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Abstract—Cooperative spectrum sensing is an effective tech-
nique to improve the sensing performance and increase the
spectrum efficiency in cognitive radio networks (CRNs). In this
paper, we consider a CRN with multiple primary users (PUs) and
multiple secondary users (SUs). We first propose a cooperative
spectrum sensing and access (CSSA) scheme for all the SUs,
where the SUs cooperatively sense the licensed channels of the
PUs in the sensing subframe. If a channel is determined to be
idle, the SUs which have sensed that channel will have a chance
to transmit packets in the data transmission subframe. We then
formulate this multi-channel spectrum sensing and channel access
problem as a hedonic coalition formation game, where a coalition
corresponds to the SUs that have chosen to sense and access a
particular channel. The value function of each coalition and the
utility function of each SU take into account both the sensing
accuracy and the energy consumption. We propose an algorithm
for decision node selection in a coalition. Moreover, we propose
an algorithm based on the switch rule to allow the SUs to make
decisions on whether to join or leave a coalition. We prove
analytically that the set with all the SUs converges to a final
network partition, which is both Nash-stable and individually
stable. Besides, the proposed algorithms are adaptive to changes
in network conditions. Simulation results show that our proposed
CSSA scheme achieves a better performance than the closest
PU (CPU) scheme and the noncooperative spectrum sensing and
access (NSSA) scheme in terms of the average utility of the SUs.

Index Terms—Cognitive radio networks, coalitional game the-
ory, hedonic coalition formation, cooperative spectrum sensing.

I. INTRODUCTION

SPECTRUM resources are scarce and fixed spectrum al-
location may not always be efficient [2]. This motivates

the concept of cognitive radio [3], which allows unlicensed
users (secondary users) to dynamically and opportunistically
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access the licensed bands allocated to the legacy spectrum
holders (primary users) when the spectrum is not being utilized
temporarily. Cooperation techniques, such as cooperative com-
munication [4], [5], can be used in cognitive radio networks
(CRNs). In order to enable dynamic spectrum access in CRNs,
spectrum sensing [6] is performed. In local spectrum sensing,
the secondary users (SUs) are required to sense the radio
environment within their operating range to find the spectrum
which is not occupied by the primary users (PUs). However,
it can be susceptible to sensing problems due to multipath
fading, shadowing, and receiver uncertainty [6]. To enhance
the sensing performance of local spectrum sensing, the idea
of cooperative spectrum sensing was proposed that exploits
the spatial diversity in the observations of spatially located
SUs [6]–[8]. In [9], Liang et al. studied cooperative sensing
by formulating the sensing-throughput tradeoff problem as
an optimization problem. In [10], Saad et al. introduced a
distributed model for cooperative spectrum sensing in CRNs.
The cooperative sensing problem was modeled as a coalitional
game, and distributed algorithms were proposed for coalition
formation. In [11], Lee et al. proposed an adaptive and
cooperative spectrum sensing method, and investigated how
the cooperative sensing affects the performance of the pro-
posed optimal spectrum sensing scheme. In [12], Wang et al.
proposed a distributed scheme for cooperative multi-channel
spectrum sensing based on coalitional game theory. A coalition
selection scheme was proposed, where each channel is sensed
by one coalition. In [13], Song et al. studied the theoretical
improvement of the multi-channel coordination in cooperative
spectrum sensing. They proposed practical centralized algo-
rithm and distributed algorithms to find the solutions for the
formulated integer programming problem. Channel utilization
and energy consumption are considered in spectrum sensing.
In [14], Zhao et al. proposed a periodic sensing opportunistic
spectrum access scheme. The constrained Markov decision
processes were used to maximize channel utilization while
limiting the interference with the PUs. In [15], Su et al.
proposed a spectrum sensing scheme for CRNs to save the
sensing energy consumption, and guarantee the priority of the
PUs and the spectrum opportunity for SUs.

In general, there are multiple PUs (i.e., multiple licensed
channels) and multiple SUs in a CRN. It is important to
determine which channel each SU should sense and access by
taking into account the sensing accuracy [16], [17] and energy
consumption [18]. Moreover, it is more practical if we also



(a) Sensing subframe with duration δ (b) Sensing decision (c) Data transmission subframe with duration T −δ

Fig. 1. An example of our system model and the proposed CSSA scheme with M = 2 and N = 4, where the blue and red colours denote the operations
in channels 1 and 2, respectively. (a) Each ST senses one licensed channel during the sensing subframe. (b) When the sensing time δ expires, each ST sends
its sensing result to one of the STs in that channel that acts as a DN. (c) If the channel is determined to be idle by the DN, one of the STs in that channel
can transmit data to the corresponding secondary receiver in the data transmission subframe.

consider channel access after spectrum sensing. Therefore,
we consider a framework in CRNs that considers spectrum
sensing accuracy, energy consumption, and channel access for
the SUs. Algorithms are proposed which allow each SU to
make its own decision on which channel to sense and access.
Also, they enable the SUs to adapt to different changes in
network conditions, such as the deployment of new PUs and
SUs, the removal of existing PUs and SUs, and the change in
wireless channel conditions.

In this paper, we study cooperative spectrum sensing and
channel access in CRNs with multiple channels. We assume
that a SU first chooses a channel to sense locally in the sensing
subframe. Then, all the SUs that choose to sense the same
channel cooperatively determine the channel status. If it is
determined to be idle, one of the SUs which has sensed that
channel can access it during the data transmission subframe.
We consider both the spectrum sensing accuracy and energy
consumption in our model, and analyze the behavior of the
SUs by using hedonic coalition formation game [19]–[21]. The
main contributions of this paper are summarized as follows:

• We propose a cooperative spectrum sensing and access
(CSSA) scheme for the SUs in a CRN, where there are
multiple licensed frequency channels.

• We formulate the cooperative multi-channel spectrum
sensing and access problem as a hedonic coalition for-
mation game, where the value function of each coalition
and the utility function of each SU take into account both
the sensing accuracy and energy consumption.

• In order for the SUs to make decisions to join or leave a
coalition, we propose algorithms for the CSSA scheme.
We prove analytically that the final partition is Nash-
stable, where no SU has an incentive to move from its
current coalition to another coalition.

• Simulation results show that our CSSA scheme achieves a
better performance than the closest PU (CPU) scheme and
the noncooperative spectrum sensing and access (NSSA)
scheme. The proposed algorithms are adaptive to changes
in network settings.

Our proposed framework is more practical as compared
with some of the previous works in spectrum sensing. In the

system model, we consider the general case where there are
multiple licensed channels in the CRN, while the works in [9],
[10], [15] only analyzed the scenario with only one channel
in the network. Besides, the energy efficiency is always a
concern in practice. Therefore, we take energy consumption
into consideration for spectrum sensing and channel access in
CRNs. However, the works in [9]–[14] did not consider energy
consumption. In terms of spectrum sensing accuracy, we apply
cooperative spectrum sensing in our proposed CSSA scheme.
Compared to the work in [14], [15] which only considered
local spectrum sensing, our CSSA scheme can further improve
the sensing performance. Moreover, while previous works only
focused on spectrum sensing and ignored channel access (e.g.,
[10], [12]), we consider both spectrum sensing and channel
access in our CSSA scheme, and analyze the performance
of the system by using hedonic coalition formation game,
which has not been applied to study the cooperative spectrum
sensing and channel access in CRNs. We present a complete
framework for the CRN, and propose algorithms for our CSSA
scheme.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model and the CSSA scheme.
The proposed cooperative multi-channel spectrum sensing and
channel access problem is modeled as a hedonic coalition
formation game in Section III. In Section IV, we present the
algorithms for coalition formation. In Section V, we discuss
the nontransferable utility (NTU) approach for the coalitional
formation game. Section VI presents the simulation results.
Conclusions are given in Section VII.

II. SYSTEM MODEL AND CSSA SCHEME

As shown in Fig. 1(a), we consider a CRN with one access
point (AP), M PUs, and N secondary transmitter-receiver (ST-
SR) pairs. In this paper, since the secondary transmitter (ST) is
responsible for spectrum sensing and data transmission, we use
the term ST and SU interchangeably. LetM = {1, . . . ,M} be
the set of PUs and N = {1, . . . , N} be the set of STs. Each
PUi, i ∈ M has its own licensed channel with bandwidth
Bi. Thus, there are M non-overlapped channels in total. The
M PUs are sending data to the AP. The N ST-SR pairs are



located in the same area as the PUs, where each STj , j ∈ N
seeks to exploit possible transmission opportunities in one of
the M channels of the PUs. We assume that each STj always
has data to send and no traffic requirement is imposed on the
STs. In other words, each STj transmits data in a best-effort
manner.

We consider a frame structure for periodic spectrum sens-
ing, where each time frame consists of one sensing subframe1

and one data transmission subframe2 as shown in the bottom
part in Fig. 1(a)-(c). We use T to denote the frame duration.
All SUs have the same spectrum sensing duration, and we use
δ, where 0 < δ ≤ T , to denote the spectrum sensing time of
the SUs. Therefore, the data transmission duration is T − δ.
Notice that in a practical system, a short duration between the
sensing and data transmission subframes is required for the
collection of the sensing results and the data fusion. However,
its duration is much shorter than the time required for sensing
and transmission. The received signal of the PUs is sampled
at sampling frequency fs at STj , ∀ j ∈ N . In addition, δ is a
multiple of 1/fs. Thus, the number of samples is δfs, which
is an integer. We also assume that T is a multiple of 1/fs.

We consider narrowband sensing, where each SU chooses
to sense one channel in each time frame. Let H1,i and H0,i

be the hypothesis that PUi, i ∈ M is active and inactive,
respectively. For j ∈ N , STj performs spectrum sensing
in the channel of PUi and determines the probabilities of
detection and false alarm. The probability of detection is the
probability of correctly detecting the appearance of PUi under
hypothesis H1,i (i.e., a busy channel is determined to be busy
correctly). The probability of false alarm is the probability of
falsely declaring the appearance of the primary signal under
hypothesisH0,i (i.e., an idle channel is determined to be busy).

We assume the noise in the channel of PUi, i ∈ M is an
independent and identically distributed (iid) random process
with zero mean and variance σ2

n,i. Given the power spectral
density N0, we have σ2

n,i = N0Bi. The primary signal of PUi
is an iid random process with zero mean and variance σ2

s,i.
The primary signal of PUi is independent of other primary
signals and the noise. We denote γi,j = |gi,j |2σ2

s,i/σ
2
n,i as the

received signal-to-noise ratio (SNR) of PUi, i ∈M measured
at STj , j ∈ N under the hypothesis H1,i, where |gi,j | is the
average channel gain of the link between PUi and STj in
channel i. We use ε to denote the detection threshold for all the
STs. We consider the circularly symmetric complex Gaussian
(CSCG) noise case. We also assume that the primary signal is
complex phase shift keying (PSK) modulated signal. With the
use of energy detection [6], [23], under hypothesis H0,i, the
probability of false alarm [9] in channel i ∈M by STj is

Pf,i,j(ε, δ, σ
2
n,i) = Pr(yj,i > ε |H0,i)

= Q

((
ε

σ2
n,i

− 1

)√
δfs

)
, (1)

1The duration of the sensing subframe δ is less than 15 ms when the
duration of each frame T is 100 ms [9], [22].

2During the data transmission subframe, the SU can transmit multiple
packets. When T is equal to 100 ms and δ is equal to 2.5 ms, the data
transmitted in the data transmission subframe is about 600 kbits [9].

where yj,i is the test statistic for energy detector of STj in
channel i, and Q is the complementary distribution function
of the standard Gaussian. If ε and δ are the same for all the
SUs, and the bandwidth Bi are the same for all the PUs, then
Pf,i,j(ε, δ, σ

2
n,i) are the same ∀ i ∈ M, ∀ j ∈ N . Moreover,

under hypothesis H1,i, the probability of detection in channel
i ∈M by STj , j ∈ N is

Pd,i,j(ε, δ, σ
2
n,i, γi,j) = Pr(yj,i > ε |H1,i)

= Q

((
ε

σ2
n,i

− γi,j − 1

)√
δfs

2γi,j + 1

)
.

(2)

It has been reported that the hidden node problem, deep
fading and shadowing can degrade the performance of local
spectrum sensing of individual SU [6], [24]. To overcome
this problem, cooperative spectrum sensing was proposed,
where the SUs combine their local sensing results. In our
system model, each SU first chooses to sense the channel
independently, and then sends its spectrum sensing result to
the decision node (DN) for that channel when the sensing time
δ expires. Among those STj , j ∈ N which choose to sense
channel i ∈ M, DNi is selected according to Algorithm 1,
which will be presented in Section IV. The DNi will combine
the sensing results of the SUs which choose to sense channel
i, and determine the status (i.e., busy or idle) of channel i.
We consider an example shown in Fig. 1, where there are
two channels and four ST-SR pairs. At the beginning of each
frame, as shown in Fig. 1(a), ST1 and ST2 start sensing the
channel of PU1 in channel 1, and ST3 and ST4 start sensing
the channel of PU2 in channel 2. In Fig. 1(b), ST1 and ST3
serve as the DN1 and DN2, respectively. Each SU will send
its spectrum sensing decision to the corresponding DNi when
its sensing time δ expires. The DNi makes the final spectrum
sensing decision for the channel i ∈M.

The decision node decides on the channel status based on
a decision fusion rule to combine the sensing results of the
SUs [9]. We consider k-out-of-n rule [25], where DN decides
the presence of primary activity if there are k or more SUs
that individually detect the presence of primary activity. For
k = 1, k = n, and k ≥ n/2, k-out-of-n rule becomes the
OR rule, AND rule, and majority rule, respectively [6]. We
assume that the local decisions made by the SUs in the same
channel are independent. Let Si be the set of SUs that choose
to sense and access channel i. We have Si ⊆ N , ∀ i ∈ M
and

⋃
i∈M Si = N . Since we assume that STj , ∀ j ∈ N

can choose to sense only one channel in each frame, we have
Si ∩ Sl = ∅, ∀ i, l ∈ M, i 6= l. Let Pf,i be the probability
of false alarm under the hypothesis H0,i, and let Pd,i be the
probability of detection under the hypothesis H1,i in channel
i ∈ M. As an example, when the OR rule (i.e., k = 1) is
used, they are given by

Pf,i = 1−
∏
j∈Si

(
1− Pf,i,j(ε, δ, σ2

n,i)
)
, (3)

Pd,i = 1−
∏
j∈Si

(
1− Pd,i,j(ε, δ, σ2

n,i, γi,j)
)
. (4)

For the channel i ∈M, we denote PH1,i
as the probability

that PUi is active, and PH0,i
as the probability that PUi



is silent. Therefore, we have PH1,i
+ PH0,i

= 1. If DNi
declares that PUi is active, then STj , ∀ j ∈ Si cannot transmit
data during the data transmission subframe. However, if DNi
declares that channel i is idle, then each STj , j ∈ Si has
a chance to access the channel i with equal probability. In
this way, the transmissions of the SUs do not interfere with
each other. Therefore, under the decision that channel i is
idle, one SU is chosen to transmit data among all the SUs
in Si. The transmission probability of STj , j ∈ Si is 1/|Si|,
and the transmission time is T − δ. As an example shown
in Fig. 1(c), ST1 and ST2 seek to access the channel of PU1

(solid arrows), and ST3 and ST4 seek to access the channel of
PU2 (dash arrows). If DNi declares that channel i is idle and
PUi is actually silent, then the secondary data transmission
in channel i will be successful. However, if DNi determines
that channel i is idle but PUi is actually active (i.e., a missed
detection), then the secondary data transmission in channel i
will interfere with PUi’s transmission. In this case, when the
collision of PUi’s packets is detected at the AP, we assume
that the SUs will be charged D0 > 0 by the AP at the
end of the data transmission subframe as a penalty for the
interference, where D0 can be chosen to map the level of the
performance degradation of the PU to the penalty value of the
SUs.

Given the system model and the CSSA scheme described
above, when the sensing duration δ is fixed, it is important
to determine which channel each SU should choose to sense
and access in order to achieve the optimal performance. In
the following sections, we will propose algorithms to solve
this spectrum sensing and access problem by using coalitional
game theory. Note that our algorithms can be applied directly
to a more general system model, which is not restricted to the
use of PSK modulated signal for transmission and the OR rule
for data fusion.

III. HEDONIC COALITION FORMATION GAME

In this section, we formulate the problem of multi-channel
energy-efficient cooperative spectrum sensing and access as a
hedonic coalition formation game. We apply the switch rule
for the SUs to make decisions on whether to join or leave a
coalition. We prove that the hedonic coalition formation game
always terminates at the final partition that is both Nash-stable
and individually stable.

A. Value Function and Utility Function

In our system model, there are M non-overlapped channels
and N SUs in the CRN. In order to exploit the possible
transmission opportunities in the M channels with different
channel conditions, each SU should carefully make its own
decision on which channel it should sense and access during
each time frame by taking into account both the sensing
accuracy and energy consumption. For the sensing accuracy,
it affects the amount of data transmitted by the SUs during
the data transmission subframe and the penalty charged by
the PUs for interfering with their transmission. For the energy
consumption of the SUs, it is an important design criterion for
spectrum sensing and data transmission in practice.

According to the CSSA scheme presented in Section II,
there are four different scenarios related to the activity of the
PUi and the decision of DNi in channel i ∈M. We present
the payoff, energy consumption, and the probability that each
scenario occurs as follows:

Scenario 1: PUi is silent and the decision made by DNi
is not a false alarm. In this scenario, STj , ∀ j ∈ Si transmits
data during the data transmission subframe successfully. Given
the signal transmit power Pt, the noise power σ2

n,i in channel
i, and the average channel gain |hj,i| of the link between the
ST-SR pair j in channel i, the transmission rate Rj,i of STj
can be modeled as [26]:

Rj,i = Bi log2

(
1 + |hj,i|2

Pt
σ2
n,i

)
. (5)

The payoff of set Si is defined as the reward (i.e., the
amount of data transmitted by the SUs in Si) minus the
penalty (i.e., the payment required by the SUs in Si for
interfering with PUi’s transmission) in the data transmission
subframe. Since the transmission of the SUs is successful
and the penalty is zero, the payoff of set Si is given by
v0|0,D(Si) =

∑
j∈Si

Rj,i

|Si| (T − δ). The energy consumption of
set Si is given by v0|0,E(Si) = Ps|Si|δ + Pt(T − δ), where
Ps is the sensing power of STj , ∀ j ∈ N . The terms Ps|Si|δ
and Pt(T − δ) represent the energy consumption for spectrum
sensing and data transmission, respectively. The probability
that scenario 1 will occur is P0|0,i = PH0,i(1− Pf,i).

Scenario 2: PUi is silent and the decision made by DNi
is a false alarm. In this scenario, since STj , ∀ j ∈ Si does
not transmit during the idle data transmission subframe, and
there is no interference with the PU, the payoff of set Si
is v1|0,D(Si) = 0, and the energy consumption of set Si is
v1|0,E(Si) = Ps|Si|δ. The probability that this scenario will
occur is P1|0,i = PH0,iPf,i.

Scenario 3: PUi is active and DNi fails to detect the
presence of the primary signal. In this scenario, both PUi
and STj , j ∈ Si transmit data during the data transmission
subframe, so they interfere with each other. We assume that
their transmitted packets are corrupted, so the reward is zero.
Thus, the payoff of set Si is v0|1,D(Si) = −D0(T − δ),
where D0 > 0 is the unit penalty per second for interfering
with the PU’s data transmission. Notice that the penalty term
D0(T − δ) is decreasing with the duration of the sensing
subframe δ. Besides, the energy consumption of set Si is
v0|1,E(Si) = Ps|Si|δ + Pt(T − δ), which is the same as that
in scenario 1. The probability that scenario 3 will occur is
P0|1,i = PH1,i

(1− Pd,i).
Scenario 4: PUi is active and DNi detects the presence of

the primary signal. In this scenario, STj , ∀ j ∈ Si does not
transmit data during the data transmission subframe. Since
the reward and penalty are both zero, the payoff of set Si
is v1|1,D(Si) = 0, and the energy consumption of set Si is
v1|1,E(Si) = Ps|Si|δ. The probability that scenario 4 will
occur is given by P1|1,i = PH1,i

Pd,i.

According to the above analysis for the four scenarios, the



expected payoff for set Si in each frame of duration T is

vD(Si) =
1∑
a=0

1∑
b=0

Pa|b,iva|b,D(Si)

= P0|0,i

∑
j∈Si

Rj,i

|Si|
(T − δ)− P0|1,iD0(T − δ). (6)

The expected energy consumption in set Si in each frame of
duration T is

vE(Si) =
1∑
a=0

1∑
b=0

Pa|b,iva|b,E(Si)

= Ps|Si|δ + (P0|0,i + P0|1,i)Pt(T − δ). (7)

We define the value function of set Si as the ratio of vD(Si)
to vE(Si), which represents the expected payoff achieved per
unit of energy consumed in set Si:

v(Si) ,
vD(Si)
vE(Si)

=

P0|0,i
∑
j∈Si

Rj,i(T − δ)− |Si|P0|1,iD0(T − δ)

|Si|
(
Ps|Si|δ + (P0|0,i + P0|1,i)Pt(T − δ)

) . (8)

In fact, by tuning the value D0 in the value function, different
degrees of tradeoff between the energy efficiency of the CSSA
scheme and the protection of the PU’s transmission can be
achieved. Specifically, when D0 = 0, v(Si) is equal to the
energy efficiency (i.e., the expected amount of data transmitted
by the SUs divided by the expected energy consumption) of
the CSSA scheme. On the other hand, when D0 is large,
more importance is placed on protecting the PU from the
interference of the SUs. Moreover, from (8), the value function
takes into account the sensing accuracy by considering the
sensing results related to false alarm (i.e., P0|0,i is related to
Pf,i) and detection (i.e., P0|1,i is related to Pd,i). The value of
v(∅) is chosen such that v(Si) > v(∅), ∀Si ⊆ N and Si 6= ∅.

Since all the SUs in set Si perform spectrum sensing and
access channel i with equal probability, they should receive
the same utility. The utility function of STj , ∀ j ∈ Si is thus
given by

xSij =
v(Si)
|Si|

. (9)

Given the M non-overlapped channels and N SUs in our
system model, each SU will make its own decision on which
channel it should sense and access during each time frame so
that it can achieve the best performance in terms of the utility
defined in (9). Notice that the utility of each player does not
correspond to a physical quantity that can be divided among
the players in a coalition. Rather, it represents a performance
metric that each player aims to optimize as in [21].

B. Hedonic Coalition Formation Analysis

Given the value function of set Si defined in (8) and the
utility function of each SU defined in (9), we formulate the
problem of multi-channel cooperative spectrum sensing and
channel access as a coalition formation game with transferable
utility (TU) [20] with the following basic elements:

• Players: The players of the coalition formation game are
the N SUs (i.e., STj , ∀ j ∈ N ).

• Strategies: The strategy of each SU is the licensed chan-
nel it chooses to sense and access (i.e., STj chooses a
licensed channel i ∈M).

• Utilities: The utility of each SU depends on which
coalition it belongs to, and it is defined in (9) (i.e., the
utility of STj in coalition Si is xSij ).

Using the terminology of coalitional game theory, we refer
to set Si as coalition i. Since there are M channels in the
CRN, there are M coalitions in the system, where each SU
joins one of the M coalitions. Since we consider that there
can only be one coalition in each channel, the coalitions are
in fact operating in different orthogonal channels. Thus, there
is no interference for SUs belonging to different coalitions.
The SUs are allowed to autonomously form coalitions in the
M channels in order to achieve higher utilities. Moreover, we
can show that this game is a hedonic coalition formation game
[27]. Before presenting its definition, we first introduce some
basic definitions which are commonly used in the coalition
formation games.

Definition 1: The set S = {S1, . . . ,SM} is a partition of
N if Si ∩ Sl = ∅, ∀ i, l ∈M, i 6= l and

⋃
i∈M Si = N .

A partition is also referred to as a coalition structure [20].
An example of a partition S is shown in Fig. 1, where N =
{1, 2, 3, 4}, S1 = {1, 2}, and S2 = {3, 4}. Therefore, the
set S = {{1, 2}, {3, 4}} is a partition of N .

Definition 2: For any player j ∈ N , a preference relation
�j is defined as a complete, reflexive and transitive binary
relation over the set of all coalitions that player j can possibly
form [27].

Since the SUs are allowed to autonomously form the
coalitions in the M channels, the above definition is used to
compare the preference of player j over different coalitions,
where player j is a member. Consequently, for player j ∈ N ,
given two coalitions S1 ⊆ N and S2 ⊆ N , S1 �j S2 indicates
that player j prefers to be a member of coalition S1 over to
be a member of coalition S2, or at least, player j prefers both
coalitions equally. Furthermore, S1 �j S2 indicates that player
j strictly prefers being a member of coalition S1 over being
a member of coalition S2. For evaluating the preferences of
STj , ∀ j ∈ N , we define the following operation

S1 �j S2 ⇔ Uj(S1) > Uj(S2), (10)

where S1 ⊆ N and S2 ⊆ N are any two coalitions that
contains STj . The preference function Uj(Si), j ∈ Si is
defined as

Uj(Si) =
{
xSij , Si /∈ h(j),
−∞, otherwise,

(11)

where xSij is defined in (9). h(j) is the history set of STj ,
which will be defined in Definition 5. According to the pref-
erence function defined in (11), the preference over different
coalitions for STj , ∀ j ∈ N is related to its utility function
defined in (9).

Given the set of players N and a preference relation �j for
every player j ∈ N , a hedonic coalition formation game is
defined as follows:



Definition 3: A hedonic coalition formation game is a
coalitional game that satisfies the following two conditions: 1)
The utility of any player depends solely on the members of the
coalition to which the player belongs; 2) The coalitions form
as a result of the preferences of the players over their possible
coalition set. Therefore, a hedonic coalition formation game
is defined by the pair (N ,�) where N is the set of players
and � is a profile of preferences defined for every player in
N .

The formulated game is a hedonic coalition formation game
as it satisfies the above conditions. First, from (9), the utility
function of STj , ∀ j ∈ Si depends only on the SUs in coalition
Si, i ∈ M. Second, the preference function of each SU is
defined in (11).

From the definitions of the preference relations of the SUs
in (10) and the preference function in (11), it is clear that
STj , ∀ j ∈ N would like to join a new coalition, which STj
has never been a member of, if and only if STj can obtain a
higher utility in this new coalition than ever before. Therefore,
we present the switch rule for coalition formation.

Definition 4: (Switch Rule) Given a partition S =
{S1, . . . ,SM}, STj , j ∈ Si decides to leave its current
coalition Si and join another coalition Sl where i 6= l, if and
only if Sl

⋃ {j} �j Si.
The switch rule provides a mechanism through which a SU

can leave its current coalition and join another coalition, given
that the new coalition is strictly preferred over the current
coalition. The switch rule can be viewed as a selfish decision
made by a player to move from its current coalition to a
new coalition, regardless of the effect of its move on the
other players. According to the switch rule, all the N SUs
can make decisions to automatically form coalitions in the
system. Thus, the partition of the (N ,�) hedonic coalition
formation game may change in each time frame. We define
the initial partition of the hedonic coalition formation game
as S(0) = {S(0)1 , . . . ,S(0)M }, and the partition at the r-th time
frame as S(r) = {S(r)1 , . . . ,S(r)M }. After each time frame
of duration T , the partition may change according to our
proposed switch rule. If S(r) = S(r−1), then there is no
switch operation during the r-th time frame. Otherwise, one SU
should move from its current coalition to another coalition in
the r-th time frame. Now, we present the definition of history
set h(j) of STj , which appeared in (11).

Definition 5: At the r-th time frame, the history set for
STj , j ∈ N is h(j) = {S(0)i0

, . . . ,S(r−1)ir−1
}, where we have iz ∈

M and j ∈ Siz at any time frame index z ∈ {0, 1, . . . , r−1}.
At the end of the r-th time frame, STj will update its history
set h(j) by including a new element S(r)ir

, where ir ∈M and
j ∈ Sir .

Proposition 1: If STj performs the switch rule in the r-th
time frame, which it leaves its previous coalition Si (denoted
as S(r−1)ir−1

) and joins another coalition Sl with i 6= l, the newly

formed coalition Sl
⋃ {j} (denoted as S(r)ir

) cannot be the
same with the previous coalition members in the history set
h(j). That is, we have Sl

⋃ {j} /∈ h(j) before the update of
h(j) at the end of the r-th time frame.

Proof: Suppose that we can find S(r)ir
= S(z)iz

, where
z ∈ {0, 1, . . . , r − 1} and S(z)iz

∈ h(j). Then, we have

x
S(r)
ir
j = x

S(z)
iz
j according to (9). However, according to the

definition of the switch rule, STj will perform the switch
operation if and only if the new coalition is strictly preferred
by STj over the previous coalition. Therefore, we have

x
S(r)
ir
j > x

S(z)
iz
j , which contradicts with our assumption. Thus,

the newly formed coalition S(r)ir
cannot be the same with any

of the previous coalitions S(z)iz
in the history set h(j).

Next, we will prove that there exists a stable partition in
our hedonic coalition formation game. Before presenting the
proof, we first define two types of stable partitions [19].

Definition 6: A partition S = {S1, . . . ,SM} is Nash-stable
if ∀ j ∈ Si with ∀ i ∈M, Si �j Sl

⋃ {j}, ∀ l ∈M.
In other words, a coalition partition S is Nash-stable if no

player has an incentive to move from its current coalition to
another coalition. Therefore, no player can obtain a higher
utility by performing the switch rule when the current partition
is Nash-stable. When a partition is Nash-stable, it implies that
it is individually stable [19] that there does not exist any
coalition, where a player strictly prefers to join, while the
other players in that coalition do not get hurt by the formation
of this new coalition.

Definition 7: A partition S = {S1, . . . ,SM} is individually
stable if there does not exist j ∈ Si with i ∈ M, and
a coalition Sl (l 6= i) such that Sl

⋃ {j} �j Si, and
Sl
⋃ {j} �k Sl for all k ∈ Sl.
Theorem 1: Starting from any initial partition S(0), all

the SUs will always converge to a final partition S∗ =
{S∗1 , . . . ,S∗M}, which is both Nash-stable and individually
stable.

Proof: Given any initial partition S(0), the hedonic
coalition formation consists of a sequence of switch oper-
ations. Therefore, there is a sequence of network partitions
{S(0),S(1),S(2), . . . ,S(r)} after r iterations. According to
Definition 4, a SU will achieve a higher utility in its new
coalition after each switch operation. From Proposition 1, we
know that each switch operation leads to a new partition which
has not been visited before. Given the number of channels M
and the number of SUs N in the CRN, the total number of
different partitions is MN , which is a finite number. Thus,
from any S(0), the switch operations will always terminate at
a point after a finite number of iterations, where the coalition
structure converges to the final partition S∗.

Suppose S∗ is not Nash-stable. According to Definition 6,
there exist some switch operations which can increase the
utility of one SU by moving this SU from its current coalition
to another coalition. The partition will be updated that S∗ is
not the final partition, which contradicts with our assumption.
Thus, the final partition S∗ must be Nash-stable. According
to [19], a Nash-stable partition is individually stable.

It should be noted that when the history sets are not used,
the partition still converges to stability, but at the expense of a
longer convergence time. In the next section, we will present
the coalition formation algorithms.



Algorithm 1 Decision node DNi selection algorithm in
channel i ∈M. The algorithm is executed by STj , ∀ j ∈ Si.

1: for iteration r := 1 to MAX do
2: STj broadcasts its measured SNR information γ(r)i,j and

transmission rate Rj,i to other secondary transmitters
STk, ∀ k ∈ S(r)i \{j}

3: STj receives the measured SNR information γ
(r)
i,k and

transmission rate Rk,i from other STk, ∀ k ∈ S(r)i \{j}
4: q := argmax

p∈S(r)
i
γ
(r)
i,p

5: DN
(r)
i := STq

6: end for

IV. ALGORITHMS FOR COALITION FORMATION

In this section, we describe how to implement the CSSA
scheme and the hedonic coalition formation game. We propose
a DN selection algorithm, and a coalition formation algorithm
based on the switch rule.

In order for the N SUs to play the hedonic coalition
formation game, two stages are involved. In stage one, the
AP gathers information about the number of PUs in the CRN,
the operating frequency, bandwidth Bi of PUi, ∀ i ∈ M,
the locations of the PUs, the transmit power of the PUs
σ2
s,i, ∀ i ∈ M, and channel models. Although the AP has

some information about the PUs, we assume that it does not
know exactly when the PUs will be active. Then, all the
SUs will communicate with the AP in order to obtain the
information of the PUs. The AP will set the initial partition
S(0) and convey this initial partition to all the SUs. The initial
partition is set as S(0)1 = N and S(0)l = ∅, ∀ l ∈ M\{1}. In
stage two, all the SUs will perform the switch operations until
the CRN converges to a final Nash-stable partition S∗, which
requires a total number of MAX iterations. Since the number
of channels M and the number of SUs N are both finite, if
the number of iterations MAX is large enough, the CRN can
always converge to a final Nash-stable partition S∗ according
to Theorem 1. At each time frame, only one SU can leave
its current coalition and move to another coalition in order to
obtain a higher utility. In this stage, Algorithm 1 is used for the
selection of DNi, ∀ i ∈ M, and Algorithm 2 is used for the
switch operations in coalition formation. After the coalition
structure converges to the final Nash-stable partition S∗, the
SUs will stay in their current coalitions in S∗ to sense and
access the channels according to our proposed CSSA scheme.

We first present an algorithm for the DN selection in each
coalition in Algorithm 1. We propose to choose the SU with
the highest detection probability, which is defined in (2), in
coalition Si as DNi. The reason is that the sensing results
can be corrupted due to transmission error when they are
sent by STj , j ∈ Si to DNi. If the SU with the highest
detection probability is chosen as the DN, the most reliable
sensing result from that SU is not required to be sent for
reporting, and it can thus be used in the decision fusion without
experiencing any corruption. Since DNi decides the status of
channel i, if PUi is active, the primary data transmission can
be protected by guaranteeing the most reliable sensing result

Algorithm 2 Coalition formation algorithm based on the
switch rule. It is executed by STj , ∀ j ∈ N .

1: Initialization: S(0)1 := N ; S(0)l := ∅, ∀ l ∈M\{1}
2: for iteration r := 1 to MAX do
3: S(r)i := S(r−1)i , where i ∈M and j ∈ S(r)i

4: STj generates θj , which is a Gaussian random variable
with mean 0 and variance 1

5: STj randomly selects another licensed channel αj such
that αj ∈M, αj 6= i

6: STj broadcasts the information of θj to other
STk, ∀ k ∈ N , k 6= j

7: STj receives the information of θk from other
STk, ∀ k ∈ N , k 6= j

8: m := argmaxw θw, ∀w ∈ N
9: if STj = STm then

10: STj computes xS
(r)
i
j := v(S(r)i )/|S(r)i |

11: S(r)i := S(r)i \{j}
12: STj requests and obtains the information of S(r)αj

from DN
(r)
αj

13: S(r)αj := S(r)αj

⋃{j}
14: if S(r)αj ∈ h(j) then
15: S(r)αj := S(r)αj \{j}
16: S(r)i := S(r)i

⋃{j}
17: else
18: STj computes x

S(r)
αj

j := v(S(r)αj )/|S(r)αj |
19: if x

S(r)
αj

j ≤ xS
(r)
i
j then

20: S(r)αj := S(r)αj \{j}
21: S(r)i := S(r)i

⋃{j}
22: end if
23: end if
24: end if
25: STj updates h(j) by adding its current coalition at the

end of h(j)
26: end for

is not corrupted, especially if the OR rule is used.
In the r-th iteration, Algorithm 1 is executed by STj , ∀ j ∈

Si in order to select DN (r)
i for channel i ∈ M. Since STj

determines which channel it should sense and access in each
frame, STj knows the value of i ∈ M. In the r-th iteration,
all the SUs in coalition S(r)i have to exchange their measured
SNR information in a dedicated error-free control channel
[28] (lines 2-3). Besides, the information of transmission rate
Rj,i is also exchanged in order to compute the utilities in
Algorithm 2. The SU with the highest measured SNR is
chosen as DN (r)

i (lines 4-5). Since Pd,i,j(ε, δ, σ2
n,i, γi,j) is an

increasing function of γi,j , we have the following proposition.
Proposition 2: The DNi selected by Algorithm 1 has the

highest detection probability in Si.
Next, we discuss the coalition formation based on the switch

rule in Algorithm 2, which is executed by STj , ∀ j ∈ N in
the r-th iteration. In each iteration, Algorithm 2 consists of
two phases: phase one (lines 3-8) and phase two (lines 9-25).



In phase one, one SU has to be selected, which is carried out
as follows. A random number is first generated by each SU
(line 4) and is broadcast in the dedicated control channel [28]
(lines 6-7). The SU with the largest random number is selected
(line 8) to perform the switch operation in phase two. At the
beginning of phase two, we assume that user STj ∈ S(r)i

and channel αj ∈ M, where αj 6= i (line 5), are selected.
STj will be temporarily switched from its current coalition
S(r)i to another coalition S(r)αj (lines 11-13). In line 12, STj
obtains information of S(r)αj from DN

(r)
αj , which include data

rates Rk,αj (∀ k ∈ S(r)αj ), coalition size |S(r)αj |, and statistics
Pd,αj , Pf,αj , and PH0,αj

. If STj has already been to S(r)αj

before (lines 14-17) or its achieved utility is reduced that

x
S(r)
αj

j ≤ x
S(r)
i
j (lines 19-22), then STj will be switched back

to its original coalition S(r)i (i.e., there is no net effect in the
partition in the r-th iteration). Otherwise, STj will remain in
coalition S(r)αj . After that, STj will update its history set h(j)
(line 25).

Our proposed algorithms are adaptive to changes in network
settings. When new PUs and SUs are deployed, existing PUs
and SUs are removed, or the wireless channel conditions are
changed, both stages one and two will be performed again in
order to find the new Nash-stable partition. In practice, these
two stages will be performed periodically for the CRN, where
changes in network settings may occur occasionally.

V. MODEL EXTENSION: HEDONIC COALITION
FORMATION GAME WITH NONTRANSFERABLE UTILITY

In this section, we extend the model considered in the
previous sections and consider the coalition formation game
under the nontransferable utility (NTU) framework. In Section
III, we present the cooperative setting, where a SU considers
the average data rate, penalty, and energy consumption of
the whole coalition in its utility function in (9). Thus, all the
users belonging to the same coalition receive the same utility,
and we can apply the coalition formation algorithm for TU
games. Alternatively, we consider the non-cooperative setting
[20] in this section, where a SU considers its individual data
rate, penalty, and energy consumption in its utility function.
The coalition formation problem is formulated under the
NTU framework. Specifically, in a NTU game, the value
v(Si) of coalition Si is a |Si|-dimensional real vector that
contains the utilities of all the players in the coalition. That
is, v(Si) = (xSij , ∀ j ∈ Si).

A. Utility Function

The payoff of player STj in Si is defined as the reward
(i.e., the amount of data transmitted by STj in Si) minus the
penalty (i.e., the payment required by STj in Si for interfering
with PUi’s transmission) in the data transmission subframe.
Similar to the analysis in Section III-A, we have four different
scenarios related to the activity of the PUi and the decision
of DNi in channel i ∈M.

Scenario 1: PUi is silent and the decision made by DNi
is not a false alarm. In this scenario, STj , ∀ j ∈ Si transmits
data during the data transmission subframe successfully. The

payoff of STj is given by xSi0|0,D,j = Rj,i(T − δ)/|Si|. The
energy consumption of STj is given by xSi0|0,E,j = Psδ +

Pt(T − δ)/|Si|.
Scenario 2: PUi is silent and the decision made by DNi is

a false alarm. In this scenario, since STj , ∀ j ∈ Si does not
transmit during the idle data transmission subframe, and there
is no interference with the PU. The payoff of STj is xSi1|0,D,j =
0, and the energy consumption of STj is xSi1|0,E,j = Psδ.

Scenario 3: PUi is active and DNi fails to detect the
presence of the primary signal. In this scenario, STj interferes
with PUi’s transmission. The payoff of STj is xSi0|1,D,j =

−D0(T − δ)/|Si|, and the energy consumption of STj is
xSi0|1,E,j = Psδ + Pt(T − δ)/|Si|.

Scenario 4: PUi is active and DNi detects the presence
of the primary signal. In this scenario, STj does not transmit
during the data transmission subframe. The payoff of STj is
xSi0|1,D,j = 0, and the energy consumption of STj is xSi0|1,E,j =
Psδ.

Combining the analysis of the above four scenarios, the
expected payoff of STj is given by

xSiD,j =
1∑
a=0

1∑
b=0

Pa|b,ix
Si
a|b,D,j . (12)

The expected energy consumption of STj is given by

xSiE,j =
1∑
a=0

1∑
b=0

Pa|b,ix
Si
a|b,E,j . (13)

The utility function of STj , ∀ j ∈ Si is thus given by

xSij =
xSiD,j
xSiE,j

=
P0|0,iRj,i(T − δ)− P0|1,iD0(T − δ)
Ps|Si|δ + (P0|0,i + P0|1,i)Pt(T − δ)

. (14)

From (14), the utility function of STj , ∀ j ∈ Si depends
only on the SUs in coalition Si, i ∈ M. By applying the
same preference function in (11), the NTU game described in
this section is still a hedonic coalition formation game from
Definition 3.

B. Coalition Formation Algorithm

Our proposed algorithms can be applied to the NTU setting
with minor modifications. Notice that the main difference
between the TU and NTU approaches is the definitions of
the utility functions for each SU as given by (9) and (14),
respectively. Therefore, we can still apply the switch rule to
update the network partition, and all the SUs will still converge
to the final partition S∗ = {S∗1 , . . . ,S∗M}, which is both Nash-
stable and individually stable [29]. Furthermore, we only need
to make minor changes to the proposed Algorithms 1 and 2
for decision node selection and coalition formation in the NTU
setting. Specifically, since we define the utility function of each
SU in a different way in our NTU approach, the information
of the transmission rate do not need to be exchanged in lines 2
and 3 of Algorithm 1. Also, in lines 10 and 18 of Algorithm 2,
the utility xSij should be computed as in (14). With these
modifications, our proposed hedonic coalition formation game
framework is applicable in the NTU setting.
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Fig. 2. An example of the Nash-stable partition (M = 2, N = 4). In this
example, ST1 and ST2 belong to coalition S1, while ST3 and ST4 belong
to coalition S2.

VI. PERFORMANCE EVALUATION

In this section, we first present the results for the conver-
gence of our algorithms. We then evaluate the performance
gain of our CSSA scheme over the closest PU (CPU) scheme,
where each SU chooses to sense the closest PU and joins that
coalition to perform cooperative sensing. We also compare the
CSSA scheme with the noncooperative spectrum sensing and
access (NSSA) scheme, where the SUs perform local spectrum
sensing only and do not combine their sensing results. Unless
specified otherwise, we consider that there are one AP, five
PUs (i.e., M = 5) and ten ST-SR pairs (i.e, N = 10). The
positions of each node are randomly placed in a 100 m ×
100 m square region. Notice that when M (or N ) increases,
the computational complexity of our algorithms is increased.
However, a promising feature of our algorithms is that the
average utility of the SUs improves in every iteration if the
network condition is fixed. The bandwidth of the primary
channel Bi is 10 MHz, ∀ i ∈ M. For all i ∈ M and j ∈ N ,
we model the average channel gain of the link between PUi
and STj as |gi,j |2 = 1/dγi,j , where di,j is the distance between
PUi and STj , and γ is the path loss exponent. Also, we model
the average channel gain of the link between STj and SRj as
|hj,i|2 = 1/dγj,i, where dj,i is the distance between STj and
SRj . We choose γ to be equal to 2. Other parameters used in
our simulations are as follows: the length of each time frame
T is 100 ms; the sampling frequency fs is 1 kHz; the transmit
power of each ST Pt is 10 mW; the sensing power of each
ST Ps is 10 mW; the detection threshold ε is 0.2 mW; the
noise power σ2

n,i is 0.1 mW for all i ∈ M. The probability
that PUi, i ∈ M is active is PH1,i

= PH1
= 0.8, ∀ i ∈ M.

We choose the sensing duration δ to be 5 ms and the unit
penalty per second D0 to be 100. We assume that the OR rule
is used for the data fusion. Each point is averaged over 100
independent simulation runs.

Fig. 2 shows an example of the Nash-stable partition. The
AP is deployed at the centre of the square region with two PUs
and four ST-SR pairs randomly placed. The nodes in the same
rectangle represent the SUs belonging to the same coalition.
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Fig. 3. The average utility of the SUs versus iteration index r (M = 5,
N = 10). We can see that Algorithm 2 converges quickly to a stable partition
again for both the CSSA and the NSSA schemes after the change in network
topology. The change in network topology at r = 2000 and r = 4000 are
due to the deployment of new PU and SUs, respectively.

From Fig. 2, we can see that ST1 and ST2 form a coalition
in the channel of PU1, while ST3 and ST4 form another
coalition in the channel of PU2. Therefore, the Nash-stable
partition is {{1, 2}, {3, 4}}. In this Nash-stable partition, since
ST1 and ST2 is closer to PU1 than to PU2, their probabilities
of detecting the activity of PU1 is higher than that of PU2.
Thus, they choose to sense and access the channel of PU1 in
the Nash-stable partition.

Fig. 3 shows the average utility of the SUs in each iteration
using our proposed algorithms for the CRN. We assume that
there is a new PU deployed in the CRN at r = 2000, and
there are four SUs deployed at r = 4000. After each of these
changes in the network topology, Algorithm 2 results in the
organization of the SUs that eventually converges to a new
Nash-stable partition. We can see that the average utility of
the SUs at the Nash-stable partition is increased when a new
PU joins the CRN, and decreased when four SUs join the
CRN. Moreover, we can see that the average utility of the SUs
achieved under the CSSA scheme is higher than that under the
NSSA scheme.

In Fig. 4, we show the average utility of the SUs obtained
by our algorithms versus the number of PUs M in the CRN
when N is equal to 10. Our results show that the performance
of CSSA is better than those of CPU and NSSA. For all
schemes, the average utility of the SUs first increases with
M , because the SUs can achieve higher utilities by utilizing
the spectrum when the spectrum resources are increased. As
for the CPU scheme, the SUs choose to sense the closest PU
and that corresponding coalition can be too crowded. Thus,
the performance of CPU is worse than CSSA. When M < 10
and N > M , the performance of CSSA is better than that of
NSSA due to the cooperative gain [6] of cooperative spectrum
sensing. When M ≥ 10, each SU will choose to sense and
access a different channel under CSSA and NSSA. Since there
is only one SU in one channel, the average utilities of the SUs
for both the CSSA scheme and the NSSA scheme are the same.
Beside, when M ≥ 10, the average utility of the SUs still
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Fig. 5. The average utility of the SUs versus the probability for PUs being
active PH1

(M = 5, N = 10).

increases with M . It is because each SU may have a better
choice of channels when there are more available channels
in the CRN. When M is large, increasing M further will
not improve the spectrum utilization too much, because the
number of SUs is limited and the additional spectrum cannot
be utilized by the SUs.

In Fig. 5, we show the average utility of the SUs versus the
probability that PUs being active PH1 . Our results show that
the performance of CSSA is better than CPU and NSSA. We
can see the performance gap between CSSA and CPU does not
change too much with PH1

, but the performance gap between
CSSA and NSSA increases with PH1 . When PH1 is small
such that the channels are not often occupied by the PUs,
the improved sensing accuracy due to cooperative spectrum
sensing is not significant as the channels are vacant for most
of the time. When PH1

increases so that the PUs occupy the
channels more frequently, the improved sensing accuracy by
applying cooperative spectrum sensing helps the SUs detect
the activities of the PUs correctly. Thus, the SUs pay less
penalty for interfering the PUs’ transmission and makes an
effective use of the energy that has been consumed for sensing.
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Fig. 6. The average utility of the SUs versus the unit penalty per second
D0 (M = 5, N = 10).
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Fig. 7. The average utility of the SUs versus the sensing duration δ (M = 5,
N = 10, T = 100 ms).

In Fig. 6, we show the average utility of the SUs obtained
by the proposed algorithms versus the unit penalty D0. Our
results show that the performance of CSSA is better than CPU
and NSSA. When D0 is increased, the average utility of the
SUs is decreased under all schemes. However, the rate of
reduction of the average utility with D0 for CSSA is much
smaller so the performance gap between CSSA and the other
two schemes increases with D0. The reason is that when D0

is large, each SU is incurred with a larger penalty if there
is a missed detection. Since the probability of detection of
the CSSA is higher than those of CPU and NSSA, therefore,
the average utility of the SUs for CSSA will not decrease as
significantly as CPU and NSSA when D0 is increased.

In Fig. 7, we show the average utility of the SUs versus the
sensing duration δ. Our results show that the CSSA scheme
performs better than the CPU and NSSA schemes. Besides, for
all three schemes, the average utility of the SUs first increases
with δ, and then decreases with δ after reaching the optimum
point. Therefore, there exists an optimal sensing duration for
our proposed CSSA scheme, which is similar to the result in
[9].



VII. CONCLUSIONS

In this paper, we studied cooperative spectrum sensing and
channel access in a CRN with multiple licensed channels. We
proposed a CSSA scheme and formulated the multi-channel
spectrum sensing and channel access problem as a hedonic
coalition formation game. The value function of each coalition
and the utility function of each SU consider both the sensing
accuracy and energy consumption. We proposed algorithms to
find a Nash-stable partition, where no SU has the incentive
to perform the switch operation in order to achieve a higher
utility. Simulation results showed that the performance of our
CSSA scheme is better than that of the CPU and NSSA
schemes. Besides, the results showed that our algorithms result
in the organization of the SUs that achieves a higher average
utility of the SUs after each iteration, and that there is a Nash-
stable partition for our formulated hedonic coalition formation
game. Furthermore, the algorithms enable the SUs to adapt
to changes in network conditions. For future work, we will
extend our hedonic coalition formation game to a more general
setting, where each SU can choose its sensing duration as part
of its strategy.
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