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Abstract—In this paper, we formulate a joint uplink schedul-
ing, phase shift control, and beamforming optimization problem
in intelligent reflecting surface (IRS)-aided systems. We consider
maximizing the aggregate throughput and achieving the propor-
tional fairness as objectives. We propose a deep reinforcement
learning-based user scheduling, phase shift control, beamforming
optimization (DUPB) algorithm to solve the joint problem. The
proposed DUPB algorithm applies the neural combinatorial
optimization (NCO) technique to solve the user scheduling sub-
problem, in which a stochastic user scheduling policy is learned
by deep neural networks with attention mechanism. Curriculum
learning with deep deterministic policy gradient (CL-DDPG) is
used in the proposed DUPB algorithm to jointly optimize the
phase shift control and beamforming vectors. The knowledge on
the hidden convexity of the joint problem is exploited to facilitate
the policy learning in CL-DDPG. Simulation results show that,
with the maximum aggregate throughput as the objective, the
proposed DUPB algorithm achieves an aggregate throughput
that is higher than the alternating optimization (AO)-based
algorithms. Moreover, the throughput fairness among the users is
improved when proportional fairness is used as the objective. The
proposed DUPB algorithm outperforms the AO-based algorithms
in terms of runtime when the number of reflecting elements is
large.

Index Terms—Intelligent reflecting surface (IRS), deep rein-
forcement learning (DRL), neural combinatorial optimization
(NCO), curriculum learning (CL), uplink scheduling.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is a reconfigurable pla-
nar surface with multiple passive reflecting elements. Each
reflecting element can perform a phase shift to the incident
signal independently and reflect the shifted signal to a receiver.
An IRS-aided system serving four users to perform uplink
transmissions is shown in Fig. 1. Apart from the direct
channels between the base station and users, IRS introduces
additional propagation channels. When the line-of-sight (LoS)
links between the base station and users are blocked by
obstacles, deploying an IRS can create virtual LoS channels
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to facilitate data transmission and improve the coverage of
the base station. By properly control the phase shift of the
reflecting elements on IRS, the base station can mitigate
interference and allow multiple users to share a physical
resource block (PRB) for uplink transmission. IRS can be
categorized as a passive holographic multiple-input multiple-
output surface (HMIMOS) since the reflecting elements can
be powered by energy harvesting module [2]. IRS can be
combined with other physical layer techniques, including full-
duplex communications and energy harvesting communica-
tions [3]. Potential applications of IRS include unmanned
aerial vehicle (UAV) networks and virtual reality [4], [5].

Existing research on resource allocation in IRS-aided sys-
tems mostly focus on the beamforming optimization at the
base station and the phase shift control of IRS [6]–[15]. The
beamforming and phase shift optimization for IRS-aided sys-
tems with single user is studied in [6], [7]. The authors in [9]
determined the ergodic rate of an IRS-aided system with inter-
ference from a secondary user and proposed a parallel coordi-
nate descent-based algorithm to optimize the phase shift. The
authors in [10] studied multiuser beamforming with practical
amplitude variation in an IRS-aided system. An alternating
optimization (AO)-based algorithm is proposed to solve the
joint optimization problem. The aggregate throughput maxi-
mization problem in IRS-aided full-duplex systems was inves-
tigated in [11]. The authors solved the joint phase shift control,
power control, and beamforming optimization problem using
AO with successive convex approximation (SCA). Moreover,
the authors in [12] investigated the joint beamforming and
phase shift control in an IRS-aided multiuser system under
both perfect and imperfect channel information. The beam
pattern and channel estimation in a terahertz massive multiple-
input multiple-output (MIMO) system with holographic IRS
was investigated in [13]. The joint beamforming and phase
shift control for maximizing the physical layer security in
IRS-aided systems has been studied in [14]. In addition, the
authors in [15] used sequential fractional programming to
solve the joint phase shift and power control problem for
maximizing the energy efficiency of the IRS-aided systems.
Fractional programming (FP) technique [16] was applied in
[12] and [14] to develop low-complexity beamforming and
phase shift control algorithms. Although the aforementioned
works studied the optimization of beamforming and phase
shift control, the uplink user scheduling problem in IRS-aided
systems has not been investigated. For an IRS-aided system
with multiple users, it is beneficial for the base station to



properly schedule the transmission of the users, such that the
interference between the users can be mitigated. Moreover, in
the existing AO-based approaches, the iterative optimization
process has to be invoked whenever the base station observes
a change in the channel states. This may lead to a high
computational complexity.

Deep deterministic policy gradient (DDPG) [17] is a deep
reinforcement learning (DRL) technique to solve decision
problems where the action space is continuous. The authors
in [18] proposed a DDPG-based phase shift control algorithm
to maximize the throughput of an IRS-aided single-user
multiple-input single-output (MISO) system. The authors in
[19] jointly optimized the phase shift control and beamform-
ing vectors with DDPG to maximize the aggregate throughput
of an IRS-aided multiuser MISO system. While the aforemen-
tioned DDPG-based algorithms [18], [19] can obtain a high-
quality suboptimal solution, results showed that conventional
optimization approaches (e.g., FP and semidefinite relaxation
(SDR)) can still achieve a higher throughput than the existing
DDPG-based phase shift control algorithms. Hence, the per-
formance of the existing DDPG-based algorithms may further
be improved by exploiting the knowledge on the hidden
convexity of the problem. In addition, as the vanilla DDPG
is developed for the optimization of continuous variables, the
aforementioned algorithms do not take the user scheduling,
which involves the optimization of integer variables, into
account. A new DRL framework needs to be designed for
the IRS-aided systems where both integer and continuous
variables are required to be optimized jointly.

Neural combinatorial optimization (NCO) is a model-free
learning technique for solving combinatorial problems [20],
[21]. In NCO, a stochastic policy for solving the combinato-
rial optimization problem is learned by training deep neural
networks (DNNs) based on reinforcement learning (RL). For
the user scheduling problem in IRS-aided systems, a DNN can
be trained to learn the correlation between the users based on
their channel information. The correlation between the users
can be characterized by the DNNs with attention mechanism
[22] to reflect how strongly scheduling a particular user will
affect the uplink transmission of other users in the system.
A stochastic policy can be obtained to determine the user
scheduling that yields the desired system performance in an
online manner. NCO has been applied to solve some classical
combinatorial problems, including the travelling salesman
problem and vehicle routing problem [20], [21], [23].

Recently, NCO has been applied to study the user schedul-
ing and resource allocation problems in wireless communica-
tion systems [24], [25]. The authors in [24] proposed a chan-
nel assignment algorithm for power-domain non-orthogonal
multiple access (NOMA) based on DNNs with attention
mechanism. The proposed algorithm outperforms some of the
existing channel assignment algorithms in the literature. The
authors in [25] studied the user pairing in multicell power-
domain NOMA, and showed that the NCO-based approach
can achieve near-optimal performance. Compared with power-
domain NOMA, the user scheduling problem in IRS-aided
systems is more challenging due to the following reasons.
While the channel information in power-domain NOMA only
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Fig. 1. An IRS-aided system with four users sharing one uplink PRB. The
direct channels are denoted by solid blue lines, while the reflecting channels
are denoted by dashed yellow lines.

involves the signal power, it is necessary to take both the
amplitude and phase of the uplink channel into account to
determine the optimal user scheduling in IRS-aided systems.
Moreover, the user scheduling is coupled with phase shift
control of the IRS and beamforming at the base station.

To address the aforementioned issues, in this paper, we
investigate the joint optimization of user scheduling, phase
shift control, and beamforming optimization problem in IRS-
aided systems. We consider both maximizing the aggregate
throughput and achieving the proportional fairness as objec-
tives. Obtaining the optimal solution of the joint optimization
problem is challenging since the optimization variables are
coupled and the formulated problem is nonconvex. To tackle
the challenges, we propose a DRL-based user scheduling,
phase shift control, beamforming optimization (DUPB) al-
gorithm, in which we first use NCO to determine the user
scheduling. The DNNs with attention mechanism are trained
to learn a stochastic user scheduling policy based on RL.
We then solve the phase shift control and beamforming
subproblem by proposing a curriculum learning (CL) DDPG
algorithm. We exploit DDPG and the hidden convexity of the
joint problem to optimize the phase shift and beamforming
variables. The contributions of this paper are as follows:

• We formulate a joint optimization problem for maxi-
mizing the aggregate throughput and achieving the pro-
portional fairness in IRS-aided systems as a mixed-
integer nonlinear optimization problem. We decompose
the problem into a subproblem for user scheduling, and a
subproblem for joint phase shift control and beamform-
ing optimization.

• We use NCO to learn the stochastic policy for user
scheduling in an online manner. We employ two DNN
modules, i.e., an encoder module and a decoder module.
The encoder module learns the high-dimensional repre-
sentations of the channel information of the users, and
these representations are used by the decoder module to
determine the stochastic policy. The DNNs are trained
based on RL without requiring the optimal solution of
the problem during the training phase.

• We further propose a CL-DDPG algorithm to solve the
joint phase shift control and beamforming optimization
subproblem. The proposed CL-DDPG algorithm employs



an actor-critic method to learn a policy for optimizing
the phase shift and beamforming variables. We improve
the performance of the vanilla DDPG by exploiting the
prior knowledge on the hidden convexity of the joint
subproblem. Curriculum learning [26] is used to design
the reward function such that the suboptimal solution ob-
tained by a baseline algorithm can facilitate the learning
in the early stage, which contributes to a better solution.

• Simulation results show that the proposed DUPB algo-
rithm achieves an aggregate throughput that is higher
than the AO-based algorithms and greedy scheduling.
The throughput fairness among the users can be im-
proved by using the proposed DUPB algorithm under the
proportional fairness objective. Moreover, the proposed
DUPB algorithm requires a lower runtime than the AO-
based algorithms when the number of reflecting elements
is large. We evaluate the impact of imperfect channel
estimation on the achievable throughput of the pro-
posed DUPB algorithm. Our results also show that both
modules (i.e., the NCO algorithm for user scheduling
and the CL-DDPG algorithm for phase shift control
and beamforming optimization) in the proposed DUPB
algorithm contribute to an aggregate throughput that is
higher than the AO-based algorithm with FP.

The remainder of this paper is organized as follows. The
system model and problem formulation are presented in
Section II. In Section III, we apply NCO technique to solve
the user scheduling subproblem. In Section IV, we present
the CL-DDPG algorithm and the overall framework of the
DUPB algorithm. Simulation results are shown in Section V.
Conclusions are drawn in Section VI.

Notations: In this paper, we use upper-case and lower-
case boldface letters to denote matrices and column vectors,
respectively. CM×N denotes the set of M×N complex-valued
matrices. AH denotes the conjugate transpose of matrix
A. diag(x) returns a diagonal matrix where the diagonal
elements are given by the elements of vector x.

II. SYSTEM MODEL

We consider an IRS-aided system with one base station, one
IRS, and N users. The base station is equipped with K anten-
nas, while each user equipment (UE) has only one antenna.
The set of users is denoted by N = {1, 2, . . . , N}. Time
is divided into intervals of equal duration. The time interval
[t, t+1) is referred to as time slot t, where t ∈ T = {1, 2, . . .}.
We assume the base station is allocated with one PRB to serve
the users in each time slot t ∈ T .

An IRS with LR reflecting elements is deployed to facilitate
uplink transmission of the users. In each time slot t ∈ T , the
base station schedules M users to perform uplink transmission

using one PRB. We use binary control variable xn(t) ∈ {0, 1}
to indicate whether user n ∈ N is scheduled for uplink
transmission in time slot t. We set xn(t) = 1 if user n is
scheduled in time slot t, and xn(t) = 0 otherwise. We have

xn(t) ∈ {0, 1}, n ∈ N , (1)∑
n∈N

xn(t) =M. (2)

We use vector x(t) = (x1(t), x2(t), . . . , xN (t)) to collect
xn(t), n ∈ N , in time slot t.

Let hD,n(t) ∈ CK and hR,n(t) ∈ CLR denote the channel
response between user n ∈ N and the base station (i.e.,
the direct channel) and the channel response between user
n and the IRS (i.e., the reflecting channel) in time slot
t ∈ T , respectively. The channel response between the IRS
and the base station in time slot t is denoted by matrix
G(t) ∈ CLR×K . We assume perfect channel estimation at the
base station1. In addition, we assume block fading channels,
where the block length is larger than the time period of the
PRB. We use matrix Ψ(t) to denote the phase shift matrix of
the IRS in time slot t. We have

Ψ(t) = diag(ejψ1(t), · · · , ejψLR
(t)) ∈ CLR×LR , (3)

where ψl(t), l ∈ {1, . . . , LR} is the phase shift of the l-
th reflecting element on the IRS in time slot t. We have
the following constraint on the phase shift of the reflecting
element

ψl(t) ∈ [0, 2π), l ∈ {1, . . . , LR}. (4)

We assume the scheduled users always use the maximum
transmit power Pmax to transmit their signals. The received
signal of user n ∈ N at the base station in time slot t is
given by

yn(t) = xn(t)
√
Pmax

(
hD,n(t) sn(t)

+GH(t)Ψ(t)hR,n(t)sn(t)
)
+ fn(t) + ϱ,

(5)

where sn(t) ∈ C is the symbol of user n in time slot t
with unit power, ϱ is the complex Gaussian noise with zero
mean and variance σ2, and fn(t) is the interference from the
remaining users to user n in time slot t. fn(t) is given by

fn(t) =
∑

j∈N\{n}

xj(t)
√
Pmax

(
hD,j(t) sj(t)

+GH(t)Ψ(t)hR,j(t)sj(t)
)
.

(6)

The signal-to-interference-plus-noise ratio (SINR) of user n
in time slot t is given by equation (7) below. In (7), bn(t) ∈
CK is the beamforming vector of user n’s signal in time slot

1Note that perfect channel information may be difficult to obtain in
practical systems. The potential impact of imperfect channel estimation on
the studied problem is evaluated in Section V-D.

Γn(x(t),Ψ(t), bn(t)) =
xn(t)P

max
∣∣∣ bHn (t)hD,n(t) + b

H
n (t)GH(t)Ψ(t)hR,n(t)

∣∣∣2∑
j∈N\{n}

xj(t)Pmax
∣∣∣bHn (t)hD,j(t) + b

H
n (t)GH(t)Ψ(t)hR,j(t)

∣∣∣2 + σ2 ∥bn(t)∥22
. (7)



t at the base station. We use b(t) = (b1(t), . . . , bN (t)) to
collect the beamforming vectors of all users in time slot t.
The achievable throughput (bits/(time slot)/Hz) of user n can
be determined as follows:

Rn(x(t),Ψ(t), bn(t)) = log2(1 + Γn(x(t),Ψ(t), bn(t))).
(8)

When proportional fairness is used as the objective, we
determine the time average of the achievable throughput of
user n up to time slot t based on the moving average [27] as
shown in equation (9) at the bottom of this page, where Tc
is the moving window size. We set Rn(1) = 1, n ∈ N , such
that all users are considered to have equal average throughput
in the first time slot t = 1.

In this paper, we consider the joint optimization problem
of user scheduling, phase shift control, and beamforming. The
optimization problem in time slot t ∈ T is formulated as
follows:

maximize
x(t),Ψ(t), b(t)

∑
n∈N

wn(t)Rn(x(t),Ψ(t), bn(t))

subject to constraints (1), (2), (4).

(10)

The optimization problem with the maximum aggregate
throughput objective can be obtained by setting wn(t) = 1
for all n ∈ N in problem (10). For the proportional fairness
objective, we set wn(t) = 1

Rn(t)
for n ∈ N [16], [27]. The

optimal solution of problem (10) is difficult to obtain since the
problem is nonconvex due to the weighted fractional objective
function and the phase shift constraint (4). Moreover, problem
(10) has binary control variables x(t) and the optimization
variables x(t), Ψ(t), b(t) are coupled.

In time slot t ∈ T , we can decompose problem (10) into a
user scheduling subproblem and a subproblem for joint phase
shift control and beamforming optimization. In particular,
given Ψ(t) and b(t), the subproblem for user scheduling in
time slot t is given by

maximize
x(t)

∑
n∈N

wn(t)Rn(x(t))

subject to constraints (1) and (2).

(11)

Subproblem (11) is a combinatorial optimization problem
with a total of

(
N
M

)
feasible user scheduling selections in

each time slot. Given the user scheduling vector x(t), the
joint subproblem for phase shift control and beamforming
optimization in time slot t is as follows:

maximize
Ψ(t),b(t)

∑
n∈N

wn(t)Rn(Ψ(t), b(t))

subject to constraint (4).
(12)

Subproblem (12) is a nonconvex optimization problem with
a multi-ratio fractional objective function. A suboptimal solu-
tion of problem (10) can be obtained by solving subproblem
(12) for all

(
N
M

)
user scheduling selections. This approach is

computationally expensive, especially when problem (10) is
required to be solved in each time slot and the number of
users is large. In the following sections, we propose a DUPB
algorithm to solve problem (10) with a lower computational
complexity.

III. DUPB ALGORITHM: NCO-BASED ALGORITHM FOR
USER SCHEDULING

We first propose an NCO-based algorithm for determining
the user scheduling in an online manner. In the proposed
NCO-based algorithm, we solve the user scheduling subprob-
lem using an RL framework. A stochastic user scheduling
policy is learned by the DNNs with attention mechanism.
For notational simplicity, we drop the time index t in the
subsequent sections.

A. RL Framework and Stochastic Policy

We propose the following RL framework for solving the
user scheduling subproblem (11). The states, actions, and
rewards are defined as follows:

1) States: We first concatenate the rows of channel gain
matrix G to obtain a vector of size KLR, which is denoted
by g. Then, we use vector vn to collect user n’s channel
information, along with the weight wn. In particular, vector
vn is given by

vn = [hD,n, hR,n, g, wn], n ∈ N , (13)

where [·, ·, ·] denotes the concatenation operator. The size of
vector vn is K + LR +KLR + 1.

State S consists of the channel information and the weights
wn of all N users. It is given by

S = {v1, . . . , vN}. (14)

State S is a set that collects the global information [28], [29].
In the remainder of this paper, we use the terms state S and
set S interchangeably.

2) Actions: The action is to schedule M users to perform
uplink transmission. Given state S, the action is equivalent to
finding a subset U which consists of M different vectors (or
elements) from S. That is,

U = {u1, . . . , uM}, (15)

where ul ∈ S and ul ̸= ul′ , l, l
′ ∈ {1, . . . ,M}, and l ̸= l′.

Given subset U , we obtain the corresponding user scheduling
vector x⋆ by setting xn = 1 if vn ∈ U . If vn /∈ U , then we
set xn = 0.

Rn(t) =


1, if t = 1,
1
t−1

∑t−1
τ=1Rn(x(τ),Ψ(τ), bn(τ)), if t = {2, 3, . . . , Tc},

(1− 1
Tc
)Rn(t− 1) + 1

Tc
Rn(x(t− 1),Ψ(t− 1), bn(t− 1)), otherwise.

(9)



3) Rewards: After determining subset U , the reward
r(U) ∈ R is determined by solving the joint phase shift
and beamforming optimization problem in (12) for fixed x⋆.
We propose a CL-DDPG algorithm for solving problem (12).
The details of the CL-DDPG algorithm will be presented in
Section IV. We denote the phase shift matrix and beamforming
vector that are obtained by solving problem (12) as Ψ⋆ and b⋆,
respectively. Then, the reward r(U) is determined as follows:

r(U) =
∑
n∈N

wnRn(x
⋆,Ψ⋆, b⋆n). (16)

The stochastic policy for choosing the action, i.e., scheduling
M users, can be determined by the conditional probability of
selecting a particular subset U given state S, i.e., p(U | S).
Using the chain rule, this probability can be factorized as
follows [21]:

p(U | S) =
M∏
l=1

p(ul | S,u1, . . . ,ul−1). (17)

To obtain the optimal user scheduling, we aim to find the
optimal stochastic policy that leads to the maximum expected
reward. In particular, the optimal stochastic policy is given by

p⋆(U | S) = argmax EU ′∼p(U | S)

[
r(U ′)

]
. (18)

To this end, we propose an NCO-based algorithm to learn the
optimal stochastic policy in (18). The details of the proposed
algorithm are presented in the following subsections.

B. Encoder Module

We denote the learnable parameters of the DNN modules
that are employed to learn the stochastic user scheduling
policy as Φ. The parameterized stochastic user scheduling
policy is denoted as pΦ(U | S). We use an encoder DNN
module to learn the underlying structures and abstraction
of the information in set S, which are referred to as the
embedding of the users [21]. The DNN structure for the
encoder module is shown in Fig. 2. For vector vn ∈ S , we use
an initial embedding module to obtain its embedding vEn . As
shown on the right-hand side of Fig. 2, the initial embedding
module consists of fully-connected (FC) layers and residual
network (ResNet) modules. NRes ResNet modules are stacked
in order to increase the depth of the initial embedding module
and provide a higher representation capacity. Each ResNet
module has two FC layers, two rectified linear unit (ReLU)
layers, and one residual connection. The residual connection
is added to overcome the vanishing gradient issue due to the
depth of the network [30], and to facilitate the learning by
eliminating the singularities of FC layers [31].

In the initial embedding module, the first FC layer projects
the input vector vn to a dRes-dimensional space, where dRes

is a constant. The output of the first FC layer is given by:

v(0)n =W FC1 vn + bFC1, (19)

where the weights W FC1 ∈ RdRes×di and biases bE ∈ RdRes

are learnable parameters, and di = K + LR + KLR + 1 is
the size of vector vn. The vector v(0)n is then fed into the
subsequent ResNet modules. We denote W (i)

1 and W (i)
2 ∈
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Fig. 2. The network structure of the encoder module. The encoder module
learns the embeddings of the input vectors with an initial embedding module,
an attention layer [22], and an MLP layer.

RdRes×dRes as the weights, and b
(i)
1 and b

(i)
2 ∈ RdRes as

the biases of the first and second FC layers in the i-th
ResNet module, respectively, for i = 1, . . . , NRes. Given
vector v(0)n , n ∈ N , the output of the i-th ResNet module
is given by:

v(i)n = ReLU
(
W

(i)
2

(
ReLU(W

(i)
1 v

(i−1)
n + b

(i)
1 )

)
+ b

(i)
2

)
+ v(i−1)

n , i = 1, . . . , NRes,
(20)

where ReLU(·) denotes the ReLU activation function. The
output of the NRes-th (i.e., the last) ResNet module is passed
through another FC layer with weights W FC2 ∈ Rdh×dRes

and biases bFC2 ∈ Rdh to obtain the initial embedding vEn . We
have vEn = W FC2 v

(NRes)
n + bFC2. The learnable parameters

of the initial embedding module ΦIEM are given by

ΦIEM =
(
W FC1,W

(i)
1 ,W

(i)
2 ,W FC2,bFC1, b

(i)
1 , b

(i)
2 , bFC2

)
,

i = 1, . . . , NRes.
(21)

After obtaining the initial embedding, we use attention
mechanism [22] to capture the user interference and the
combinatorial structure of the user scheduling subproblem.
The attention mechanism can be considered as an information
exchange process between the embeddings of vectors. By
exchanging the information, the embedding vEn not only
provides the multidimensional representations of the channel
information and weight wn of user n, but also shows how it
relates to the other users. We generate three additional vectors,
namely, key kn, query qn, and value zn, for each vector based
on the embedding vEn as follows:

kn =WK
en v

E
n , qn =WQ

en v
E
n , zn =W Z

en v
E
n , (22)

where matrices WK
en, W

Q
en ∈ Rdk×dh , and W Z

en ∈ Rdz×dh
are learnable parameters, whereas dk and dz are constants.
Using the attention mechanism, the embedding of a vector
may receive values from the embeddings of other vectors.
We compute the compatibility δn,j ∈ R of the two vectors
as δn,j =

qT
nkj√
dk

. The attention weights an,j ∈ [0, 1] can be

obtained using the softmax function as an,j = eδn,j∑
j′∈N e

δ
n,j′

.

Let z′n denote the value that embeddings vEn received from
the embeddings of other vectors. We have

z′n =
∑
j∈N

an,jzj . (23)

We construct a new embedding v̂En of vector vn by combining
vEn with the received z′n, which is v̂En = vEn + z′n. The final



embedding of vector vn, which is denoted by vFEn , is obtained
by passing the embedding v̂En through a multilayer perceptron
(MLP) module. The dimension of the output layer of the MLP
module is dh. We denote the learnable parameters of MLP
modules as ΦMLP. The parameters in the encoder module
Φen are given by Φen = (ΦIEM,WK

en,W
Q
en,W

Z
en,Φ

MLP). The
outputs of the encoder module are the final embeddings of the
users.

C. NCO-based Algorithm: Context Embedding and Decoder

In the decoder module, we first combine the final embed-
dings of all vectors in state S to obtain the aggregate em-
bedding using the weighted summation vEG =

∑
n∈N ηnv

FE
n ,

where ηn ∈ (0, 1) is the weight of the final embedding of
user n. Ideally, the weight ηn should be adjusted flexibly to
reflect the contribution of embedding vEn (i.e., user n) to the
reward. Inspired by the feature aggregation in deep multiple
instance learning [29], [32], we employ an embedding aggre-
gation layer to determine the weight as ηn = eβn∑

n′∈N eβn′ ,

where βn = νT tanh(WAvFEn ) [32]. Vector ν ∈ Rda
and matrix WA ∈ Rda×dh are learnable parameters of the
embedding aggregation layer, and da is a constant. Using the
aggregate embedding vEG, the decoder module constructs a
context embedding for generating the conditional probability
pΦ(ul | S,u1, . . . ,ul−1), which is given by

vEc =

{
[vEG, v

FE
u0
, w, M ], if l = 1,

[vEG, v
E
Ul−1

, w, M − l + 1 ], if l > 1,
(24)

where vEUl−1
is the aggregate embedding of the previously

selected vectors. It is given by

vEUl−1
=

1

l − 1

∑
n∈{n′ |vE

n′∈{u1,...,ul−1}}

vFEn , (25)

and vector w = (w1, . . . , wN ). vFEu0
serves as a placeholder

to maintain the constant size of vEc when the base station
determines the first scheduled user. The last element in (24),
i.e., M − l + 1, is the number of remaining vectors that can
be added into the subset. The size of the context embedding
is given by dc = 2dh +N + 1.

To obtain the stochastic policy, we compute the com-
patibility of the context embedding in (24) with the final
embedding of each of the remaining users that can potentially
be scheduled. We obtain the query of the context embedding,
the keys and values of the vectors as follows:

qc =W
Q
de v

E
c , kn =WK

dev
FE
n , zn =W Z

de v
FE
n , (26)

where matrices WQ
de ∈ Rdh×dc , WK

de ∈ Rdh×dk , and
W Z

de ∈ Rdh×dz project the context embedding and the final
embeddings of the vectors to dh dimensions. The compatibil-
ities of context embedding with the final embedding of the
remaining users can be determined by

δc,j =

{
δmax tanh

(
qT
c kj√
dh

)
, if vj has not been selected,

−∞, otherwise,
(27)

Context embedding

…

…

…

Attention layer

Compatibility

Softmax
Conditional probability

Final embeddingEmbedding 

aggregation layer

Aggregate embedding

Fig. 3. The network structure of the decoder module. The decoder module
generates the conditional probabilities based on the final embeddings provided
by the encoder module.

where δmax is a constant. The conditional probability for
selecting user j as the l-th scheduled user in the subset is
given by

p(ul = vj | S,u1, . . . ,ul−1) =
eδc,j∑

j′∈N eδc,j′
. (28)

With the conditional probability in (28), the stochastic pol-
icy pΦ(U | S) can be obtained based on (17). The learn-
able parameters in the decoder module is given by Φde =
(ν,WA,WK

de,W
Q
de,W

Z
de). The overall learnable parameters

are collected as Φ = (Φen, Φde).

D. Learning Algorithm based on REINFORCE

The stochastic policy generated by the encoder and decoder
modules is characterized by the learnable parameters Φ, i.e.,
pΦ(U | S). We aim to find the parameters Φ, such that the
expected reward of policy pΦ(U | S) is maximized. This leads
to the following optimization problem:

min
Φ

L(Φ | S) ≜ EU ′∼pΦ(U | S)

[
− r(U ′)

]
, (29)

where L(Φ | S) is referred to as the loss function. We use the
REINFORCE algorithm [33] to perform gradient descent and
optimize Φ. The gradient estimation is given by

∇L(Φ | S) = EU ′∼pΦ(U | S)

[
(b(S)−r(U ′))∇ log pΦ(U ′ | S)

]
,

(30)
where b(S) is the reward obtained by a baseline policy on
set S. We use the best policy learned by the DNN modules
so far during the training phase to serve as the baseline. We
compare the latest learned policy pΦ(U | S) with the baseline
every Ne training iterations, where Ne is a positive integer.
The baseline will be replaced by the latest policy pΦ(U | S) if
pΦ(U | S) achieves a higher expected reward compared with
the previous baseline. We refer to the Ne training iterations
between two baseline updates as a training episode. With the
gradient in (30), we use Adam optimizer [34] to solve problem
(29) and update the learnable parameters Φ.

The training algorithm in each training episode is shown in
Algorithm 1. In each training iteration, we train the DNN
module using one minibatch, which includes B different
channel realizations of the users. For each of the channel
realizations in the minibatch, we determine the corresponding
set S ′. We use set SB to collect all the B vector sets in the



Algorithm 1 NCO-based User Scheduling Algorithm: Train-
ing Phase
1: for Training iteration counter = 1, . . . , Ne do
2: Obtain a minibatch consisting of B channel realizations, and

determine the corresponding vector set SB .
3: for each S ′ ∈ SB do
4: Feed the vectors in S ′ into the DNN modules and determine

the subset U .
5: Determine the reward r(U) by solving subproblem (12).
6: Given state S ′, determine the reward of the baseline policy

b(S ′).
7: Determine the loss function as L(Φ | S ′)← b(S ′)− r(U).
8: end for
9: Determine the aggregate loss over the minibatch as

L(Φ | SB)← 1
B

∑
S′∈SB

L(Φ | S ′).
10: Determine the gradient based on (30), and update Φ by

solving problem (29) using Adam optimizer [34].
11: end for
12: Update the baseline policy if the current learned policy outper-

forms the previous baseline.
13: return The updated learnable parameters Φ.

Algorithm 2 Online Execution of the Proposed NCO-based
User Scheduling Algorithm in Time Slot t ∈ T
1: Determine the weights wn(t), n ∈ N , based on (9).
2: Obtain vectors vn(t), n ∈ N and state S(t) based on the

channel information and the weights wn(t), n ∈ N in time
slot t.

3: Feed the vectors in S(t) into the DNN modules, and determine
the subset U(t) based on the learned policy pΦ(U(t) | S(t)).

4: Obtain the corresponding user scheduling selection x⋆(t) in time
slot t from U(t).

minibatch. That is, set S ′ is an element in set SB . The loss
function is first determined for each S ′ ∈ SB , and is then
averaged over the whole minibatch. After each episode, the
performance of the learned policy and the baseline policy is
evaluated over Be new channel realizations.

E. Online Algorithm

Algorithm 2 shows our proposed NCO-based algorithm,
which determines the user scheduling given the online in-
formation in time slot t ∈ T . In Line 1, we first determine
the weights of all users in time slot t. In Line 2, we obtain
state S(t) based on the channel information and the weights
of the users. We then feed the vectors in S(t) into the pre-
trained DNN modules, and determine the subset U(t) based
on the learned policy pΦ(U(t) | S(t)). With subset U(t), we
can obtain the user scheduling vector x⋆(t). Now, with the
given x⋆(t), we jointly optimize the phase shift matrix and
beamforming vectors, and obtain Ψ⋆(t) and b⋆(t) using the
CL-DDPG algorithm. The details of the CL-DDPG algorithm
will be presented in the next section.

IV. DUPB ALGORITHM: CL-DDPG ALGORITHM FOR
PHASE SHIFT CONTROL AND BEAMFORMING

OPTIMIZATION

Given the user scheduling vector, we propose a CL-DDPG
algorithm to solve the joint phase shift control and beamform-
ing optimization subproblem.

Fig. 4. Illustration of the sequential decision process of the CL-DDPG for
joint phase shift control and beamforming optimization.

A. CL-DDPG Algorithm: State, Action, and Reward

Using our proposed CL-DDPG algorithm, the joint phase
shift control and beamforming optimization in an arbitrary
time slot t ∈ T can be formulated as a sequential decision
process with a maximum of Imax decision steps, as shown in
Fig. 4. Since the channel information and weights of the users
are constant within a particular time slot, we drop the time
index t for notation simplicity. We define the state in the i-th
decision step as follows:

sPB(i) = [sPB
1 (i), sPB

2 (i), . . . , sPB
M (i), g ], i = 1, 2, . . . , Imax,

(31)
where sPB

n (i) = [hD,n, hR,n, wnRn(a
PB(i − 1))], n ∈ M,

aPB(i−1) is the action taken in the previous decision step, and
aPB(0) is the initialized action. The action vector is defined
as

aPB(i) = [b(i),ψ(i)], i = 1, 2, . . . , Imax, (32)

where ψ(i) = (ψ1(i), . . . , ψLR
(i)).

Remark: Since the elements in action vector aPB(i) are
continuous variables, we choose DDPG [17] as the foundation
of our algorithm design. However, the vanilla DDPG suffers
from the exploration inefficiency when the dimensionality of
the state and action space is large. For the problem studied in
this paper, as the dimensionality of the state and action space
increases substantially with the number of reflecting elements
LR, the performance of the vanilla DDPG may degrade.
To address these challenges and improve the efficiency of
the vanilla DDPG, in our proposed CL-DDPG algorithm,
curriculum learning is employed to design the reward function,
such that the learning in the early stage is facilitated by
exploiting the knowledge on the structure of the joint problem.

Curriculum learning [26] is a technique for modifying the
system transition history observed by the learning agent such
that the performance of learning algorithm can be improved.
The rationale of curriculum learning is to begin the learning
process with a simple objective and gradually change the
objective towards a more difficult one, with the intuition that
the knowledge learned with the simple objective can facilitate
the learning with a more difficult objective [35], [36]. In
our proposed CL-DDPG algorithm, during the early stage
of the learning process, we choose an objective of reducing
the distance between the suboptimal solution. We employ the
following average distance measurement:

||aPB(i)− aPBSub||22
MK + LR

, (33)



where aPBSub =
[
bsub,ψsub

]
denotes the suboptimal solution

of the joint problem (12), which can be obtained using an AO-
based algorithm (e.g., [1], [11], [15]). The squared ℓ2 norm is
divided by MK + LR to obtain the average results for each
element in aPB(i).

Following the curriculum learning approach, we progres-
sively change the objective towards the primal objective,
which is to maximize the weighted aggregate throughput.
To this end, the reward function in the proposed CL-DDPG
algorithm is given by:

rPB(i) =
∑
n∈M

wnRn(a
PB(i))− β(i)

||aPB(i)− aPBSub||22
MK + LR

,

(34)
where β(i) is the weight representing the importance of
minimizing the average distance measurement. The value β(i)
needs to be adjusted properly throughout the training phase,
such that the second term in (34) can facilitate the learning
and meanwhile the performance of the learning algorithm will
not be limited by the suboptimal solution aPBSub. To achieve
such goals in the proposed CL-DDPG algorithm, the value of
β(i) will be decayed by multiplying with 1− θ, where θ is a
positive constant, if either of the following two conditions is
satisfied:

• Condition 1: The distance measurement between the
learned solution and the suboptimal solution is less than
or equal to a given threshold ϵ. That is

||aPB(i)− aPBSub||22
MK + LR

≤ ϵ. (35)

• Condition 2: The learned solution achieves a weighted
aggregate throughput that is higher than that obtained
from the suboptimal solution. That is∑

n∈N
wnRn(a

PB(i)) >
∑
n∈N

wnRn(a
PBSub). (36)

If neither of the aforementioned two conditions is satisfied,
we increment the value of β by multiplying with 1 + θ to
offer a higher reward for approaching a suboptimal solution.
Finally, we clip the value of β(i) to be within (0, βmax] to
avoid numerical issues. The overall mechanism for adjusting
the value of β is shown in the following equation:

β(i+ 1) =


(1− θ)β(i), if inequality (35) or

(36) is satisfied,
min{(1 + θ)β(i), βmax}, otherwise.

(37)

B. Actor-Critic Method and Learning Algorithm

We employ the actor-critic method to learn the policy
for solving the joint phase shift control and beamforming
optimization problem. The actor learns a policy πΦact , which
is parameterized by the learnable parameters Φact. The policy
πΦact defines a mapping from a state to an action. That is
aPB(i) = πΦact(s

PB(i)). In addition, the critic learns a state-
action value function QΦcrt , which is parameterized by Φcrt.
The state-action value function QΦcrt(s

PB(i),aPB(i)) estimates

the discounted future reward of selecting action aPB(i) under
state sPB(i). That is,

QΦcrt(s
PB(i),aPB(i))

= EsPB∼pπΦact
,aPB∼πΦact

[
Tmax∑
ℓ=i

γℓ−irPB(sPB(ℓ),aPB(ℓ))

]
,

(38)

where pπΦact
denotes the discounted state visitation distribu-

tion which depends on the actor’s policy πΦact , Tmax is the
decision horizon, and γ ∈ [0, 1] is the discount factor.

The goal of the actor-critic method is to learn the actor
policy which maximizes the discounted future reward [17].
We have

maximize
Φact

J(Φact)

≜ EsPB∼pπΦact
,aPB∼πΦact

[
Tmax∑
ℓ=1

γℓ−1rPB(sPB(ℓ),aPB(ℓ))

]
.

(39)

To solve problem (39), we use the deterministic policy gradi-
ent algorithm [37] to update the learnable parameters of the
actor Φact with the following gradient:

∇J(Φact)

= EsPB∼pπΦact

[
∇QΦcrt(s

PB,aPB) | aPB=πΦact (s
PB)∇πΦact(s

PB)
]
.

(40)

Moreover, the learnable parameters of the critic Φcrt is up-
dated based on the temporal difference (TD) error of value
approximation [38, Ch. 6]. In particular, we first determine
the target of the state-action value function approximation as

y(sPB, πΦact(s
PB)) = rPB(sPB, πΦact(s

PB))

+ γ QΦcrt(ŝ
PB, πΦact(ŝ

PB)),
(41)

where ŝPB is the next state as a result of taking action
πΦact(s

PB) in state sPB. Then, Φcrt is updated by solving the
following minimization problem [38, Ch. 6]:

minimize
Φcrt

L(Φcrt)

≜ EsPB∼pπΦact
,aPB∼πΦact

[(
QΦcrt(s

PB, πΦact(s
PB))

− y(sPB, πΦact(s
PB))

)2]
. (42)

We can update Φcrt using gradient descent with the following
gradient:

∇L(Φcrt)

= EsPB∼pπΦact
,aPB∼πΦact

[
2∇QΦcrt(s

PB, πΦact(s
PB))

(
QΦcrt(s

PB, πΦact(s
PB))− y(sPB, πΦact(s

PB))
)]
.

(43)
To overcome the overestimation issue [39] of the conven-

tional actor-critic method, we introduce two critics, where
each of them performs an independent estimation of the
state-action value function. We denote the learnable param-
eters of the two critics as Φcrt1 and Φcrt2, respectively. We



Algorithm 3 CL-DDPG: Training Algorithm
1: Set episode counter k ← 0.
2: Initialize the threshold δ.
3: Initialize the learnable parameters Φact, Φcrt1, and Φcrt2.
4: Conduct Twarm-up episodes of exploration and store the transition

history.
5: while k ≤ Tmax do
6: Observe new channel realizations and the weights of the

users.
7: Initialize i← 0 and β(i)← β0.
8: Determine the suboptimal solution as aPBSub using a baseline

algorithm.
9: while i ≤ Imax do

10: Determine the action aPB(i)← πΦact(s
PB(i)) + ϱepl.

11: Determine the reward rPB(i) based on (34).
12: Update β(i) based on (37) and store the transition history.
13: Sample a mini-batch of B̂ transition tuples.
14: Update Φact, Φcrt1, and Φcrt2 using the Adam optimizer

and (44).
15: i← i+ 1.
16: end while
17: k ← k + 1
18: end while
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Fig. 5. The network structure of (a) the actor and (b) the critic. The
actor network determines the action based on the state. The critic network
approximates the state-action value given the state and action.

upper-bound the approximated state-action value function by
the minimum approximation of the two critics to alleviate
the impact of overestimation. This results in the following
modification of the target of the expected discounted reward
approximation in (41):

y(sPB, πΦact(s
PB))

= R(sPB, πΦact(s
PB)) + γ min

{
QΦcrt1(ŝ

PB, πΦact(ŝ
PB)),

QΦcrt2(ŝ
PB, πΦact(ŝ

PB))
}
.

The overall learning algorithm is shown in Algorithm 3. The
learning is performed in an episodic fashion. The learning
progress consists of Tmax episodes. Each episode has Imax
decision steps. The same channel realization is used within
an episode, while different (and independent) channel real-
izations are used across different episodes. To improve the
exploration of the action space, we introduce a warm-up stage
that consists of Twarm-up episodes. Within the warm-up stage,
the actions are chosen by sampling from a uniform distribution
over the feasible actions. New channel realization and the
weights of the users are observed at the beginning of each
episode. In Line 8, we determine a suboptimal solution of
the joint problem using a baseline algorithm, e.g., the AO-

based algorithms [1], [11], [15]. In the i-th decision step,
the action is determined as aPB(i) = πΦact(s

PB(i)) + ϱepl,
where ϱepl is the Gaussian noise with zero mean and vari-
ance σ2

epl. In Lines 10−12, after selecting an action, we
update the value of β(i) based on (37). The transition tuple
(sPB(i),aPB(i), rPB(i), sPB(i+1)) is stored in the experience
replay. In Line 13, we sample a mini-batch of B̂ transition
tuples from the experience replay. After determining the
gradient for each transition tuple within the mini-batch, we
obtain the new learnable parameters Φ′

act, Φ
′
crt1, and Φ′

crt2 by
performing one step of gradient descent (and ascent) using
the Adam optimizer. We then update the learnable parameters
using the following soft update:

Φact = κΦ′
act + (1− κ)Φact,

Φcrt1 = κΦ′
crt1 + (1− κ)Φcrt1, (44)

Φcrt2 = κΦ′
crt2 + (1− κ)Φcrt2,

where κ is a constant and is between zero and one.

C. Network Structure of the Actor and Critic

The proposed actor network structure is shown in Fig. 5(a).
The actor network consists of three FC layers. The first and
second FC layers are followed by the ReLU activation layers.
The output of the last FC layer is passed through a tanh
activation layer to ensure that each of the output value is
always within the interval (−1, 1). We note that setting a
minimum and a maximum value for the action facilitates
the learning of both the actor and critic networks. For the
output of the actor network that corresponds to the phase
shift variables, we multiply the output value by (1 + λ)π,
where λ > 0, to obtain the phase shift value2. The sizes
of the input and output of the actor network are given by
dact in =M(K + LR +KLR + 1) and dact out =MK + LR,
respectively. The sizes of the three FC layers in the actor
network are dact in × dfc1, dfc1 × dfc2, and dfc2 × dact out,
respectively. The remaining outputs are directly used as the
real and imaginary parts of the beamforming vectors. This
is because the magnitude of the beamforming vector at the
receiver does not affect the optimality of the solution. An
arbitrary beamforming vector bn can be scaled as bn

(1+λ)||bn||2
so that the real and imaginary parts of each element of the
vector are within the interval (−1, 1). Both critics use the
network structure as shown in Fig. 5(b). Each critic network
has three FC layers and two ReLU activation layers. The
input of the critic network is the concatenation of the state
and action. The size of the input of the critic networks is
given by dcrt in = M(K + LR + KLR + 1) +MK + LR.
Given the state and action, the output of the critic networks
is QΦcrt(s

PB, πΦact(s
PB)). The sizes of the three FC layers in

the critic networks are dcrt in × dfc1, dfc1 × dfc2, and dfc2 × 1,
respectively.

2We choose the multiplier (1 + λ)π > π since the output value of the
tanh activation layer cannot be equal to either 1 or −1. Using a multiplier
that is less than or equal to π will affect the optimality of the learned solution
when the optimal solution is either ψ⋆

l = π or ψ⋆
l = −π.
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figure, for determining the phase shift and beamforming variables.

Algorithm 4 CL-DDPG: Online Execution Algorithm
1: Observe the channel realizations and the weights of the sched-

uled users.
2: Determine the suboptimal solution aPBSub using a baseline

algorithm.
3: Initialize the threshold δ.
4: Initialize i← 0 and β(i)← β0.
5: Initialize the maximum achievable weighted aggregate through-

put Rmax ← 0.
6: Conduct Iwarm-up decision steps of exploration and store the

transition history.
7: while i ≤ Imax do
8: Determine the action aPB(i)← πΦact(s

PB(i)) + ϱepl.
9: Determine the reward rPB(i) based on (34).

10: Update β(i) based on (37) and store the transition history.
11: Sample a mini-batch and update Φact, Φcrt1, and Φcrt2 using

the Adam optimizer and (44).
12: if

∑
n∈M wn(t)Rn(a

PB(i)) ≥ Rmax then
13: aout ← aPB(i).
14: Rmax ←

∑
n∈M wn(t)Rn(a

PB(i)).
15: end if
16: i← i+ 1.
17: end while
18: Return aout.

D. CL-DDPG: Online Algorithm

The online algorithm of CL-DDPG algorithm is shown in
Algorithm 4. In Line 2, given the channel information and
the weights of the scheduled users, we obtain the suboptimal
solution aPBSub using a baseline algorithm. In Line 6, we
conduct Iwarm-up decision steps of exploration to collect system
transition tuples. In Lines 7−17, we update the learnable
parameters for Imax decision steps based on the online infor-
mation to further improve the learned policy. In Lines 12−15,
the action that achieves the maximum weighted aggregate
throughput throughout the Imax decision steps of the online
execution is chosen as the output.

E. Overall Framework of the Proposed DUPB Algorithm

The overall framework of the proposed DUPB algorithm is
shown in Fig. 6. The forward propagations for determining the
rewards, state-action value function approximation, and TD-
error are denoted by blue solid arrows. The backpropagations
of the gradients are denoted by dashed arrows. Note that, both

the reward functions used in the NCO-based and CL-DDPG
algorithms depend on the weighted aggregate throughput,
which corresponds to the objective of the primal problem (10).
With the reward function in (16), we use the REINFORCE
algorithm to determine the gradient for updating the learnable
parameters of the encoder and decoder modules in the NCO-
based algorithm. Recall that for the reward function in (16),
the solutions of phase shift control Ψ⋆ and beamforming
vectors b⋆n, n ∈ N , are determined by the phase shift control
and beamforming policy πΦact that is learned by the CL-DDPG
algorithm. Therefore, b(S) and r(U ′) in (30) depend on policy
πΦact . This indicates that the gradient for updating the user
scheduling policy depends on the phase shift control and
beamforming policy πΦact . Thus, the learning of user schedul-
ing policy depends on πΦact . We then use the deterministic
policy gradient and TD-error to obtain the gradients for the
training of the actor and critic networks in the CL-DDPG
algorithm, respectively.

For the proposed DUPB algorithm, the computational
complexity of obtaining the user scheduling vector depends on
the computational complexity of forward propagation through
the encoder and decoder modules. The forward propagation
through the initial embedding module in the encoder module
has a complexity of O

(
N
(
(K + LR + KLR + 1)dRes +

NResd
2
Res + dResdh

))
. The forward propagation through the

attention layers, MLP layers, and the embedding aggregate
layer incurs a complexity of O(Ndzdh +Ndkdh +N2dk +
Nd2h + Ndadh + dcdh + Ndh). Hence, obtaining the user
scheduling incurs the following computational complexity:

OUS = O
(
N
(
(K + LR +KLR + 1)dRes

+NResd
2
Res + dResdh

)
+Ndzdh +Ndkdh

+N2dk +Nd2h +Ndadh + dcdh +Ndh

)
.

For the ease of analysis, given the M scheduled users, we
assume that the AO-based algorithm with FP is employed
to obtain a suboptimal solution of the joint phase shift and
beamforming optimization problem. This incurs a computa-
tional complexity of O(CAO(CPSL

4.5
R log(1/ϵSDR) +MK3)),

where CAO is the number of iterations to solve the joint phase
shift and beamforming optimization problem with fixed user



scheduling vector, CPS is the number of iterations to solve
the phase shift subproblem using FP and SDR, and ϵSDR is
the solution accuracy of SDR. With the obtained suboptimal
solution, the online execution of the CL-DDPG algorithm in-
curs B̂Imax forward propagations and Imax backpropagations.
Each forward propagation has a computational complexity of
OPB forward = O

(
(dact in + dcrt in)dfc1 + dfc1dfc2 + (dact out +

1)dfc2

)
, while each backpropagation incurs a computational

complexity of

OPB backprop = O
(
(dact in + dcrt in + dfc2 + 1)dfc1 + dfc2

+ (dact out + 1)dfc2 + dact out

)
.

(45)
The overall computational complexity of the proposed DUPB
algorithm is given by:

OUS +O(CAO(CPSL
4.5
R log(1/ϵSDR) +MK3))

+ B̂ImaxOPB forward + ImaxOPB backprop.
(46)

V. PERFORMANCE EVALUATION

We simulate an IRS-aided system where the distance be-
tween the IRS and the base station is 200 meters. The users
are randomly and uniformly distributed within [10, 50] meters
of the IRS. The simulation setup is shown in Fig. 7. We
assume the direct channels between the users and the base
station are blocked [8]. Note that when the direct channels
are present, the input dimensionality of the linear projection
layers in the encoder module should be increased accordingly
to incorporate the extra channel information. The reflecting
channels follow Rician fading distribution. We set the Ricean
K-factor to 6 with path loss exponent equal to 3.5 [40].
The maximum transmit power Pmax is set to 30 dBm, and
the noise power is set to −90 dBm. The window size of
the exponential moving average TC in equation (9) is set
to 20. The parameters for the proposed DUPB algorithm
are shown in Table I. We use PyTorch [41] for simulation.
In our simulation, the channel realizations for DNN training
and evaluation are generated independently. We conduct the
simulation using a Linux-based computing server with an Intel
E5-2683 Broadwell @ 2.1GHz CPU, and an NVIDIA Tesla
P100 Pascal GPU with 12 GB memory. The average training
time per episode of the proposed DUPB algorithm on the
computing server is 132.7 min for the system setting N = 10,
M = K = 4, and LR = 80.

The performance of the proposed DUPB algorithm is
evaluated after 200 training episodes. We first compare the
performance of the proposed DUPB algorithm with the fol-
lowing three algorithms:

• AO-based algorithm with FP [1]: In this algorithm,
we first relax the binary user scheduling variables, and
then solve the user scheduling, phase shift control, and
beamforming subproblems iteratively using FP and SDR.

• AO-based algorithm with SCA [11]: Compared with
the AO-based algorithm with FP, in this algorithm, we
solve the phase shift control subproblem using the SCA
approach [11].

Base station

(0, 0)

IRS

(200, 0)

Users

50 m

10 m

x

y

Obstacles

Fig. 7. Simulation setup. The base station is located at (0, 0), while the IRS
is located at (200, 0). The users are distributed within a 120◦ annulus sector
where the IRS is located as the center of the circle.

TABLE I
SIMULATION PARAMETERS FOR THE PROPOSED DUPB ALGORITHM

Parameter Value
Dimensionalities of the DNN layers in NCO

dk , dz , da, dh
max{256, 4di}

Number of training iterations in each
episode of NCO Ne

25

Dimensionalities of the DNN layers in
CL-DDPG dfc1, dfc2

max{256, 2dcrt in}

Maximum number of decision steps in
CL-DDPG Imax

1000

Learning rate 0.005

Minibatch sizes B, B̂ 64, 128
Constant α for clipping the compatibility 10
Number of channel realizations used for

evaluation Be
5000

Reward function parameters β0, βmax, ϵ 10, 10, 0.1
Results scaling factors θ, λ 0.01, 0.01

Number of episodes and decision steps for
warm-up Twarm-up, Iwarm-up

10, 1000

• Greedy scheduling: In this algorithm, the base station
schedules those M users with the largest value of∣∣∣hD,n(t) +GH(t)hR,n(t)

∣∣∣2, n ∈ N and then employs
the AO-based algorithm with FP to obtain the phase shift
matrix and beamforming vectors.

A. Aggregate Throughput

We vary the number of users and evaluate the aggregate
throughput with the maximum aggregate throughput objective
in Fig. 8(a). We set M = K = 4 and LR = 80. We observe
that the aggregate throughput of all considered algorithms
increase with the number of users. When N is equal to 20, the
proposed DUPB algorithm achieves an aggregate throughput
which is 4.6%, 5.4% and 14.2% higher than the AO-based
algorithm with SCA, the AO-based algorithm with FP, and
the greedy scheduling algorithm, respectively.

Fig. 8(b) shows the aggregate throughput versus the number
of reflecting elements on the IRS with the maximum aggregate
throughput objective. We set M = K = 4 and N = 10. The
results show that the aggregate throughput of all considered
algorithms increase with the number of reflecting elements.
The reason is that, having more reflecting elements on the
IRS offers a higher degree of freedom for controlling the
phase shift of the reflecting channel. By properly controlling
the phase shift of the IRS and beamforming at the base
station, we can reap the benefits of the degree of freedom.
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Fig. 8. Aggregate throughput versus (a) the number of users and (b) the
number of reflecting elements when the objective is to maximize the aggregate
throughput.

When LR is equal to 100, the proposed DUPB algorithm
achieves an aggregate throughput that is 6.0%, 7.3%, and
12.9% higher than the AO-based algorithm with SCA, the AO-
based algorithm with FP, and the greedy scheduling algorithm,
respectively.

B. Fairness Among the Users

We evaluate the average throughput per user under the
proportional fairness objective in Fig. 9(a). We sort the users
in an ascending order of their distances to the base station and
index them accordingly. That is, the closest user to the base
station is referred to as user 1, and the farthest user to the base
station is referred to as user 10. All algorithms are evaluated
after running 300 consecutive time slots. With proportional
fairness objective, the users are allocated with appropriate
amount of network resources to maintain a balance between
fairness and aggregate throughput. This is because the reward
of scheduling a particular user is weighted based on its
average throughput. Scheduling the users with low average
throughput can sometimes lead to a higher reward. Hence,
the network resources will not congregate at those users with
better channel condition. We also observe from Fig. 9(a)
that the distribution of throughput per user varies between
different algorithms. With the greedy scheduling algorithm,
the users with good channel conditions (e.g., users 1 and 2)
obtain a higher throughput, while the users with poor channel
conditions (e.g., users 9 and 10) are not scheduled by the
base station. In the proposed DUPB algorithm, those users

User 1
User 2

User 3
User 4

User 5
User 6

User 7
User 8

User 9

User 1
0

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

bi
ts

/(
tim

e 
sl

ot
)/

H
z) Proposed DUPB Algorithm

The AO-based Algorithm with FP
The AO-based Algorithm with SCA
Greedy Scheduling

(a)

0 2 4 6 8 10 12 14 16 18 20

Average Throughput (bits/(time slot)/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Proposed DUPB Algorithm
AO-based Algorithm with FP
AO-based Algorithm with SCA
Greedy Scheduling

(b)

Fig. 9. (a) Average throughput per user and (b) the cumulative distribution
function (CDF) of the average throughput per user forM = K = 4,N = 10,
and LR = 80.

with poor channel conditions are scheduled more frequently
and hence obtain a higher throughput.

In Fig. 9(b), we plot the cumulative distribution function
(CDF) of the average throughput of the users. We observe
that, for those users with relatively low average throughput,
particularly lower than 4 bits/(time slot)/Hz, they are allocated
with more resources under the proposed DUPB algorithm and
hence achieve a higher average throughput. The results also
show the difference in the tail distribution of the average
throughput per user. With the proportional fairness objective,
the users with preferable channel conditions may achieve
the highest average throughput under the greedy scheduling
algorithm. This is consistent with the results in Fig. 9(a).
Moreover, the proposed DUPB algorithm reduces the standard
deviation of the throughput distribution among the users by
29.7%, 33.4%, and 51.1% when compared with the AO-based
algorithm with SCA, the AO-based algorithm with FP, and the
greedy scheduling algorithm, respectively.

C. Runtime Comparison

We compare the online execution runtime of different algo-
rithms for 10 consecutive time slots on the same computing
server. The results are shown in Table II. When LR is equal
to 100, the runtime of the proposed DUPB algorithm is
37.9% and 43.5% lower than the AO-based algorithm with
SCA and the AO-based algorithm with FP, respectively. We
also observe that the AO-based algorithm with FP incurs
the longest runtime when LR is large, mainly due to the



TABLE II
ONLINE EXECUTION RUNTIME COMPARISON FOR DIFFERENT ALGORITHMS

Parameter Settings
N = 10,

M = K = 4,
LR = 40

N = 10,
M = K = 4,
LR = 80

N = 10,
M = K = 4,
LR = 100

N = 20,
M = K = 4,
LR = 80

Proposed DUPB Algorithm 79.4 min 116.9 min 159.6 min 124.7 min
The AO-based Algorithm with FP 68.5 min 175.6 min 282.7 min 332.8 min

The AO-based Algorithm with SCA 81.2 min 168.7 min 256.8 min 320.6 min
Greedy Scheduling Algorithm 27.6 min 56.9 min 84.5 min 57.1 min
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Fig. 10. Aggregate throughput under imperfect channel estimation. We set
M = K = 4, LR = 80, and N = 10.

computational complexity of using SDR to obtain the rank-
one matrix. In all considered settings, the greedy scheduling
algorithm requires the shortest runtime as the user scheduling
is determined by a pre-defined heuristic.

D. Effect of Imperfect Channel Estimation

We evaluate the impact of imperfect channel estimation on
the performance of the proposed algorithms. The estimated
channel gain between the base station and the IRS is given
by Ĝ(t) = G(t) + ∆G(t), where ∆G(t) ∈ CLR×K is
channel estimation error of G(t). We consider the statistical
channel estimation error [42], [43], where the elements in
∆G(t) are assumed to follow complex Gaussian distribu-
tion with zero mean and variance µ2∥g(t)∥22. The constant
µ ∈ [0, 1) measures the significance of estimation error. The
estimated channel between user n and the IRS is given by
ĥR,n(t) = hR,n(t) + ∆hR,n(t). The elements in ∆hR,n(t)
follow complex Gaussian distribution with zero mean and
variance µ2∥hR,n(t)∥22. In Fig. 10, we evaluate the aggre-
gate throughput under imperfect channel estimation with the
maximum aggregate throughput as objective. We observe
performance degradations in all considered algorithms due to
imperfect channel estimation. When µ is equal to 0.005, the
proposed DUPB algorithm can retain 56.6% of the aggregate
throughput under perfect channel estimation. The performance
degradation of the proposed DUPB algorithm and the other
baseline algorithms due to imperfect channel estimation are
similar.

E. Performance Gain of Each Module

In order to provide additional insights on the throughput
improvement obtained from the proposed DUPB algorithm,
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Fig. 11. Aggregate throughput versus (a) the number of users and (b) the
number of reflecting elements when the objective is to maximize the aggregate
throughput.

we evaluate the performance of the following two algorithms:
1) NCO-based user scheduling with FP-based phase shift

control and beamforming optimization: In this algorithm, we
use the proposed NCO-based algorithm to learn the user
scheduling policy, while the joint phase shift control and
beamforming subproblem is solved using the FP and SDR-
based approach. We refer to this algorithm as NCO with FP.

2) FP-based user scheduling with CL-DDPG-based phase
shift control and beamforming optimization: In this algorithm,
we use the FP-based approach to solve the user scheduling
subproblem. Given the user scheduling vector, the joint phase
shift control and beamforming optimization subproblem is
solved using the proposed CL-DDPG algorithm. We refer to
this algorithm as FP with CL-DDPG.

We set M = K = 4 and LR = 80. The performance
comparison results are shown in Fig. 11. Results show that
both the FP with CL-DDPG and NCO with FP algorithms
achieve better performance than the AO-based algorithm. This
indicates that both modules (i.e., the NCO algorithm for



user scheduling and the CL-DDPG algorithm for phase shift
control and beamforming optimization) contribute to the im-
proved performance of our proposed DUPB algorithm. While
the optimization-based approaches can obtain high quality
suboptimal solutions, the following issues may still affect the
optimality of these approaches due to the nonconvexity of the
studied problem. First, the quality of the converged solution of
the FP-based user scheduling algorithm can be highly sensitive
to the initialization of the relaxed user scheduling variables.
When the relaxed user scheduling variable of user n (i.e.,
xn ∈ [0, 1]) is initialized to be close to 0, the local gradient
will encourage the algorithm to further reduce the value of
xn. Therefore, the FP-based user scheduling algorithm would
converge to the stationary point in which user n is not being
scheduled, i.e., xn = 0. Thus, it can difficult for the FP-based
user scheduling algorithm to avoid being trapped by the local
optimal solutions. When the user scheduling subproblem is
solved using the NCO algorithm, we can explore the solution
space better than the FP-based algorithm since (a) a large
number of feasible actions are being explored by the NCO
algorithm during the exploration phase and the training phase,
(b) the NCO algorithm learns a stochastic user scheduling
policy which tends to explore more feasible actions during
the early phase of training, and (c) with the help of the
REINFORCE algorithm, the policy learning in the NCO
algorithm is designed to find the best solution within the
explored solution space. The aforementioned features allow
the NCO algorithm to efficiently explore the solution space
and obtain a higher aggregate throughput.

We also observe from Fig. 11 that, when compared with
the AO-based algorithm with FP, the CL-DDPG algorithm
provides a higher performance gain than the NCO-based
user scheduling algorithm. When the joint phase shift control
and beamforming subproblem is solved using the AO-based
algorithm with FP, since Gaussian randomization process
is used in the SDR to recover the rank-one phase shift
control matrix, it may lead to performance degradation. In our
proposed CL-DDPG algorithm, since we can determine the
phase shift variables that satisfy the unit-modulus constraint
directly from the learned policy, the performance degradation
due to Gaussian randomization can be mitigated.

VI. CONCLUSION

In this paper, we studied the joint user scheduling, phase
shift control, and beamforming design in IRS-aided sys-
tems. We decomposed the formulated problem into two sub-
problems: a combinatorial optimization subproblem for user
scheduling, and a nonconvex subproblem for joint phase shift
control and beamforming optimization. We proposed a DUPB
algorithm, in which NCO technique is used to learn the
stochastic policy for determining the user scheduling. In addi-
tion, we proposed a CL-DDPG algorithm to jointly optimize
the phase shift control and the beamforming vectors. Our
curriculum learning approach facilitates the policy learning by
exploiting the knowledge on the hidden convexity of the joint
problem. Results showed that the proposed DUPB algorithm
outperforms the AO-based algorithms and greedy scheduling

algorithm under both maximum aggregate throughput and
proportional fair objectives. The runtime of the proposed
DUPB algorithm is lower than that of the proposed AO-based
algorithms when the number of reflecting elements is large.
For future work, we will consider the multicell scenario and
and optimizing the transmit power.
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