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Abstract—In this paper, we study the problem of random
access with interference pricing in wireless ad hoc networks using
non-cooperative game theory. While most of the previous works
in random access games are based on the protocol model, we
analyze the game under the more accurate signal-to-interference-
plus-noise-ratio (SINR) model. First, under the setting with fixed
interference linear pricing, we characterize the existence of the
Nash equilibrium (NE) in the random access game. In particular,
when the utility functions of all the players satisfy a risk aversion
condition, we show that the game is a S-modular game and
characterize the convergence of the strategy profile to the NE.
Then, under the setting with adaptive interference linear pricing,
we propose an iterative algorithm that aims to solve the network
utility maximization (NUM) problem. Convergence of the solution
to a Karush-Kuhn-Tucker (KKT) point of the NUM problem is
studied. It can be shown that the solution obtained under the
protocol model may result in starvation for some users due to the
inaccurate interference pricing. Simulation results show that our
proposed algorithm based on the SINR model achieves a higher
average utility than the algorithm based on the protocol model
and a carrier sense multiple access (CSMA) scheme implemented
in a slotted time system.

Index Terms—Medium access control (MAC), random access,
SINR model, non-cooperative game theory, S-modular game,
network utility maximization, interference pricing.

I. INTRODUCTION

IN a wireless ad hoc network, a medium access control
(MAC) protocol is used to coordinate the access of the

users to the shared wireless medium. In general, there are
two main classes of MAC protocols: scheduling and random
access. In a scheduling-based MAC, the transmissions of the
users are scheduled orderly in an attempt to prevent packet
collisions among the users. In a random access MAC, the users
need to contend for the channel for transmission. In this paper,
we focus on random access MAC protocols because of their
scalability and flexibility. Due to the contention nature of the
random access protocols, it is important to study the interac-
tion of multiple rational users with strategic interdependence
[1], where the utility of a user depends on both its own action
and the actions of the other users.
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Game theory is a useful tool in analyzing the strategic
behavior of users with self-interest in various random access
problems. In [2], Cagalj et al. modeled carrier sense multiple
access with collision avoidance (CSMA/CA) using game the-
ory. Both normal-form and repeated-form CSMA/CA games
were formulated and the existence of a Nash equilibrium (NE)
was shown. In [3], game theory was applied to analyze the
behaviour of selfish nodes in a one-shot random access game.
Necessary and sufficient conditions for the NE were proposed,
and the asymptotic properties of the system were studied. In
[4], Cui et al. proposed a comprehensive framework to study
non-cooperative random access games. The Nash equilibria
were characterized for various settings and distributed algo-
rithms were proposed. In [5], a cartel maintenance repeated
game framework was proposed. A trigger-punishment rule
was designed so that it is always in each user’s best interest
to cooperate. Yang et al. in [6] and [7] studied distributed
random access for wireless ad hoc network with pricing
based on non-cooperative game theory. The convergence and
uniqueness of the NE were analyzed. Long et al. in [8]
formulated a non-cooperative game for random access and
power control in wireless ad hoc networks. An asynchronous
distributed algorithm was proposed that converges to the NE
globally. Lee et al. in [9] reverse-engineered an exponential
backoff random access protocol. They showed that each user is
implicitly participating in a non-cooperative game by adjusting
its transmission probability to maximize its utility function.
Chen et al. in [10] proposed an analytical framework for
random access using game theory. Distributed algorithms were
proposed to achieve the NE.

In the analysis of the MAC protocols using game theory
in [4], [6], [7], [9], [10], the protocol model [11] is used to
account for the effect of multi-user interference. Under the
protocol model, a transmission is successful if the receiver is
within the transmission range of its intended transmitter and
outside the interference range of other transmitters. However,
in reality, the interference at the receiver is the cumulative
power received from other nodes that are concurrently trans-
mitting. As a result, the signal-to-interference-plus-noise-ratio
(SINR) model [11] characterizes the effect of interference
more accurately than the protocol model, which is based on a
simplifying assumption on the multi-user interference. Under
the SINR model, a transmission is successful if and only if the
SINR at the intended receiver is above a predefined threshold
that depends on the transmit power, adopted modulation and
coding schemes. Despite its higher complexity, some recent
works in contention-based random access [12]–[14] have
adopted the SINR model due to its higher practicality and



accuracy in modeling.
In this work, we consider the random access problem in

a wireless ad hoc network with linear interference pricing,
which is a form of congestion pricing that encourages the
efficient use of the network resources [15]–[17]. In a network
with a very low level of congestion, the bandwidth is often
under-utilized. However, on the other extreme when the level
of congestion is high, serious service degradation will result.
By incurring an appropriate interference price on each user
which is proportional to its transmission probability, we aim
to maximize the aggregate utility of all the users and maintain
the level of congestion at a satisfactory level. It should be noted
that the interference pricing is a linear term that is similar to
the energy cost studied in the previous literature [18]–[20].

In the first part of the paper, we consider the setting with
fixed linear interference pricing. We study the interactions
of the rational users, who have perfect information on some
parameters of the other users, using non-cooperative game
theory and prove the existence of the NE. In particular, if all
the users satisfy a risk aversion condition, then we can prove
that the random access game is a S-modular game [21] (i.e.,
a supermodular game or a submodular game [22]) under the
SINR model. In the second part of the paper, we consider the
setting with adaptive linear interference pricing. We propose
an iterative interference pricing scheme that aims to solve the
network utility maximization (NUM) problem based on the
Karush-Kuhn-Tucker (KKT) conditions.

In summary, the contributions of our work are as follows:
• We characterize the existence of the NE in the random

access game with fixed interference pricing under the
SINR model.

• We extend the previous results in [4], [6], [7] on super-
modular random access game under the protocol model
to the S-modular game under the more accurate SINR
model.

• We present an adaptive interference pricing scheme for
the random access game, where the solution converges to
a KKT point of the NUM problem.

• Simulation results show that our proposed algorithm
based on the SINR model achieves a higher average
utility than that based on the protocol model and a CSMA
scheme.

The framework that we present in this paper is unique
compared to the prior work in random access game. Although
some previous works have shown that the random access game
is either a supermodular game in [4], [6], [7] or a submodular
game [9] under the protocol model, we extend their results
to a more general model, which includes both the SINR and
protocol models, and consider the S-modular game. For the
interference pricing scheme, it should be noted that a similar
approach has been applied in [23] to study the power control
problem, and in [6] to study the random access problem under
the protocol model. In contrast, we consider the random access
problem under the SINR model. Moreover, it was proved in
[23] that the game is still a supermodular game when the price
is adaptive, so that the convergence of the best response update
is guaranteed. However, in the random access setting in this
paper, it can be shown that the game is not a supermodular
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Fig. 1. A wireless ad hoc network with a set of users N = {1, 2, 3}, where
the triangles and circles represent the transmitters and receivers, respectively.
pi denotes the transmission probability of user i. The protocol model suggests
that users 2 and 3 do not interfere with user 1. However, the SINR model
reveals that the simultaneous transmissions by users 2 and 3 will interfere
with user 1, which is not taken into account in the protocol model.

game when the adaptive pricing is used. Thus, the convergence
of the solution to a fixed point is not obvious. For the NUM
problem, although a similar problem has been considered in
[13], [14], these works obtained the near-optimal solution
of the NUM problem by successive convex optimization. In
contrast, we consider a different solution approach in this
paper by applying the iterative interference price update in
the random access game.

The rest of the paper is organized as follows. The system
model is described in Section II. We study the interactions
of the rational users with fixed interference pricing in Section
III. In Section IV, we propose an adaptive interference pricing
scheme that aims to maximize the aggregate utility. Simulation
results are presented in Section V. Conclusions and future
work are given in Section VI.

II. SYSTEM MODEL

Consider a wireless ad hoc network with several nodes lo-
cated in a neighbourhood, the transmission between the trans-
mitter (source) and the receiver (destination) is within one-
hop. We define N as the set of one-hop transmitter/receiver
pairs or links in the wireless network, and we refer to each
transmitter/receiver pair as a user. The total number of users is
N= |N |. However, it should be noted that not all the nodes are
one-hop neighbours to each other as shown in Fig. 1. We adopt
a slotted MAC protocol, where time is divided into equal time
slots. The users attempt to access the shared channel at the
beginning of each time slot according to their transmission
probabilities in each channel. That is, each user i ∈ N
can access the wireless channel with a certain transmission
probability pi ∈ Pi = {p | pmini ≤ p ≤ pmaxi }. We define a
transmission probability vector p = (pi, ∀ i ∈ N ).

For the SINR model, if user i ∈ N chooses to transmit, then
the SINR at receiver i is given by

θi =
PiGii
Ii + ni

, (1)

where Pi is the transmit power of user i, and we assume that
it is fixed. Gij is the channel gain from the transmitter of user
i to the receiver of user j. Ii and ni are the interference and



noise powers received by user i, respectively. The communi-
cation of user i is successful if

θi ≥ θthi ⇔ Ii ≤
PiGii
θthi

− ni, (2)

where θthi is the SINR threshold.
Let Ni be the power set (i.e., the set of all subsets)

of N\{i}. As an example, for N = {1, 2, 3}, N2 =
{{}, {1}, {3}, {1, 3}}. Assuming that the transmit powers
(Pi, ∀ i ∈ N ) are fixed, we define Mi as a set where each
element is a set of users that can transmit simultaneously with
user i without affecting the reception of receiver i (i.e., θthi
can be achieved). The set Mi obtained with the SINR model
is given by

Mi,SINR =
{
M∈ Ni

∣∣∣ ∑
m∈M

PmGmi ≤
PiGii
θthi

− ni
}
. (3)

Under the protocol model, user m is an interferer or one-
hop neighbour to user i if the SINR due to the interference
from user m only is below the SINR threshold. That is,

PiGii
PmGmi + ni

< θthi . (4)

Let Ii =
{
m ∈ N\{i}

∣∣∣ PiGii
PmGmi+ni

< θthi

}
be the set of

interferers of user i. Notice that any subset of users in N\(Ii∪
{i}) is an element of Mi obtained with the protocol model.
Thus, we have

Mi,PTC =
{
M∈ Ni

∣∣∣PmGmi ≤ PiGii
θthi

− ni,∀m ∈M
}
.

(5)
It should be noted that the protocol model we use in this paper
is slightly different from that in [11], where a transmission is
successful if the receiver is within the transmission range of
its intended transmitter and outside the interference range of
the other transmitters.

Let p−i = (p1, . . . , pi−1, pi+1, . . . , pN ) ∈ P−i = P1 ×
· · · × Pi−1 ×Pi+1 × · · · × PN . The average data rate of user
i is given by

ri(p,Mi) = µipiSi(p−i), (6)

where

Si(p−i) =
∑
M∈Mi

( ∏
m∈M

pm

)( ∏
k∈N\M,k 6=i

(1− pk)

)
. (7)

Si(p−i) represents the conditional probability of successful
transmission of user i given that user i transmits. We assume
that user i is transmitting with the fixed data rate µi =
W log2(1 + θthi ), where W is the channel bandwidth. That
is, the packet reception at receiver i is successful if and only
if the achieved SINR is no less than θthi . For the rest of the
paper, we assume that sets Mi in (3) and (5) are given, so we
write ri(p,Mi) in (6) as ri(p) for simplicity.

Let Ui
(
ri(p)

)
be the utility function of user i ∈ N , which

is an increasing, strictly concave, and twice continuously
differentiable function in ri(p). We further assume that the
utility function Ui

(
ri(p)

)
is bounded for ∀p ∈ P,∀ i ∈ N ,

where P = P1 × P2 × · · · × PN . An example of the utility
function is the α-fair function [24] defined as

Ui(ri)=

{
(1− αi)−1r1−αii , if αi ∈ [0, 1) ∪ (1,∞),

ln ri, if αi = 1,
∀ i ∈ N .

(8)
Without proper coordination, the dominant strategy of a

rational user i ∈ N is to set pi = pmaxi in order to maximize
its utility Ui

(
ri(p)

)
. If every rational user is following this

strategy, then the average data rate of every user may be
zero in some cases. Thus, the system may need to coordinate
the transmission. In this paper, we consider the use of the
interference pricing on the transmission probabilities of the
users to manage the level of interference. Specifically, we
assume that the system charges user i a linear price ci ≥ 0,
which is proportional to its transmission probability pi, but is
independent of the transmission probabilities p−i of the other
users. In fact, it is possible for the system to estimate p by
listening to the shared wireless medium and learning from the
contention history of the users [25] in order to implement the
pricing scheme. Thus, the surplus (i.e., utility minus payment)
of user i is given by

σi(p, ci) = Ui
(
ri(p)

)
− cipi. (9)

In this paper, we assume that user i needs to obtain perfect
information on some parameters, which include µi, ci, Mi, and
p−i, to update its transmission probability pi. To obtain this
information, we assume that receiver i and the system send the
values of data rate µi and price ci to transmitter i, respectively.
Moreover, each user m broadcasts its transmission probability
pm, transmit power Pm, received noise power nm, and position
to the other users using broadcast protocols, such as limited-
scope message flooding [26], such that user i can determine
p−i and Mi. Since this information has to be broadcast by each
user, the signalling overhead grows linearly with the number
of users N .

In the following section, we consider the setting where the
prices c = (ci, ∀ i ∈ N ) are fixed. We model the interactions
of the users as a random access game, and characterize the
existence of the NE. In Section IV, in order to achieve
the maximum aggregate utility of the users, we propose an
adaptive pricing scheme for the system to dynamically adjust
its prices for the random access game.

III. NON-COOPERATIVE RANDOM ACCESS GAME WITH
FIXED INTERFERENCE PRICING

In this section, we assume that the prices c of all the users
are fixed. We study the interactions of the rational users in
a random access game using non-cooperative game theory.
In particular, we study the existence, uniqueness, equilibrium
selection, and efficiency of the NE [22]. We also consider a
special case of the random access game that can be modeled
as a S-modular game [21], [27], [28]. Notice that we use the
terms users and players interchangeably.

Specifically, we consider a random access game G =
(N ,P,σ) in normal-form, where N is the set of users.
P = P1 × P2 × · · · × PN is the Cartesian product of the
action sets of all the users, where Pi is the action set of user i.



σ(p, c) =
(
σ1(p, c1), σ2(p, c2), . . . , σN (p, cN )

)
is the vector

of surplus functions of all the users.

A. General Case

We define the best response of user i ∈ N as the trans-
mission probability pi that maximizes its surplus when the
transmission probabilities p−i and price ci are given. That is,

BRi(p−i, ci) = arg max
pi∈Pi

σi(p, ci)

= arg max
pi∈Pi

Ui
(
ri(pi,p−i)

)
− cipi.

(10)

Then, we define the NE1as the intersection of the best response
correspondence of all the players.

Definition 1: A strategy p∗ is a NE of game G if

σi(p
∗
i ,p
∗
−i, ci) ≥ σi(pi,p∗−i, ci), ∀ pi ∈ Pi,∀ i ∈ N . (11)

In the general case with increasing and strictly concave
utility functions, we can prove the existence of the NE in
random access game G.

Theorem 1: Game G has at least one NE.
Proof: First, notice that Pi is a non-empty, convex, and

compact subset of a finite-dimensional Euclidean space for all
i ∈ N . Moreover, the surplus function σi(p, ci) is continuous
in p for all i ∈ N , and it is concave (and thus quasi-
concave) in pi for all i ∈ N . From the theorem due to Debreu,
Glicksburg, and Fan [29, pp. 39], game G has at least one NE.

Theorem 2: The NE p∗ of game G is characterized by

p∗i =

[
1

µiSi(p∗−i)
U
′−1
i

(
ci

µiSi(p∗−i)

)]pmaxi

pmini

, ∀ i ∈ N (12)

where [z]yw = min{max{z, w}, y} and U ′i(ri) is the first
derivative of Ui(ri).

Proof: Because problem (10) is a convex optimization
problem, when p−i = p∗−i is given, the optimal solution of
problem (10) is given by (12). From Definition 1, p∗ is the
NE of game G.

The following result is immediate from Theorem 2.
Corollary 1: With α-fair utility functions defined in (8), the

NE p∗ of game G is given by

p∗i =

[
αi

√
1

ci
(
µiSi(p∗−i)

)αi−1
]pmaxi

pmini

, ∀ i ∈ N . (13)

In particular, if αi = 1, ∀ i ∈ N , then the unique NE is given
by p∗i = [1/ci]

pmaxi

pmini
, ∀ i ∈ N .

Although we can prove the existence of the NE in the
general case, the convergence of the strategy profile to a NE
is not guaranteed in general [10]. In the next section, we will
focus on a special case that be modeled as a S-modular game
with nice convergence properties.

1For conciseness, pure strategy NE is simply referred to as NE in this paper.

B. Special Case: S-modular Game

In this section, we consider a special case of the random
access game that can be modeled either as a supermodular
game or as a submodular game. Although some of the results
have been proved under the protocol model, we show that they
still hold under a more general model that includes both the
SINR and protocol models.

First, we define the coefficient of relative risk aversion
(CRRA) [1] of utility function Ui(ri) as

χi = −riU
′′
i (ri)

U ′i(ri)
, (14)

where U ′′i (ri) is the second derivative of Ui(ri). χi measures
the relative concavity of the utility function. Since Pi =
[pmini , pmaxi ] is a single dimensional compact subset of R
and σi(p, ci) is continuous in p, a supermodular game and
a submodular game are defined as follows [27], [28]:

Definition 2: Random access game G is a supermodular
game if σi(p, ci) has an increasing difference in (pi,p−i) on
Pi × P−i, ∀ i ∈ N . That is,

∂2σi(p, ci)

∂pi∂pj
≥ 0, ∀ j ∈ N\{i}, i ∈ N . (15)

Conversely, random access game G is a submodular game
if σi(p, ci) has a decreasing difference in (pi,p−i) on Pi ×
P−i, ∀ i ∈ N , where the inverse inequality in (15) holds.

1) Supermodular Game: The following results show that
game G is a supermodular game if the CRRA of the utility
functions of all the players are larger than or equal to one.
It includes the case when all the users have α-fair functions
in (8) with parameters αi ≥ 1. Previous works in [4], [6], [7]
have shown that the random access game considered under the
protocol model is a supermodular game. By representing the
data rate of user i in the form of (6) and capturing the con-
tention relationships of user i using set Mi, the generalization
of the previous result to the general model, which includes
both the protocol and SINR models, is greatly simplified.

Theorem 3: If the CRRA of user i is greater than or equal
to one ∀ i ∈ N , then game G is a supermodular game.

Proof: First, we will show that if χi ≥ 1, then the utility
function Ui

(
ri(p)

)
has an increasing difference in (pi,p−i)

on Pi × P−i. That is,
∂2Ui

(
ri(p)

)
∂pi∂pj

≥ 0, ∀ j ∈ N\{i}. Let
i ∈ N and j ∈ N\{i} be given. From (6), since ri(p) =
µipiSi(p−i), we have

∂Ui
(
ri(p)

)
∂pi

= µiU
′
i

(
ri(p)

)
Si(p−i), (16)

and

∂2Ui
(
ri(p)

)
∂pi∂pj

= µi
∂Si(p−i)

∂pj

[
ri(p)U ′′i

(
ri(p)

)
+ U ′i

(
ri(p)

)]
.

(17)
In the random access setting, since Si(p−i) is inversely
proportional to pj , we have ∂Si(p−i)

∂pj
≤ 0. (Please refer to

(28) and (29) in the proof of Lemma 2 for the detailed math-
ematical proof.) Also, χi ≥ 1 implies that ri(p)U ′′i

(
ri(p)

)
+

U ′i
(
ri(p)

)
≤ 0. Thus, we have

∂2Ui

(
ri(p)

)
∂pi∂pj

≥ 0. Since



∂2σi(p,ci)
∂pi∂pj

=
∂2Ui

(
ri(p)

)
∂pi∂pj

, ∀ j ∈ N\{i}, ∀ i ∈ N , by Defi-
nition 2, the result follows.

Next, we study the convergence of the supermodular game.
Let T be the set of all the time slots when random access
game G is played. Let Ti ⊆ T be the time slots that player
i ∈ N updates its transmission probability. In other words,
player i plays game G at time t ∈ Ti. The best response
update of player i is the update of transmission probability pi
that maximizes the surplus function σi(p, ci) in (9) given the
transmission probabilities p−i(t) of the other players at time
t. Specifically, it is given by

pi(t+1)=

 arg max
pmini ≤pi≤pmaxi

[
Ui
(
ri(pi,p−i(t))

)
−cipi

]
, if t ∈Ti,

pi(t), otherwise.
(18)

For a sequential best response update, the players update
one by one in a round-robin manner. In this way, we have Ti∩
Tj = ∅, ∀ i, j ∈ N , i 6= j. In contrast, for a simultaneous best
response update, the players update at the same time such that
Ti = Tj , ∀ i, j ∈ N , i 6= j. It should be noted that transmitter
i needs to obtain the value of data rate µi from receiver i, price
ci from the system, and p−i(t) from the other users to update
its transmission probability pi(t + 1). Let PNE be the set of
NE of game G. The following theorem characterizes the NE
and the monotone convergence properties of a supermodular
game in general.

Theorem 4: In a supermodular game G, (a) The set of NE
PNE is non-empty. (b) Set PNE has the smallest p

NE
and

the largest element p̄NE , where p
NE

, p̄NE ∈ PNE . That is,
if p ∈ PNE , then p

NE
� p � p̄NE . (c) With the sequential

or simultaneous best response update, at time t = 1, if the
starting points p(1) = pmin or p(1) = pmax are chosen, then
the strategy profiles converge monotonically to p

NE
or p̄NE ,

respectively.
Proof: The proofs of (a) and (b) are due to [27]. For (c),

since we assume that the utility functions are strictly concave,
the best response of each user (i.e., the optimal solution of
problem (10)) is a singleton, and the result thus follows from
[27, Theorems 4.3.2 and 4.3.4] and [30].

For (b), it should be noted that the converse is not neces-
sarily true. That is, if p

NE
� p � p̄NE , it is possible that

p /∈ PNE .
The following result establishes that p

NE
is the Pareto-

dominant equilibrium that each user achieves the highest
surplus in set PNE . It can be shown that the previous results
in [4], [7] under the protocol model are also applicable to our
more general model that includes both the SINR and protocol
models, and we omit the proof.

Theorem 5: In a supermodular random access game G,
p
NE

is the Pareto-dominant equilibrium in PNE . That is,
σi(pNE , ci) ≥ σi(p, ci), ∀p ∈ PNE ,∀ i ∈ N .

2) Submodular Game: Similar to Theorem 3, game G is a
submodular game if the CRRA of the utility functions of all
the players are between zero and one. It includes the α-fair
functions in (8) with parameters 0 < αi < 1 and the utility
function θi log(1 + ri) with parameter θi ≥ 0 [23].

Theorem 6: If 0 < χi < 1, ∀ i ∈ N , then game G is a
submodular game.

In general, the submodular games do not possess the
monotone convergence results as in the supermodular games.
Nevertheless, we can characterize the convergence of the
strategy profile in the submodular games with the simultaneous
best response update.

Theorem 7: In a submodular game, with the simultaneous
best response update, at time t = 1, if p(1) = pmin, then (a)
The strategy profile converges to two limits, p̂ and p̌. That is,
as t→∞, we have p(2t+ 1)→ p̂ and p(2t)→ p̌. (b) When
the two limits coincide such that p̂ = p̌, then p̂ is the NE.

Proof: Notice that the strategy space Pi of player i is
independent of p−i. Using similar arguments as in the proof of
[21, Theorem 5.1], two monotone sequences will be generated.

It should be noted that Theorem 4 is related to the properties
of a supermodular game, where we leverage on the results
in [27], [30]. For Theorem 7, although a similar technique
has been applied in [31] to analyze a submodular game, we
consider a different system model and utility function.

IV. NETWORK UTILITY MAXIMIZATION WITH ADAPTIVE
INTERFERENCE PRICING

In this section, we study how the interference prices c
should be adjusted adaptively for game G to achieve maximum
network aggregate utility. Specifically, we consider that the
system aims to solve the NUM problem

maximize
p

∑
i∈N

Ui
(
ri(p)

)
subject to pmini ≤ pi ≤ pmaxi , ∀ i ∈ N .

(19)

Due to the product form of the variables in (6), problem (19)
is non-convex, even if the utility functions are concave. As a
result, problem (19) is difficult to solve in general.

Let νi and λi be the Lagrange multipliers associated with
the constraints pmini ≤ pi and pi ≤ pmaxi , respectively.
We have the following KKT conditions on the local optimal
solution of problem (19).

Lemma 1: For a local optimal solution p∗ of problem (19),
there exist unique Lagrange multipliers λ∗i , ν

∗
i , ∀ i ∈ N such

that

pmini ≤ p∗i ≤ pmaxi and λ∗i , ν
∗
i ≥ 0, ∀ i ∈ N , (20)

ν∗i (p∗i − pmini ) = 0 and λ∗i (p
max
i − p∗i ) = 0, ∀ i ∈ N ,

(21)
∂Ui

(
ri(p

∗)
)

∂pi
+

∑
j∈N\{i}

∂Uj
(
rj(p

∗)
)

∂pi
+ν∗i −λ∗i = 0,∀ i ∈ N .

(22)
Proof: The result follows directly from [32, pp. 316].

Motivated by the above KKT conditions, we propose the
following pricing scheme for the users to solve problem (19).
Let θi,j be the price that user i ∈ N has to pay for generating
interference to user j ∈ N , which is defined as

θi,j(p) , −
∂Uj

(
rj(p)

)
∂pi

. (23)



In fact, price θi,j(p) represents the marginal increase in utility
of user j per unit decrease in the transmission probability
of user i. As a result, user i aims to maximize its surplus,
which is equal to its utility minus the total payments. Let
θi = (θi,j ,∀ j ∈ N\{i}). User i aims to solve the following
optimization problem when p−i and θi are fixed.

maximize
pi

Ui
(
ri(p)

)
− pi

∑
j∈N\{i}

θi,j

subject to pmini ≤ pi ≤ pmaxi .

(24)

Since the objective function is concave and the constraint
is linear, problem (24) is a convex optimization problem.
Moreover, notice that when ci =

∑
j∈N\{i} θi,j , ∀ i ∈ N are

chosen, problems (10) and (24) are identical. Thus, we can
use this pricing scheme for game G in an attempt to solve the
NUM problem (19).

Let S̃j,i =
{
S
∣∣∣S ∈ N\{j, i},S ∈Mj ,S ∪{i} ∈Mj

}
and

Ŝj,i =
{
S
∣∣∣S ∈ N\{j, i},S ∈ Mj ,S ∪ {i} /∈ Mj

}
be two

sets of users that exclude users i and j. We have the following
closed-form expression on the price θi,j(p).

Lemma 2: The price θi,j(p) is non-negative and is non-
decreasing in pi. It is given by

θi,j(p) = µjpjU
′
j

(
rj(p)

)∑
S∈Ŝj,i

(∏
s∈S

ps

)( ∏
k∈N\S,k 6=i,j

(1− pk)

)
,

∀ i, j ∈ N , i 6= j, ∀p ∈ P.
(25)

Proof: First, notice that

θi,j(p) = −
∂Uj

(
rj(p)

)
∂Si(p−i)

∂Si(p−i)

∂pi
. (26)

For the first term on the right hand side of (26), we have

∂Uj
(
rj(p)

)
∂Si(p−i)

= µjpjU
′
j

(
rj(p)

)
≥ 0. (27)

Moreover, we can write Sj(p−j) in (7) as

Sj(p−j) =
∑
S∈S̃j,i

(∏
s∈S

ps

)( ∏
k∈N\S,k 6=i,j

(1− pk)

)

+
∑
S∈Ŝj,i

(∏
s∈S

ps

)( ∏
k∈N\S,k 6=i,j

(1− pk)

)
(1− pi).

(28)

Thus, we have

∂Sj(p−j)

∂pi
= −

∑
S∈Ŝj,i

(∏
s∈S

ps

)( ∏
k∈N\S,k 6=i,j

(1− pk)

)
≤ 0.

(29)
Combining the results from (26), (27), and (29), we
obtain θi,j(p) ≥ 0 in (25). Moreover, since Uj

(
rj(p)

)
is a non-decreasing function in pi and the term∑
S∈Ŝj,i

(∏
s∈S ps

)(∏
k∈N\S,k 6=i,j(1−pk)

)
is independent

of pi, θi,j(p) is a non-decreasing function in pi.
Under the protocol model, the interference pricing can be

simplified as follows.

Lemma 3: Under the protocol model, the price θi,j(p) is
given by

θi,j(p)=

{
µjpjU

′
j

(
rj(p)

)∏
k∈Ij\{i}(1− pk), if i ∈ Ij ,

0, otherwise,
(30)

where Ij =
{
m ∈ N\{i}

∣∣∣ PjGjj
PmGmj+nj

< θthj

}
is the set of

interferers of user j.
Proof: Under the protocol model, we have Sj(p−j) =∏

k∈Ij (1− pk). From (26) and (27), the result follows.
However, it should be noted that although the MAC pro-

tocols are designed using either the protocol model or SINR
model, the packet receptions are indeed performed under the
SINR model in reality. Thus, the simplification in interference
pricing under the protocol model in Lemma 3 may result in
starvation for some users with zero data rate, as illustrated by
the following example.

Example 1: We consider a wireless ad hoc network shown
in Fig. 1, where the transmit powers of all users are the
same. At a certain transmit power level P , we can observe the
following: Since transmitter 1 is close to receivers 2 and 3, user
1 interferes with users 2 and 3. However, since transmitters
2 and 3 are far away from receiver 1, users 2 and 3 do
not interfere with user 1 as long as they do not transmit
simultaneously. Users 2 and 3 are far from each other and
do not interfere with each other. Under the protocol model,
since θ2,1(p) = θ2,3(p) = 0 from Lemma 3, we have c2 = 0.
Similarly, we have θ3,1(p) = θ3,2(p) = 0, which implies that
c3 = 0. With a zero price, users 2 and 3 will transmit with the
maximum allowed transmission probabilities pmax2 and pmax3 ,
respectively. If pmax2 = pmax3 = 1, then user 1 is starved with
zero data rate r1(p) = 0 by evaluating under the more accurate
SINR model.

We then propose the iterative algorithm for random access
game G with adaptive interference pricing that aims to solve
the NUM problem (19) in Algorithm 1. The random access
game and the interference price update are performed itera-
tively for a total of Ψ iterations (line 4). In each iteration
l, game G is played for T time slots (lines 5-17). However,
different from the power control setting in [23], it can be
shown that our random access game with adaptive pricing
is not a supermodular game. Thus, the strategy profile may
not converge by using the best response update. In order to
facilitate the convergence, we introduce the gradient play [9],
[10], where player i updates its transmission probability pi
that improves its surplus function σi(p(t), ci(l)) in (9) along
the ascent direction d(p(t), ci(l)) with a step size β(l) ≥ 0
when the transmission probabilities p(t) at time t are given.
For example, for the steepest ascent method [32, pp. 25], we
choose

d(p(t), ci(l)) =
∂σi(p(t), ci(l))

∂pi

/∣∣∣∂σi(p(t), ci(l))

∂pi

∣∣∣
=

µiU
′
i

(
ri(p(t))

)
Si(p−i(t))− ci(l)∣∣µiU ′i(ri(p(t))
)
Si(p−i(t))− ci(l)

∣∣ . (31)



Algorithm 1 Iterative Random Access Game with Adaptive
Interference Price Update to solve problem (19).

1: Initialize the starting point p(1) ∈ P and c(1) � 0 and
the iteration counter l := 1

2: Initialization for game G: Number of game iterations T
and the set of time slots Ti, ∀ i ∈ N

3: Initialization for the interference price update: Step size
β(1) > 0, step size adjustment factor 0 < δ < 1, total
number of iterations Ψ, state information flag := 0, set
of price update iterations Lprice

4: while l ≤ Ψ
5: Random Access Game G with interference prices c(l)
6: Set t := 1
7: while t ≤ T
8: for all i ∈ N
9: if t ∈ Ti then

10: Set d
(
p(t), ci(l)

)
:=

µiU
′
i

(
ri(p(t))

)
Si(p−i(t))−ci(l)∣∣µiU ′i(ri(p(t)))Si(p−i(t))−ci(l)∣∣

11: Set pi(t+ 1) :=

[
pi(t) + β(l)d

(
p(t), ci(l)

)]pmaxi

pmini

12: else
13: Set pi(t+ 1) := pi(t)
14: end if
15: end for
16: Set t := t+ 1
17: end while
18: Set p∗(l) := p(t)
19: Interference Price Update
20: if l ∈ Lprice then
21: Set θi,j(p∗(l)) using (25) with p = p∗(l), ∀ j ∈
N\{i}, ∀ i ∈ N

22: Set ci(l + 1) :=
∑
j∈N\{i} θi,j(p

∗(l)), ∀ i ∈ N
23: else
24: Set ci(l + 1) := ci(l), ∀ i ∈ N
25: end if
26: Step Size Update
27: if (oscillation is detected) and (flag = 0) then
28: Set flag := 1
29: end if
30: if flag = 1 then
31: Set β(l + 1) := δβ(l)
32: else
33: Set β(l + 1) := β(l)
34: end if
35: Set l := l + 1
36: end while

Thus, for t ∈ Ti, the gradient play is given by

pi(t+ 1) :=

[
pi(t) + β(l)d

(
p(t), ci(l)

)]pmaxi

pmini

(32)

Compared with the best response update, the gradient play can
be viewed as a better response [10] update. The solution of
game G in iteration l is recorded in p∗(l) (line 18). Let Lprice
be the set of iterations when the interference price update
is performed. The price is updated in iteration l ∈ Lprice

based on (25) (lines 19-25). However, it should be noted
that when the steepest ascent method is used, we will have
d(p(t), ci(l)) ∈ {−1, 1} numerically. The use of gradient play
in (32) for the update of p(t) may result in oscillation with a
small amplitude when a small step size β(l) > 0 is chosen. To
facilitate the convergence of the algorithm, once an oscillation
is detected, we set flag to be equal to one (lines 27-29).
Then, the step size will be diminished by an adjustment factor
0 < δ < 1 in the following iterations (lines 30-34). After
running Algorithm 1, the fixed point may be reached, which
is defined as follows:

Definition 3: (p∗, c∗) is a fixed point if p∗i =
BRi(p

∗
−i, c

∗
i ), ∀ i ∈ N and c∗i =

∑
j∈N\{i} θi,j(p

∗), ∀ i ∈
N , where BRi(p−i, ci) is the best response function defined
in (10).

We can show that set of fixed points is in fact the set of
KKT points of problem (19). That is, the local optimal points
or saddle points of problem (19) can be obtained by Algorithm
1. In the special case where problem (19) has only one KKT
point, Algorithm 1 results in the globally optimal solution of
problem (19). However, in general, there are multiple KKT
points, and the final solution of Algorithm 1 depends on the
starting point p(1) ∈ P and c(1) � 0.

Lemma 4: The fixed point p∗ satisfies the KKT conditions
of problem (19).

Proof: Since problem (24) is convex, the following KKT
conditions for each i ∈ N are both necessary and sufficient
[33].

pmini ≤ p∗i ≤ pmaxi and λ∗i , ν
∗
i ≥ 0, (33)

ν∗i (p∗i − pmini ) = 0 and λ∗i (p
max
i − p∗i ) = 0, (34)

∂Ui
(
ri(p

∗
i ,p
∗
−i)
)

∂pi
+

∑
j∈N\{i}

∂Uj
(
rj(p

∗)
)

∂pi
+ ν∗i − λ∗i = 0.

(35)
Notice that (33)-(35) are almost the same as (20)-(22), except
that the latter are satisfied ∀ i ∈ N . Since the union of the
above KKT conditions ∀ i ∈ N is equal to the KKT conditions
of problem (19) in Lemma 1, the set of fixed points coincides
with the set of KKT points of problem (19).

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of Algorithm
1 under both the SINR and protocol models, and compare it
with a CSMA scheme. Unless specified otherwise, we assume
that the nodes are randomly placed in a 50 m × 50 m area.
The communication distance of a user is randomly selected to
be between 5 m and 25 m. We assume that the data rate of
all the users is the same such that µi = 10 Mbps, ∀ i ∈ N .
For simplicity, we model the channel gain as Gi,j = 1/dγi,j ,
where di,j is the distance between the transmitter of user i
and the receiver of user j, and γ is the path loss exponent.
We adopt γ to be equal to 2. The transmit powers of all the
users are equal and set to a value which yields a minimum
signal-to-noise-ratio (SNR) of 10 dB at the receivers. The
SINR threshold is θthi = θth, ∀ i ∈ N , and is set to 0 dB. We
assume that all the users have the same α-fair utility functions
with αi = α, ∀ i ∈ N . We consider that pmini = pmin = 0.01
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Fig. 2. The convergence of transmission probabilities p1 and p6 using
sequential and simultaneous best response updates in a supermodular game
with N = 6 and α = 2 under the SINR model. The interference prices are
fixed in this case, where ci = 2, ∀ i ∈ N .

and pmaxi = pmax = 0.999, ∀ i ∈ N . Notice that if we choose
pmin = 0 or pmax = 1, the utility functions of some users
may be unbounded, which violates our assumption in Section
II. In Algorithm 1, at time t = 1, we choose the starting point
p(1) = pmin and ci(1) =

∑
j∈N\{i} θi,j(p(1)), ∀ i ∈ N .

We choose the initial step size β(1) = 0.01 and the step size
adjustment factor δ = 0.9. For the random access game, we
consider that sequential gradient play is used, where the users
update their transmission probabilities one by one in a round-
robin manner. Notice that whenever the system parameters are
changed, the users should exchange this information and rerun
Algorithm 1 again.

First, we evaluate the random access game G with fixed
interference pricing under the SINR model by plotting the
trajectories of p1 and p6 in Fig. 2 in a network with six players.
We assume that the interference prices are fixed such that ci =
2, ∀ i ∈ N . By using the α-fair functions with α = 2, we
know from Theorem 3 that G is a supermodular game. In
this way, from Theorem 4(c), by choosing the starting point
p(1) = pmin, the strategy profiles converge monotonically to
the same solution when the sequential or simultaneous best
response updates are used. In fact, the solution corresponds to
the smallest NE p

NE
. In each iteration, we consider that each

user updates its transmission probability once. From Fig. 2, we
can observe that the sequential best response update results
in a faster convergence than the simultaneous best response
update.

Next, we illustrate the interference pricing and transmission
probability assignment obtained from Algorithm 1 for the
network topology shown in Fig. 3 with N = 6 and α = 1.5.
For the interference price update in Algorithm 1, we consider
that it is performed in every iteration such that Lprice =
{1, 2, . . . ,Ψ}. We set Ψ = 500. Under the SINR model, from
Fig. 4, we can see that the transmission probabilities of all
the users converge. In fact, we can verify that the solution
(p∗, c∗) obtained from Algorithm 1 is indeed a fixed point
as defined in Definition 3. In Fig. 5, we plot the interference
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Fig. 3. An example of a wireless ad hoc network with six users.
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Fig. 4. The convergence of transmission probabilities p∗(l) of the six users
in the wireless ad hoc network shown in Fig. 3 under the SINR model using
Algorithm 1 with α = 1.5.

price c2 of user 2 against its transmission probability p2 when
pj = 0.7, ∀ j ∈ N\{2} under both the SINR and protocol
models. For the protocol model, we observe that c2 = 0 for
all the cases. Since user 2 does not interfere with other users
under the protocol model, we have θ2,j(p) = 0, ∀ j ∈ N\{2}
from Lemma 3. Thus, c2 =

∑
j∈N\{2} θ2,j(p) = 0. On the

other hand, under the SINR model, user 2 is in fact generating
interference to the other users in the system. From Fig. 5,
we can observe that the interference price c2 increases with
the transmission probability p2 in order to control user 2’s
interference to the other users. Moreover, the simulation results
reveal that the design based on the protocol model leads to the
starvation of user 6. The reason is that both users 2 and 5 are
not interferers to all the other users in the system under the
protocol model. As a result, we have c2 = 0 and c5 = 0,
which implies that p∗2 = BR2(p−2, c2) = pmax2 and p∗5 =
BR5(p−5, c5) = pmax5 . However, the SINR model suggests
that users 2 and 5 in fact interfere with the transmission of
user 6 when they transmit simultaneously. Thus, in reality, user
6 receives a close-to-zero data rate r6 ≈ 0.
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Fig. 5. The interference price c2 of user 2 against its transmission probability
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Fig. 6. Average utility versus the number of users N for Algorithm 1 using
the SINR model, the protocol model, and a CSMA scheme with α = 0.8.
Notice that the design based on the SINR model achieves the highest average
utility.

Then, we compare the average utility achieved with Algo-
rithm 1 for the SINR model (using Mi = Mi,SINR, ∀ i ∈ N )
and the protocol model (using Mi = Mi,PTC , ∀ i ∈ N ),
and a CSMA scheme implemented in a slotted time system.
Notice that the packet receptions of all the schemes are indeed
performed under the SINR model. The average utility is
defined as the aggregate utility in the system divided by the
total number of users N . The result is obtained for α = 0.8
by averaging over 1000 different random topologies when N
varies. For the interference price update in Algorithm 1, we
consider that it is performed in every ten iterations. That is,
Lprice = {10, 20, . . . ,Ψ}. We set Ψ = 200. The operation of
the CSMA scheme is similar to the one used in the IEEE
802.11 standard, except that the interframe spacing is not
implemented. We assume that the sensing is performed based
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(b) Jain’s fairness index

Fig. 7. (a) The throughput and (b) Jain’s fairness index against the utility
parameter α when N = 8. As we can see, the design based on the SINR
model results in a more efficient and fairer allocation than that based on
the protocol model. Moreover, different degrees of tradeoff between the
throughput and fairness can be achieved by tuning the parameter α under
the SINR model.

on the protocol model, where the channel is sensed busy if any
one-hop neighbour of the user transmits. We choose the min-
imum and maximum contention window sizes aCWmin = 13
and aCWmax = 1023 [34, pp. 536], respectively. As shown in
Fig. 6, we can see that the design based on the SINR model
always achieve a higher average utility than the design based
on the protocol model and a CSMA scheme. Moreover, we
can observe that the average utility decreases with N . It is
because when N increases, the contention for transmission in
a random access system increases, which reduces the average
utility of each user. It should be noted that when N is equal to
2, the protocol model is identical to the SINR model, which
results in the same achieved average utility.

In Fig. 7, we evaluate the throughput (i.e., the network
efficiency) and fairness of the design based on the SINR and
protocol models under different values of the utility parameter
α for N = 8 in 1000 different scenarios. The degree of
fairness is measured by the Jain’s fairness index [35] defined



as
(∑

i∈N ri(p)
)2
/
(
N
∑
i∈N ri(p)2

)
. As shown in Fig. 7, the

design based on the SINR model results in a higher throughput
and Jain’s fairness index than that based on the protocol
model. That is, a more efficient and fairer resource allocation
is achieved under the SINR model. Moreover, by increasing
the value of α, we can see that the throughput decreases and
the Jain’s fairness index increases under the SINR model as
shown in Figs. 7 (a) and (b), respectively. So the parameter
α acts as a knob to control the tradeoff between the network
efficiency and fairness [31].

VI. CONCLUSIONS

In this paper, we studied the random access games with
linear interference pricing under the SINR model in wireless
ad hoc networks. In the first part of the paper, we assumed that
the prices are fixed. We studied the interactions of the rational
users and characterize the existence of the NE. In particular,
we considered a special case of a S-modular random access
game, and analyzed the efficiency and convergence of the
NE. In the second part of the paper, we proposed an iterative
interference pricing algorithm for the random access game that
aims to maximize the aggregate utility of the users. It was
shown that the fixed point of the algorithm satisfies the KKT
conditions of the NUM problem. Simulation results showed
that Algorithm 1 based on the SINR model achieves a higher
average utility than the algorithm based on the protocol model
and a CSMA scheme implemented in a slotted time system.
Interesting topics for future work include the extension of the
analysis of the random access game to a multi-channel setting,
and the study of the revenue maximization pricing scheme.

REFERENCES

[1] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory. Oxford University Press, 1995.

[2] M. Cagalj, S. Ganeriwal, I. Aad, and J. P. Hubaux, “On selfish behavior
in CSMA/CA networks,” in Proc. of IEEE INFOCOM, Miami, FL, Mar.
2005.

[3] H. Inaltekin and S. B. Wicker, “The analysis of Nash equilibria of the
one-shot random-access game for wireless networks and the behavior
of selfish nodes,” IEEE/ACM Trans. on Networking, vol. 16, no. 5, pp.
1094–1107, Oct. 2008.

[4] T. Cui, L. Chen, and S. Low, “A game-theoretic framework for medium
access control,” IEEE J. Select. Areas Commun., vol. 26, no. 7, pp.
1116–1127, Sept. 2008.

[5] Z. Han, Z. Ji, and K. J. R. Liu, “A cartel maintenance framework to
enforce cooperation in wireless networks with selfish users,” IEEE Trans.
on Wireless Communications, vol. 7, no. 5, pp. 1889–1899, May 2008.

[6] B. Yang, G. Feng, and X. Guan, “Random access in wireless ad hoc
networks for throughput maximization,” in Proc. of ICARCV, Singapore,
Dec. 2006.

[7] ——, “Noncooperative random access game via pricing in ad hoc
networks,” in Proc. of IEEE CDC, New Orleans, LA, Dec. 2007.

[8] C. Long, Q. Chi, X. Guan, and T. Chen, “Joint random access and power
control game in ad hoc networks with noncooperative users,” Ad Hoc
Networks, vol. 9, no. 2, pp. 142–151, Mar. 2011.

[9] J. Lee, A. Tang, J. Huang, M. Chiang, and A. R. Calderbank, “Reverse-
engineering MAC: A non-cooperative game model,” IEEE J. Select.
Areas Commun., vol. 25, no. 6, pp. 1135–1147, Aug. 2007.

[10] L. Chen, S. H. Low, and J. C. Doyle, “Random access game and medium
access control design,” IEEE/ACM Trans. on Networking, vol. 18, no. 4,
pp. 1303–1316, Aug. 2010.

[11] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans.
Inform. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[12] L. Fu, S. C. Liew, and J. Huang, “Effective carrier sensing in CSMA
networks under cumulative interference,” in Proc. of IEEE INFOCOM,
San Diego, CA, Mar. 2010.

[13] A. H. Mohsenian-Rad, V. W. S. Wong, and R. Schober, “Optimal SINR-
based random access,” in Proc. of IEEE INFOCOM, San Diego, CA,
Mar. 2010.

[14] M. H. Cheung, V. W. S. Wong, and R. Schober, “SINR-based random
access for cognitive radio: Distributed algorithm and coalitional game,”
IEEE Trans. on Wireless Communications, vol. 10, no. 11, pp. 3887–
3897, Nov. 2011.

[15] J. K. MacKie-Mason and H. R. Varian, “Pricing congestible network
resources,” IEEE J. on Selected Areas in Commun., vol. 13, no. 7, pp.
1141–1149, Sept. 1995.

[16] C. Courcoubetis and R. Weber, Pricing Communication Networks:
Economics, Technology and Modelling, 1st ed. England: John Wiley
and Sons, 2003.

[17] A. Ganesh, K. Laevens, and R. Steinberg, “Congestion pricing and non-
cooperative games in communication networks,” Operations Research,
vol. 55, no. 3, pp. 430–438, May 2007.

[18] A. B. MacKenzie and S. B. Wicker, “Selfish users in Aloha: A game-
theoretic approach,” in Proc. of IEEE VTC Fall, Atlantic City, NJ, Oct.
2001.

[19] T. Alpcan, T. Basar, R. Srikant, and E. Altman, “CDMA uplink power
control as a noncooperative game,” in Proc. of IEEE CDC, Orlando, FL,
Dec. 2001.

[20] Y. E. Sagduyu and A. Ephremides, “Power control and rate adaptation
as stochastic games for random access,” in Proc. of IEEE CDC, Maui,
HI, Dec. 2003.

[21] D. D. Yao, “S-modular games, with queueing applications,” Queueing
Systems, vol. 21, no. 3-4, pp. 449–475, 1995.

[22] S. Lasaulce, M. Debbah, and E. Altman, “Methodologies for analyzing
equilibria in wireless games,” IEEE Signal Processing Magazine, vol. 26,
no. 5, pp. 41–52, Sept. 2009.

[23] J. Huang, R. A. Berry, and M. L. Honig, “Distributed interference
compensation for wireless networks,” IEEE J. on Selected Areas in
Commun., vol. 24, no. 5, pp. 1074–1084, May 2006.

[24] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. on Networking, vol. 8, no. 5, pp. 556–567,
Oct. 2000.

[25] A. H. Mohsenian-Rad, J. Huang, M. Chiang, and V. W. S. Wong,
“Utility-optimal random access without message passing,” IEEE
Trans. on Wireless Communications, vol. 8, no. 3, pp. 1073–1079, Mar.
2009.

[26] S. Pleisch, M. Balakrishnan, K. Birman, and R. van Renesse, “MIS-
TRAL: Efficient flooding in mobile ad-hoc networks,” in Proc. of ACM
MobiHoc, Florence, Italy, May 2006.

[27] D. M. Topkis, Supermodularity and Complementarity. Princeton, NJ:
Princeton University Press, 1998.

[28] P. Milgrom and J. Roberts, “Rationality, learning, and equilibrium in
games with strategic complementarities,” Econometrica, vol. 58, no. 6,
pp. 1255–1277, Nov. 1990.

[29] A. B. MacKenzie and L. A. DaSilva, Game Theory for Wireless
Engineers, 1st ed. Morgan & Claypool, 2006.

[30] E. Altman and Z. Altman, “S-modular games and power control in
wireless networks,” IEEE Trans. on Automatic Control, vol. 48, no. 5,
pp. 839–842, May 2003.

[31] J. Lee, M. Chiang, and A. R. Calderbank, “Utility-optimal random-
access control,” IEEE Trans. on Wireless Communications, vol. 6, no. 7,
pp. 2741–2751, July 2007.

[32] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific,
2003.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. UK: Cambridge
University Press, 2004.

[34] “IEEE 802.11,” http://standards.ieee.org/getieee802/download/802.11-
2007.pdf, 2007.

[35] R. K. Jain, D. Chiu, and W. R. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
Eastern Research Lab, Tech. Report DEC-TR-301, Sept. 1984.



Man Hon Cheung received the B.Eng. and M.Phil.
degrees in Information Engineering from the Chi-
nese University of Hong Kong (CUHK) in 2005 and
2007, respectively, and the Ph.D. degree in Electrical
and Computer Engineering from the University of
British Columbia (UBC) in 2012. Currently, he is a
postdoctoral fellow in the Department of Informa-
tion Engineering in CUHK. He received the IEEE
Student Travel Grant for attending IEEE ICC 2009.
He was awarded the Graduate Student International
Research Mobility Award by UBC, and the Global

Scholarship Programme for Research Excellence by CUHK. He serves as a
Technical Program Committee member in IEEE ICC and WCNC. His research
interests include the design and analysis of medium access control protocols
in wireless networks using optimization theory, game theory, and dynamic
programming.

Vincent W.S. Wong (SM’07) received the B.Sc.
degree from the University of Manitoba, Winnipeg,
MB, Canada, in 1994, the M.A.Sc. degree from the
University of Waterloo, Waterloo, ON, Canada, in
1996, and the Ph.D. degree from the University of
British Columbia (UBC), Vancouver, BC, Canada,
in 2000. From 2000 to 2001, he worked as a
systems engineer at PMC-Sierra Inc. He joined the
Department of Electrical and Computer Engineering
at UBC in 2002 and is currently a Professor. His
research areas include protocol design, optimization,

and resource management of communication networks, with applications
to the Internet, wireless networks, smart grid, RFID systems, and intelli-
gent transportation systems. Dr. Wong is an Associate Editor of the IEEE
Transactions on Communications. He has served as an Associate Editor of
IEEE Transactions on Vehicular Technology and an Editor of Journal of
Communications and Networks. Dr. Wong is the Symposium Co-chair of IEEE
SmartGridComm’13 − Communications Networks for Smart Grid and Smart
Metering Symposium, and IEEE Globecom’13 − Communication Software,
Services, and Multimedia Application Symposium.


