem (A-5) can be obtained, which is

V K+
∑K
k=1 q̂k(t). Note that this requires global information

and centralized scheduling.

REFERENCES

[1] R. Huang, V. W. S. Wong, and R. Schober, “Throughput optimization in
grant-free NOMA with deep reinforcement learning,” in Proc. of IEEE
Global Commun. Conf. (GLOBECOM), Waikoloa, HI, Dec. 2019.

[2] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can
heterogeneous Internet of Things build our future: A survey,” IEEE
Commun. Surveys & Tuts., vol. 20, no. 3, pp. 2011–2027, Third Quarter
2018.

[3] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the Internet of
Things and Industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1,
pp. 17–27, Mar. 2017.

[4] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
learning for IoT big data and streaming analytics: A survey,” IEEE
Commun. Surveys & Tuts., vol. 20, no. 4, pp. 2923–2960, Fourth Quarter
2018.

[5] Cisco, “Cisco annual Internet report (2018−2023) white paper,” Mar.
2020.

[6] 3GPP TS 38.213 V15.8.0, “Technical Specification Group Radio Access
Network; NR; Physical layer procedures for control (Release 15),” Dec.
2019.

[7] V. W. S. Wong, R. Schober, D. W. K. Ng, and L. C. Wang, Key
Technologies for 5G Wireless Systems. Cambridge University Press,
2017.

[8] J. Zhang, L. Lu, Y. Sun, Y. Chen, J. Liang, J. Liu, H. Yang, S. Xing,
Y. Wu, J. Ma, I. B. F. Murias, and F. J. L. Hernando, “PoC of SCMA-
based uplink grant-free transmission in UCNC for 5G,” IEEE J. Sel.
Areas Commun., vol. 35, no. 6, pp. 1353–1362, Jun. 2017.

[9] S. Han, X. Tai, W. Meng, and C. Li, “A resource scheduling scheme
based on feed-back for SCMA grant-free uplink transmission,” in Proc.
IEEE Int’l Conf. on Commun. (ICC), Paris, France, May 2017.

[10] J. Shen, W. Chen, F. Wei, and Y. Wu, “ACK feedback based UE-to-CTU
mapping rule for SCMA uplink grant-free transmission,” in Proc. Int’l
Conf. Wireless Commun. Signal Process., Nanjing, China, Oct. 2017.

[11] J. Sun, W. Wu, and X. Wu, “A contention transmission unit allocation
scheme for uplink grant-free SCMA systems,” in Proc. IEEE Int’l Conf.
on Commun. (ICC), Kansas City, MO, May 2018.

[12] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[13] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos,
“Recurrent experience replay in distributed reinforcement learning,” in
Proc. of Int’l Conf. Learn. Representations (ICLR), New Orleans, LA,
May 2019.

[14] D. Kalathil, N. Nayyar, and R. Jain, “Decentralized learning for mul-
tiplayer multiarmed bandits,” IEEE Trans. Inf. Theory, vol. 60, no. 4,
pp. 2331–2345, Apr. 2014.

[15] Y. Gai and B. Krishnamachari, “Distributed stochastic online learning
policies for opportunistic spectrum access,” IEEE Tran. Signal Proces.,
vol. 62, no. 23, pp. 6184–6193, Dec. 2014.

[16] J. Rosenski, O. Shamir, and L. Szlak, “Multi-player bandits: A musical
chairs approach,” in Proc. of Int’l Conf. Machine Learning (ICML), Jun.
2016.

[17] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli,
and S. Whiteson, “Stabilising experience replay for deep multi-agent
reinforcement learning,” in Proc. of Int’l Conf. on Machine Learning
(ICML), Sydney, Australia, 2017.

[18] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-agent
learning based on team reward,” in Proc. of Int’l Conf. on Autonomous
Agents and MultiAgent Systems (AAMAS), Stockholm, Sweden, Jul.
2018.

[19] T. Rashid, M. Samvelyan, C. S. Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in Proc. of Int’l Conf. on Machine
Learning (ICML), Stockholm, Sweden, Jul. 2018.

[20] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Trans. on Cogn. Commun. Netw., vol. 4, no. 2, pp. 257–265, Jun.
2018.

15

[21] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning
for distributed dynamic spectrum access,” IEEE Trans. Wireless Com-
mun., vol. 18, no. 1, pp. 310–323, Jan. 2019.

[22] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning mul-
tiple access for heterogeneous wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1277–1290, Jun. 2019.

[23] J. R. Kok and N. Vlassis, “Sparse cooperative Q-learning,” in Proc. of
Int’l Conf. on Machine Learning (ICML), Banff, Canada, Jul. 2004.

[24] M. J. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems. Morgan and Claypool Publishers,
2010.

[25] S. Duan, V. Shah-Mansouri, Z. Wang, and V. W. S. Wong, “D-ACB:
Adaptive congestion control algorithm for bursty M2M traffic in LTE
networks,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9847–9861,
Dec. 2016.

[26] J. Ahn, B. Shim, and K. B. Lee, “EP-based joint active user detection
and channel estimation for massive machine-type communications,”
IEEE Trans. Commun., vol. 67, no. 7, pp. 5178–5189, Jul. 2019.

[27] 3GPP TS 38.214 V16.1.0, “Technical specification group radio access
network; NR; Physical layer procedures for data (Release 16),” Apr.
2020.

[28] 3GPP TS 23.501 V16.4.0, “Technical specification group services and
system aspects; System architecture for the 5G system (5GS); Stage 2
(Release 16),” Mar. 2019.

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, 2018.

[30] M. L. Littman, “Friend-or-foe Q-learning in general-sum games,” in
Proc. of Int’l Conf. on Machine Learning (ICML), Williamstown, MA,
Jun. 2001.

[31] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,” J. Mach. Learn. Res., vol. 4, pp. 1039–1069, Nov. 2003.

[32] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade, 2nd ed., G. Montavon, G. B. Orr, and K.-R. Müller,
Eds. Springer, 2012.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[34] K. Tumer and D. H. Wolpert, Collectives and the Design of Complex
Systems. Springer, 2004.

[35] G. Weiss, Multiagent Systems, 2nd ed. MIT Press, 2013.
[36] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,

H. Van Hasselt, and D. Silver, “Distributed prioritized experience
replay,” arXiv preprint arXiv:1803.00933, 2018.

[37] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, “Incorpo-
rating functional knowledge in neural networks,” J. Mach. Learn. Res.,
vol. 10, pp. 1239–1262, Jun. 2009.

[38] H. Kim, J. Park, M. Bennis, S. Kim, and M. Debbah, “Mean-field
game theoretic edge caching in ultra-dense networks,” IEEE Trans. Veh.
Technol., vol. 69, no. 1, pp. 935–947, Jan. 2020.

[39] B. Zhou and W. Saad, “Age of information in ultra-dense IoT sys-
tems: Performance and mean-field game analysis,” arXiv preprint arX-
iv:2006.15756, Jun. 2020.

Rui Huang (S’19) received the B.Eng. degree from
Chongqing University, Chongqing, China, in 2015,
and the M.Eng. degree from Shanghai Jiao Tong
University (SJTU), Shanghai, China, in 2018. He
is currently a Ph.D. Candidate in the Department
of Electrical and Computer Engineering, The U-
niversity of British Columbia (UBC), Vancouver,
Canada. He has been a recipient of the Four Year
Doctoral Fellowship (4YF) at UBC since 2018. His
research interests include Internet of Things (IoT)
and machine learning for optimization in wireless

communication systems.

Vincent W.S. Wong (S’94, M’00, SM’07, F’16)
received the B.Sc. degree from the University of
Manitoba, Winnipeg, MB, Canada, in 1994, the
M.A.Sc. degree from the University of Waterloo,
Waterloo, ON, Canada, in 1996, and the Ph.D.
degree from the University of British Columbia
(UBC), Vancouver, BC, Canada, in 2000. From
2000 to 2001, he worked as a systems engineer
at PMC-Sierra Inc. (now Microchip Technology
Inc.). He joined the Department of Electrical and
Computer Engineering at UBC in 2002 and is cur-

rently a Professor. His research areas include protocol design, optimization,
and resource management of communication networks, with applications to
wireless networks, smart grid, mobile edge computing, and Internet of Things.
Currently, Dr. Wong is an Executive Editorial Committee Member of IEEE
Transactions on Wireless Communications, an Area Editor of IEEE Trans-
actions on Communications and IEEE Open Journal of the Communications
Society, and an Associate Editor of IEEE Transactions on Mobile Computing.
He is a Technical Program Co-chair of the IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall). He has served as a Guest Editor of IEEE Journal
on Selected Areas in Communications and IEEE Wireless Communications.
He has also served on the editorial boards of IEEE Transactions on Vehicular
Technology and Journal of Communications and Networks. He was a Tutorial
Co-Chair of IEEE Globecom’18, a Technical Program Co-chair of IEEE
SmartGridComm’14, as well as a Symposium Co-chair of IEEE ICC’18,
IEEE SmartGridComm (’13, ’17) and IEEE Globecom’13. He is the Chair
of the IEEE Vancouver Joint Communications Chapter and has served as
the Chair of the IEEE Communications Society Emerging Technical Sub-
Committee on Smart Grid Communications. He is an IEEE Communications
Society Distinguished Lecturer (2019 - 2020).

Robert Schober (S’98, M’01, SM’08, F’10) re-
ceived the Diplom (Univ.) and the Ph.D. degrees in
electrical engineering from Friedrich-Alexander U-
niversity of Erlangen-Nuremberg (FAU), Germany,
in 1997 and 2000, respectively. From 2002 to 2011,
he was a Professor and Canada Research Chair at
the University of British Columbia (UBC), Vancou-
ver, Canada. Since January 2012 he is an Alexander
von Humboldt Professor and the Chair for Digital
Communication at FAU. His research interests fall
into the broad areas of Communication Theory,

Wireless Communications, and Statistical Signal Processing.
Robert received several awards for his work including the 2002 Heinz

Maier Leibnitz Award of the German Science Foundation (DFG), the 2004
Innovations Award of the Vodafone Foundation for Research in Mobile
Communications, a 2006 UBC Killam Research Prize, a 2007 Wilhelm
Friedrich Bessel Research Award of the Alexander von Humboldt Foundation,
the 2008 Charles McDowell Award for Excellence in Research from UBC, a
2011 Alexander von Humboldt Professorship, a 2012 NSERC E.W.R. Stacie
Fellowship, and a 2017 Wireless Communications Recognition Award by the
IEEE Wireless Communications Technical Committee. Since 2017, he has
been listed as a Highly Cited Researcher by the Web of Science. Robert
is a Fellow of the Canadian Academy of Engineering and a Fellow of the
Engineering Institute of Canada. From 2012 to 2015, he served as Editor-in-
Chief of the IEEE Transactions on Communications. Currently, he serves as
Member of the Editorial Board of the Proceedings of the IEEE and as VP
Publications for the IEEE Communication Society (ComSoc).

