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Abstract—In this paper, we study the problem of multi-
channel medium access control (MAC) in cognitive radio (CR)
networks. While most of the previously proposed MAC protocols
for CR networks are heuristic and are based on the simplistic
protocol model, we design a distributed MAC protocol using
the more accurate signal-to-interference-plus-noise-ratio (SINR)
model. First, we assume that the secondary users are coop-
erative and formulate the problem of assigning transmission
and listening probabilities for random access as a non-convex
network utility maximization problem. We propose a three-
phase algorithm that converges to a near-optimal solution after
solving a number of convex optimization problems distributively.
Simulation results show that our proposed algorithm based on
the SINR model achieves a higher aggregate throughput than
other schemes which are based on the protocol model. Then,
we consider the case that the secondary users are rational. We
use coalitional game theory to study the incentive issues ofuser
cooperation in a given channel for the SINR model. In particular,
we use the solution concept of the core to analyze the stability
of the grand coalition, and the solution concept of the Shapley
value to fairly divide the payoff among the users. We show that
the Shapley value lies in the core when all the users are one-hop
neighbours of each other. We illustrate the Shapley value and
the core with a numerical example.

Index Terms—Cognitive radio networks, multi-channel
medium access control (MAC), random access, SINR model, net-
work utility maximization, non-convex optimization, coalitional
game theory.

I. I NTRODUCTION

W ITH the licensed radio spectrum being under-utilized
[1], cognitive radio (CR) [2] has emerged as the

solution to the spectrum scarcity problem. To address the
problem of spectrum sharing between the primary (licensed)
users and secondary (unlicensed) users, thecommons model
and theproperty model[3] have been proposed. In the com-
mons model, the secondary users access the spectrum holes
opportunisticallyso that they do not cause interference to the
primary users. In the property model, the primary users are
allowed to trade some of their temporarily unused spectrum
to the secondary users in exchange for monetary return. In
this paper, we consider the setting where a set of channels
from the primary network are available to the secondary CR
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network, e.g., in the form ofdynamic spectrum leasing[4]–[6]
in the property model or byspectrum sensing[7], [8] in the
commons model. In order to implement a scalable system that
is adaptive to the dynamic network changes in a CR network,
distributedmedium access control (MAC) protocols should be
employed by the secondary users.

By exploiting multiple orthogonal channels, the overall
system performance of a CR network can be improved, since
transmissions can take place simultaneously without causing
multi-user interference. Different multi-channel MAC proto-
cols have been proposed for CR networks. In [9], Cordeiro
et al. proposed a distributed cognitive MAC protocol that
includes a slotted beaconing period for nodes to negotiate on
the channel usage. Suet al. proposed in [10] two sensing
policies for the physical layer and a packet scheduling algo-
rithm for the MAC layer of a distributed CR network. Jiaet
al. proposed in [11] a hardware-constrained cognitive MAC
protocol that coordinates the contention and spectrum usage
among the secondary users. Timmerset al.proposed in [12] an
energy-efficient distributed multi-channel MAC protocol for a
multi-hop CR network, which is based on the timing structure
of the power-saving mode used in the IEEE 802.11 standard.

In the throughput analysis of multi-channel MAC protocols,
such as [10], [12], theprotocol modelor unit disk model[13] is
widely used to account for the effect of multi-user interference
due to its simplicity in characterizing the physical layer.Under
the protocol model, a transmission is successful if the receiver
is within the transmission range of its intended transmitter and
outside the interference range of other transmitters. However,
in reality, the interference at the receiver is thecumulative
power received from other nodes that are concurrently trans-
mitting. As a result, thesignal-to-interference-plus-noise-ratio
(SINR) modelor physical model[13] characterizes the effect
of interference more accurately. Under the SINR model, a
transmission is successful if and only if the SINR at the
intended receiver is above a predefined threshold that depends
on the adopted modulation and coding schemes. Despite its
higher complexity, the SINR model is getting more attention
in recent years due to its higher practicality and accuracy in
modeling. Some recent works have investigated contention-
basedrandom accessprotocols [14], [15] and collision-free
schedulingprotocols [16], [17] using the SINR model.

Since most of the proposed multi-channel MAC protocols
for CR networks areheuristic in nature and apply the sim-
plistic protocol model, in this paper, we propose adistributed
random access protocol for CR networks, which is based on
the multi-channel SINR modeland the mathematical frame-
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work of network utility maximization (NUM) [15], [18]–[20].
In particular, we extend the mathematical models in [15] and
[20], where the former focused on the single-channel SINR
model, while the latter focused on the multi-channel protocol
model. The resultingnon-convexoptimization problem is more
difficult to solve than the problems in [15] and [20]. In
particular, our problem involves the dimension of channel
selection which was absent in [15], and entails a more accurate
and complex interaction among the users due to the SINR
model which was absent in [20].

In the formulation of the NUM problem, we assume that
all the secondary users arecooperative. Thus, an interesting
question is what happens if the users arerational and they aim
to maximize their own utilities? Previous works, such as [21],
usenon-cooperative game theoryto analyze the behaviour of
rational users in CR networks. However, this approach is more
appropriate for analyzing the behaviour ofindividual rational
users. To analyze what agroup of rational users can achieve
under the SINR model, where the effect of interference is
cumulative,coalitional game theory[22] is a more suitable
tool. Coalitional game theory has found many applications in
communication networks [8], [23], [24]. In [24], it was applied
to study the behaviour of users under the SINR model. How-
ever, [24] investigated cooperative communications, whereas
we consider random access in CR networks. To the best of our
knowledge, this work is the first paper that applies coalitional
game theory to study random access under the SINR model.

In summary, the contributions of our work are as follows:

• We first assume that the secondary users are cooperative.
We formulate the problem of random access with multiple
channels as a NUM problem using the SINR model,
where the optimization variables are the transmission and
listening probabilities of the users.

• We propose a distributed three-phase algorithm using
convex optimization and the coordinate ascent method to
obtain a near-optimal solution for the non-convex NUM
problem.

• We then study the case where the secondary users are ra-
tional. We formulate the problem as a coalitional game to
analyze the interactions among the users under the SINR
model. We apply the solution concepts of thecore and
the Shapley value[22] to characterize the stability and
fair allocation of the aggregate utility among the rational
users, respectively. We show that the Shapley value lies
in the core when all users are one-hop neighbours.

• Simulation results show that the proposed scheme based
on the SINR model achieves a higher aggregate through-
put than other schemes which are based on the protocol
model. A numerical example is given to illustrate both
the Shapley value and the core.

The rest of the paper is organized as follows. The system
model is described in Section II. We formulate the random
access problem in Section III and present our distributed
algorithm in Section IV. The coalitional game is discussed
in Section V and simulation results are presented in Section
VI. Conclusions and future work are given in Section VII.
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Fig. 1. A CR network with set of usersN = {1, 2, 3}, where the triangles
and circles represent the transmitters and receivers, respectively. The set of
available orthogonal data channelsC = {1, 2} is provided by the primary
BS. p(c)

i
andq

(c)
i

denote the transmission and listening probabilities for user
i in channelc, respectively.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a CR network with several
secondary nodes located in a neighbourhood, where a set
of orthogonal data channelsC and one control channel are
obtained from the primary base station (BS), e.g, in the form
of spectrum leasing. The data channels are used for data
transmissions, and the control channel is used for the exchange
of control messages. The total number of data channels is
C = |C|. We consider only single-hop transmissions between
the secondary nodes. We defineN as the set of one-hop
transmitter/receiver pairs or links in the CR network, and we
refer to each transmitter/receiver pair as auser. The total
number of users isN = |N |. We adopt a slotted MAC protocol,
where time is divided into equal time slots. The users attempt
to access the shared channel at the beginning of each time slot
according to theirtransmission probabilitiesin each channel.
That is, each useri ∈ N can access a channelc with a
certain transmission probabilityp(c)

i , and we define a vector
p = (p

(c)
i , ∀ i ∈ N , c ∈ C). Also, we introduce a vector

q = (q
(c)
i , ∀ i ∈ N , c ∈ C), where q

(c)
i is the listening

probability of receiveri in channelc. We have the following
constraints:

∑

c∈C

p
(c)
i ≤ 1 and

∑

c∈C

q
(c)
i ≤ 1, ∀ i ∈ N . (1)

For theSINR model, if user i ∈ N chooses to transmit in
channelc ∈ C, then the SINR at receiveri is given by

θ
(c)
i =

PiG
(c)
ii

ι
(c)
i + n

(c)
i

, (2)

wherePi is the transmit power of useri. G
(c)
ij is the channel

gain from the transmitter of useri to the receiver of user
j in channelc. ι

(c)
i and n

(c)
i are the interference and noise

powers received by useri in channelc, respectively. Given
that receiveri has tuned to channelc for reception, the
communication of useri is successful if

θ
(c)
i ≥ θth

i ⇔ ι
(c)
i ≤

PiG
(c)
ii

θth
i

− n
(c)
i , (3)

where θth
i is the SINR threshold. LetNi be the power set

(i.e., the set of all subsets) ofN\{i}. As an example, for
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N = {1, 2, 3}, N2 = {{}, {1}, {3}, {1, 3}}. Assuming that
the transmit powers(Pi, ∀ i ∈ N ) are fixed, we defineM(c)

i

as a set where each element is a set of users that can transmit
simultaneously with useri without affecting the reception of
receiveri in channelc (i.e.,θth

i can be achieved). The setM
(c)
i

obtained with the SINR model is given by

M
(c)
i,SINR =

{

M ∈ Ni :
∑

m∈M

PmG
(c)
mi ≤

PiG
(c)
ii

θth
i

−n
(c)
i

}

. (4)

If the protocol modelis used, only pairwise interference is
considered. Userm is an interferer or one-hop neighbourto
useri if the SINR due to the interference from userm only
is below the SINR threshold. That is,

PiG
(c)
ii

PmG
(c)
mi + n

(c)
i

< θth
i . (5)

The setM(c)
i obtained with the protocol model is given by

M
(c)
i,PTC =

{

M ∈ Ni : PmG
(c)
mi ≤

PiG
(c)
ii

θth
i

−n
(c)
i , ∀m ∈ M

}

.

(6)
Intuitively, more users are allowed to transmit simultane-

ously in the protocol model than in the SINR model. This is
confirmed by the following lemma.

Lemma 1:M(c)
i,SINR ⊆ M

(c)
i,PTC .

Proof: Observing the fact that
∑

m∈M PmG
(c)
mi ≤

PiG
(c)
ii

θth
i

−

n
(c)
i in (4) impliesPmG

(c)
mi ≤

PiG
(c)
ii

θth
i

− n
(c)
i , ∀m ∈ M in (6),

it follows directly thatM(c)
i,SINR ⊆ M

(c)
i,PTC .

Example 1:We consider Fig. 1 where the transmit powers
of all users are the same. Assuming that all users have
selected channel 1, at a certain transmit power levelP , we
can observe the following: Since transmitter 1 is close to
receivers 2 and 3, user 1 interferes with users 2 and 3.
However, since transmitters 2 and 3 are far away from receiver
1, users 2 and 3 do not interfere with user 1 as long as
they do not transmit simultaneously. Users 2 and 3 are far
from each other and do not interfere with each other. For the
protocol model, we haveM(1)

1,PTC = {{}, {2}, {3}, {2, 3}},

M
(1)
2,PTC = {{}, {3}}, and M

(1)
3,PTC = {{}, {2}}. However,

the protocol model does not take into account that user 1 may
be interfered when both users 2 and 3 transmitsimultaneously.
In this case, we haveM(1)

1,SINR = {{}, {2}, {3}} ⊂ M
(1)
1,PTC ,

M
(1)
2,SINR = M

(1)
2,PTC , andM

(1)
3,SINR = M

(1)
3,PTC .

The probability of successful transmission of useri in
channelc is given by

p
succ,(c)
i = p

(c)
i q

(c)
i

∑

M∈M
(c)
i

(

∏

m∈M

p(c)
m

)(

∏

k∈N\M,k 6=i

(1−p
(c)
k )

)

.

(7)
We defineMi =

{

M
(c)
i , ∀ c ∈ C

}

. The average data rate of
useri is given by

ri(p, qi, Mi) =
∑

c∈C

µ
(c)
i p

succ,(c)
i , (8)

whereµ
(c)
i is the peak data rate for useri in channelc, and

vectorqi =
(

q
(c)
i , ∀ c ∈ C

)

contains the listening probabilities
of receiveri in all the channels. Givenp andqi, we have the
following lemma, which states that the average data rateri is
over-estimated when the protocol model is used.

Lemma 2:ri(p, qi, Mi,PTC) ≥ ri(p, qi, Mi,SINR).

Proof: From (8) and Lemma 1, we have

ri(p, qi, Mi,PTC) = ri(p, qi, Mi,SINR) +
∑

c∈C

µ
(c)
i p

(c)
i q

(c)
i

×
∑

M∈M
(c)
i,P TC

\M
(c)
i,SINR

(

∏

m∈M

p(c)
m

)(

∏

k∈N\M,k 6=i

(1 − p
(c)
k )

)

≥ ri(p, qi, Mi,SINR).

For the rest of the paper, we assume that setsM
(c)
i in (4)

and (6) are given, so we writeri(p, qi, Mi) as ri(p, qi) for
simplicity.

III. N ETWORK UTILITY MAXIMIZATION

We now formulate the multi-channel random access prob-
lem as a NUM problem with vectorsp andq as the optimiza-
tion variables. The NUM problem is given by

maximize
p, q

∑

i∈N

Ui

(

ri(p, qi)
)

subject to
∑

c∈C p
(c)
i ≤ 1,

∑

c∈C q
(c)
i ≤ 1, ∀ i ∈ N ,

0 ≤ p
(c)
i , q

(c)
i ≤ 1, ∀ i ∈ N , c ∈ C,

(9)
whereUi

(

ri(p, qi)
)

is a concave and non-decreasing function
in ri(p, qi). However, due to the product form of the variables
in (7), problem (9) isnon-convex, even if the utility functions
are concave. As a result, the problem is difficult to solve in
general. An example of a concave utility function useful for
resource allocation is theα-fair function [25] defined as

Ui(ri)=

{

(1 − αi)
−1r1−αi

i , if αi ∈ [0, 1) ∪ (1,∞),

ln ri, if αi = 1,
∀ i ∈ N .

(10)
Intuitively, ri increases whenp(c)

i increases or whenp(c)
j

decreases,j 6= i. This is confirmed by the following lemma:

Lemma 3:For i ∈ N , we have: (a)ri(p, qi) is a non-
decreasing function ofp(c)

i , ∀ c ∈ C.
(b) ri(p, qi) is a non-increasing function ofp(c)

j , ∀ j ∈
N\{i}, c ∈ C.

Proof: (a) From (8), ri can be written in the form
ri(p, qi) =

∑

c∈C x
(c)
i p

(c)
i , where

x
(c)
i = µ

(c)
i q

(c)
i

∑

M∈M
(c)
i

(

∏

m∈M

p(c)
m

)





∏

k∈N\M,k 6=i

(1 − p
(c)
k )



 .

Since x
(c)
i ≥ 0 and it is independent ofp(c)

i , ri(p, qi) is a
non-decreasing function ofp(c)

i , ∀ c ∈ C.
(b) Let j ∈ N\{i} be given. We first define two sets of

users that exclude usersi andj:

S̃
(c)
i,j =

{

S : S ∈ N\{i, j},S ∈ M
(c)
i ,S ∪ {j} ∈ M

(c)
i

}



4

and
Ŝ

(c)
i,j =

{

S : S ∈ N\{i, j},S ∈ M
(c)
i ,S∪{j} /∈ M

(c)
i

}

.

From (8), we can writeri as

ri(p, qi) =
∑

c∈C

µ
(c)
i p

(c)
i q

(c)
i ×

[

∑

S∈S̃
(c)
i,j

(

∏

s∈S

p(c)
s

)

(

∏

k∈N\S,k 6=i,j

(1 − p
(c)
k )

)

+

∑

S∈Ŝ
(c)
i,j

(

∏

s∈S

p(c)
s

)

(

∏

k∈N\S,k 6=i,j

(1 − p
(c)
k )

)

(1 − p
(c)
j )

]

,

which is a non-increasing function ofp(c)
j , ∀ c ∈ C.

Although it is possible that the users may occupy more
than one channel at an optimal solution, we can show based
on Lemma 3 that we can always find another optimal solution
where each user occupies only one channel.

Theorem 1:A global optimal solution of problem (9),
(p∗, q∗), is in the form:

p
(c)∗
i

{

∈ [0, 1], if c = ci,

= 0, otherwise,
and q

(c)∗
i =

{

1, if c = ci,

0, otherwise,
(11)

whereci is the channel chosen by useri.
Proof: Assume that(p, q) is feasible in problem (9), butp

andq are not in the form of (11). From (8), we have

ri(p, qi) =
∑

c∈C

s
(c)
i (p)q

(c)
i , (12)

where

s
(c)
i (p) = µ

(c)
i p

(c)
i

∑

M∈M
(c)
i

(

∏

m∈M

p(c)
m

)(

∏

k∈N\M,k 6=i

(1−p
(c)
k )

)

.

We define
ci = argmax

c∈C
s
(c)
i (p), ∀ i ∈ N , (13)

andq∗
i = (q

(c)∗
i , ∀ i ∈ N , c ∈ C), where

q
(c)∗
i =

{

1, if c = ci,

0, otherwise.
(14)

We have

ri(p, qi) =
∑

c∈C

s
(c)
i (p)q

(c)
i ≤ s

(ci)
i (p) = ri(p, q∗

i ), ∀ i ∈ N ,

where the inequality in the middle is due to the definition of
ci in (13) and the fact that

∑

c∈C q
(c)∗
i ≤ 1. SinceUi(ri) is a

non-decreasing function inri, ∀ i ∈ N , we have
∑

i∈N

Ui

(

ri(p, qi)
)

≤
∑

i∈N

Ui

(

ri(p, q∗
i )
)

. (15)

Given q∗, we have

ri(p, q∗
i ) = µ

(ci)
i p

(ci)
i

×
∑

M∈M
(ci)

i

(

∏

m∈M

p(ci)
m

)





∏

k∈N\M,k 6=i

(1 − p
(ci)
k )



 . (16)

Sincep is not in the form as shown on the left hand side
of (11), there existsc 6= ci such thatp(c)

i > 0. We define
p∗ = (p

(c)∗
i , ∀ i ∈ N , c ∈ C), where

p
(c)∗
i =

{

p
(c)
i , if c = ci,

0, otherwise.
(17)

Notice thatri in (16) is independent ofp(c)
i for c 6= ci, and

it is a non-increasing function ofp(c)
j , ∀ j ∈ N\{i}, c ∈ C as

shown in Lemma 3(b). Thus, we have

ri(p, q∗
i ) ≤ ri(p

∗, q∗
i ), ∀ i ∈ N . (18)

SinceUi(ri) is a non-decreasing function inri, ∀ i ∈ N , we
have

∑

i∈N

Ui

(

ri(p, q∗
i )
)

≤
∑

i∈N

Ui

(

ri(p
∗, q∗

i )
)

. (19)

Combining (15) and (19), we have
∑

i∈N

Ui

(

ri(p, qi)
)

≤
∑

i∈N

Ui

(

ri(p, q∗
i )
)

≤
∑

i∈N

Ui

(

ri(p
∗, q∗

i )
)

.

(20)
To sum up, given any feasible point(p, q), we can always
find another feasible point(p∗, q∗) in the form of (17) and
(14), which yields an objective value that is not smaller than
that for (p, q) and each user occupies only one channel. The
result thus follows.

IV. T HREE-PHASE DISTRIBUTED ALGORITHM USING

SEQUENTIAL CONVEX OPTIMIZATION

In this section, our goal is to solve non-convex NUM prob-
lem (9). We propose a low-complexity three-phase algorithm
where the transmitters and receivers have to solve a number
of convex optimization problems distributively. Convergence
and local optimality of the solution are guaranteed.

A. Transmission Probability Optimization

We define the vectorpi = (p
(c)
i , ∀ c ∈ C). Transmitteri ∈

N needs to solve the followinglocal optimization problem,
which has the same objective function as problem (9):

maximize
pi

Ui

(

∑

c∈C

o
(c)
i p

(c)
i

)

+
∑

j∈N\{i}

Uj

(

∑

c∈C

(

v
(c)
ji p

(c)
i + w

(c)
ji

(

1 − p
(c)
i

)

)

)

subject to
∑

c∈C p
(c)
i ≤ 1, 0 ≤ p

(c)
i ≤ 1, ∀ c ∈ C,

(21)
where

o
(c)
i = µ

(c)
i q

(c)
i

∑

M∈M
(c)
i

(

∏

m∈M

p(c)
m

)





∏

k∈N\M,k 6=i

(

1 − p
(c)
k

)



,

(22)

v
(c)
ji = µ

(c)
j p

(c)
j q

(c)
j

×
∑

M∈M
(c)
j

: i∈M

(

∏

m∈M\{i}

p(c)
m

)(

∏

k∈N\M,k 6=j

(

1 − p
(c)
k

)

)

, (23)
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and

w
(c)
ji = µ

(c)
j p

(c)
j q

(c)
j

×
∑

M∈M
(c)
j

: i/∈M

(

∏

m∈M

p(c)
m

)





∏

k∈N\M,k 6=j,i

(

1 − p
(c)
k

)



 .(24)

The coefficientso(c)
i , v

(c)
ji , andw

(c)
ji should be computed by

transmitter i based on the broadcast messages from other
transmitters and receivers.

Theorem 2:Problem (21) is aconvexoptimization problem
in pi.

Proof: First, the constraints in problem (21) are linear.
Also, aso(c)

i , v
(c)
ji , andw

(c)
ji are independent ofp(c)

i , and since
the arguments within the utility functions are linear inpi, the
objective function is concave inpi [26, pp. 79]. Thus, problem
(21) is a convex optimization problem.

Hence, we can solve problem (21) by using theinterior
point method[26].

B. Listening Probability Optimization

Receiveri ∈ N needs to solve the followinglocal optimiza-
tion problem with the same objective function as problem (9).

maximize
qi

Ui

(

∑

c∈C

a
(c)
i q

(c)
i

)

+
∑

j∈N\{i}

Uj

(

rj(p, qj)
)

subject to
∑

c∈C q
(c)
i ≤ 1, 0 ≤ q

(c)
i ≤ 1, ∀ c ∈ C,

(25)
where

a
(c)
i = µ

(c)
i p

(c)
i

∑

M∈M
(c)
i

(

∏

m∈M

p(c)
m

)





∏

k∈N\M,k 6=i

(1 − p
(c)
k )



 .

(26)
Theorem 3:Let ci = argmaxc∈C a

(c)
i . A closed-formsolu-

tion of problem (25) is

q
(c)∗
i =

{

1, if c = ci,
0, otherwise.

(27)

Proof: First, notice thata(c)
i and

∑

j∈N\{i} Uj

(

rj(p, qj)
)

are independent ofq(c)
i . SinceUi is a non-decreasing function,

problem (25) is equivalent to the following linear program-
ming problem

maximize
qi

∑

c∈C

a
(c)
i q

(c)
i

subject to
∑

c∈C q
(c)
i ≤ 1,

0 ≤ q
(c)
i ≤ 1, ∀ c ∈ C,

(28)

the solution of which is given by (27).

C. Three-Phase Distributed Algorithm

Having introduced the local optimization problems for the
transmitter and receiver of useri ∈ N , we are now ready
to present Algorithm 1 for obtaining a near-optimal solu-
tion of problem (9) based on thecoordinate ascent method
[27, pp. 207]. Letp−i = (p1, . . . , pi−1, pi+1, . . . , pN ) and

Algorithm 1 Three-Phase Distributed Algorithm to Obtain a
Near-optimal Solution for Problem (9).

1: Initialize p∗ such that
∑

c∈C
p
(c)∗
i ≤ 1, ∀ i ∈ N , and 0 ≤

p
(c)∗
i ≤ 1,∀ i ∈ N , c ∈ C

2: Initialize q∗ such that
∑

c∈C
q
(c)∗
i ≤ 1, ∀ i ∈ N , and 0 ≤

q
(c)∗
i ≤ 1, ∀ i ∈ N , c ∈ C

3: Set the convergence thresholdǫ > 0
4: Set the iteration countert := 1
5: Setu := −∞ and∆ := ∞
6: Phase I: Channel Probing
7: while ∆ > ǫ

8: for each transmitteri ∈ N
9: If t ∈ Ti then

10: Calculateo
(c)
i ,∀ c ∈ C using (22)

11: Calculatev
(c)
ji , ∀ j ∈ N\{i}, c ∈ C using (23)

12: Calculatew
(c)
ji , ∀ j ∈ N\{i}, c ∈ C using (24)

13: Solve problem (21) to obtain the solutionp∗
i

14: Broadcastp∗
i to other users using the control channel

15: Setu∗(t) :=
∑

i∈N
Ui

(

ri(p
∗, q∗

i )
)

16: Set t := t + 1
17: end if
18: end for
19: Set∆ := u∗(t) − u andu := u∗(t)
20: end while
21: Phase II: Channel Selection
22: for each receiveri ∈ N
23: If t ∈ Ti then
24: Calculatea

(c)
i ,∀ c ∈ C using (26)

25: Setci := arg maxc∈C a
(c)
i

26: Setq(c)∗
i ,∀ c ∈ C using (27)

27: Broadcastq∗
i to other users using the control channel

28: Setp(c)∗
i := 0, if c 6= ci, ∀ c ∈ C

29: Setu∗(t) :=
∑

i∈N
Ui

(

ri(p
∗, q∗

i )
)

30: Set t := t + 1
31: end if
32: end for
33: Phase III: Transmission Probability Allocation
34: Set∆ := ∞
35: Repeat Lines 7 to 20 once

q−i = (q1, . . . , qi−1, qi+1, . . . , qN ). Considering transmitter
i, the basic idea of this method is that we fixp−i and
q, and maximize the aggregate utility

∑

i∈N Ui

(

ri(p, qi)
)

with respect topi (i.e., problem (21)). Similarly, for receiver
i, we fix p and q−i, and maximize the aggregate utility
∑

i∈N Ui

(

ri(p, qi)
)

with respect toqi (i.e., problem (25)).
The updates of the solutions are carried outsuccessively.
Notice that the solution of problem (25) as stated in Theorem
3 represents a channel selection. Once the channel is selected
by the receiver, the transmitter will not attempt to transmit in
other channels, to which the receiver is not listening. As a
result, the receivers should defer their decisions of selecting
a channel until after the transmitters have coordinated their
transmission probabilities.

With this idea, we propose our Algorithm 1 with three
phases. In phase I, the receivers are initialized to listen to
each channel with a certain probability. The transmitters then
probe the channels by adjusting their transmission probabil-
ities until the aggregate utility converges. In phase II, each
transmitter/receiver pair selects the channel that results in the
highest average data rate. The reason for choosing only one
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channel is given by Theorem 1. In phase III, based on this
channel selection, the transmitters adjust their transmission
probabilities again until the aggregate utility converges.

In Algorithm 1, Ti is the set of time slots in which user
i ∈ N solves the local optimization problem. Also, we use
variableu to keep track of the aggregate utility achieved in
the previous iteration, and we letu∗(t) be the aggregate utility
achieved in iterationt. The algorithm transitions from phase I
to phase II and from phase III to the exit if the difference∆ =
u∗(t) − u is less than the predefined convergence threshold
ǫ. The complexity of Algorithm 1 is relatively low because
it involves solving only convex problem (21) and evaluating
closed-form equation (27). Transmitteri and receiveri need
only to broadcast the solutionsp∗

i and q∗
i in (21) and (27)

using the control channel, respectively. Thus, the signalling
overhead grows linearly with the number of usersN .

We have the following theorems that show the convergence
of Algorithm 1 and the local optimality of(p∗, q∗) obtained by
Algorithm 1. Notice that even in a centralized setting, there is
no guarantee that we can obtain the globally optimal solution
of problem (9) due to its non-convexity.

Theorem 4:The aggregate utilityu∗(t) converges to a fixed
point u∗. That is, limt→∞ u∗(t) = u∗. Moreover,u∗(t) is a
non-decreasing sequence int. That is,u∗(t) ≤ u∗(t + 1) for
all t ≥ 0.

Proof: In both phases I and III, because we fixp∗
−i and

q∗ to solve problem (21) forp∗
i , and update the solution of

transmission probabilitiesp∗ in the Gauss-Seidel manner [27,
pp. 185], we can show by [27, Proposition 3.9, pp. 219] that
u∗(t) converges to a fixed point. In each iterationt, since we
are maximizing the objective function

∑

i∈N Ui

(

ri(p
∗, q∗

i )
)

over some variables, while the other variables are fixed, we
must haveu∗(t) ≤ u∗(t + 1) for all t ≥ 0.

Theorem 5:The solution(p∗, q∗) is at least alocal optimal
solution of problem (9).

Proof: Let (p∗, q∗) be a fixed point obtained using Algo-
rithm 1. That is,p∗

i is the optimal solution of problem (21)
givenp−i = p∗

−i andq = q∗. Also, q∗
i is the optimal solution

of problem (25) givenq−i = q∗
−i and p = p∗. (Notice

that from (17)-(19) in the proof of Theorem 1 and (27) in
Theorem 3, we can show thatq∗ will not change even if
we involve problem (25) for listening probability optimization
in phase III.) Since problems (21) and (25) areconvex, the
Karush-Kuhn-Tucker (KKT) conditions are bothnecessaryand
sufficient[26]. (p∗, q∗) must satisfy the union of all the KKT
conditions of problems (21) and (25), for alli ∈ N , which are
equal to the KKT conditions of problem (9). That is,(p∗, q∗)
is a stationary point [28] in problem (9). Because(p∗, q∗) is
obtained by solving a number of minimization problems (21)
and (25), which have the same objective function as problem
(9), it is clear that(p∗, q∗) is at least a local optimal solution
of problem (9).

V. COALITIONAL GAME THEORY FORSINR MODEL

In the previous section, we have assumed that all the
secondary nodes cooperate to maximize the aggregate utility.
This gives rise to the question of what happens if the users

are rational and aim to maximize their own utilities. In fact,
if user i is rational and there is no coordination among the
users, useri may choose to transmit in a particular channelci

by settingp
(ci)
i = q

(ci)
i = 1 andp

(c)
i = q

(c)
i = 0 for c 6= ci in

order to maximizeUi as suggested by the proof of Theorem 1.
Hence, a significant amount of interference will be generated.
In the worst case (e.g., when the number of channelsC is
small), it is possible that the utilities of all the users will be
zero. To prevent this problem, the users may coordinate among
themselves in the form of acoalition. The users belonging to
the same coalition coordinate their transmission and listening
probabilities to maximize the aggregate utility, which is then
divided among themselves.

Example 2:We continue with Example 1, and assume that
the three users have selected channel 1 and transmit with
power P . We assume that their peak data rates areµ1 = 5,
µ2 = 2, andµ3 = 1. If all the users are willing to coordinate
their transmission probabilitiesp, the optimal transmission
probabilities based on throughput maximization (i.e.,α = 0 in
problem (9)) for both the SINR and protocol models are given
by p∗1 = 1, p∗2 = 0, andp∗3 = 0. From (10), the corresponding
utilities areU1 = 5 andU2 = U3 = 0. However, if users 2 and
3 are rational, they may not be satisfied with zero utility. For
the protocol model, users 2 and 3 have nobargaining power
with user 1 to increase their utilities. On the other hand, the
SINR model reveals that users 2 and 3 can threaten user 1 to
transmit simultaneously and jam user 1’s transmission. This
effect is not captured by the protocol model. In the following,
we apply coalitional game theory to study the incentives of
rational user cooperation and the payoff distribution among
the users. We note that coalitions can also be formed in the
protocol model. However, in this case, the significance of the
formation of coalitions may be undermined by the fact that
the protocol model does not capture the cumulative effect of
interference.

A. Coalitional Game

Since the channels are orthogonal, we focus on one partic-
ular channel, and refer to the set of users that have selected
that channel byN for notational simplicity. In this case, the
average data rate of useri in (8) can be simplified to

ri(p) = µipi

∑

M∈Mi

(

∏

m∈M

pm

)(

∏

k∈N\M,k 6=i

(1−pk)

)

, (29)

where we drop the superscript for channelc and the term
for the listening probability. We further restrict our attention
to non-decreasing concave utility functionsUi(ri), where
Ui(0) = 0.

We define the coalitional gameG with transferable utility
[22] as a pair(N , v), whereN is the set of players or the
grand coalition, andv : 2N → R is the value of a coalition
S ⊆ N that the members of the coalition can distribute among
themselves. In our problem, this value is defined as

v(S) = maximize
p

∑

i∈S

Ui

(

ri(p)
)

subject to 0 ≤ pi ≤ 1, ∀ i ∈ S,
pj = 1, ∀ j ∈ N\S.

(30)
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That is, v(S) =
∑

i∈S Ui

(

ri(p
∗(S))

)

, where p∗(S) is the
optimal solution of problem (30). The users within coalition
S coordinate among themselves to maximize the aggregate
utility, subject to theworst-case interferencefrom usersj ∈
N\S when they choose transmission probabilitiespj = 1. All
users in setN\S are not coordinating with the users within
coalitionS. Instead, each userj ∈ N\S transmits withpj = 1
in order to maximize its own utility, becauseUj(rj(p)) is a
non-decreasing function inpj from Lemma 3(a).v(S) can be
obtained from Algorithm 1 with a few minor changes: Choose
C = 1. Run line 13 ifi ∈ S, but replace it with “Setp∗i := 1”
if i ∈ N\S.

The property ofsuperadditivity[22] is often observed in
coalitional games, including gameG. It is defined as follows:

Definition 1: A game is superadditive ifv(S1 ∪ S2) ≥
v(S1) + v(S2), ∀S1,S2 ⊂ N with S1 ∩ S2 = φ.

Theorem 6:GameG is superadditive.

Proof: Let p∗(S1), p∗(S2), and p∗(S1 ∪ S2) be the opti-
mal probabilities maximizingv(S1), v(S2), and v(S1 ∪ S2),
respectively, as defined in (30). ForS1∩S2 = φ, we construct
a vectorp(S1 ∪ S2), where theith element is

pi(S1 ∪ S2) ,







p∗i (S1), if i ∈ S1,
p∗i (S2), if i ∈ S2,
1, otherwise.

Sop(S1∪S2) is feasible in problem (30) withS = S1∪S2.
From (30), we havep∗i (S1) = 1 if i ∈ N\S1. Thus, we have

p∗i (S1)

{

= pi(S1 ∪ S2), if i ∈ S1,
≥ pi(S1 ∪ S2), if i ∈ N\S1.

From Lemma 3(b), we have

ri(p
∗(S1)) ≤ ri(p(S1 ∪ S2)), ∀ i ∈ S1.

SinceUi is a non-decreasing function ofri, we have

Ui

(

ri(p
∗(S1))

)

≤ Ui

(

ri(p(S1 ∪ S2))
)

, ∀ i ∈ S1,

which implies that

∑

i∈S1

Ui

(

ri(p
∗(S1))

)

≤
∑

i∈S1

Ui

(

ri(p(S1 ∪ S2))
)

.

Similarly, we have

∑

i∈S2

Ui

(

ri(p
∗(S2))

)

≤
∑

i∈S2

Ui

(

ri(p(S1 ∪ S2))
)

.

Overall, we have

∑

i∈S1

Ui

(

ri(p
∗(S1))

)

+
∑

i∈S2

Ui

(

ri(p
∗(S2))

)

≤
∑

i∈S1∪S2

Ui

(

ri(p(S1 ∪ S2))
)

≤
∑

i∈S1∪S2

Ui

(

ri(p
∗(S1 ∪ S2))

)

,

which concludes the proof.

B. The Core

To determine thestability of the grand coalition, we use the
solution concept of thecore [22]. It is possible that a subset
of users may opt out of the grand coalition to form a smaller
coalition, if the users in the smaller coalition receive higher
utilities than when they participate in the grand coalition. In
that case, the core isempty. The core is formally defined as
follows:

Definition 2: The core is the set of feasible utility allocation
vectorsU = (Ui, ∀ i ∈ N ) where

Ucore =
{

U :
∑

i∈N

Ui = v(N ),
∑

i∈S

Ui ≥ v(S), ∀S ⊂ N
}

.

(31)

In some special cases, it can be shown that the core is non-
empty. One such special case is when all the users are one-hop
neighbours to each other (i.e., useri is a one-hop neighbour to
userj, ∀ i, j ∈ N , i 6= j, whereone-hop neighbouris defined
in (5)). In this case, sinceMi,SINR andMi,PTC are null sets
∀ i ∈ N from (4) and (6), the SINR model is identical to the
protocol model. So, the average data rate of useri in (29) can
further be simplified as

ri(p) = µipi

∏

j∈N\{i}

(1 − pj). (32)

Theorem 7:If all the users are one-hop neighbours to each
other, then the core is non-empty.

Proof: Since pj = 1, ∀ j ∈ N\S from (30), we have
ri = 0, ∀ i ∈ S ⊂ N from (32) if all the users are one-hop
neighbours to each other, which implies thatv(S) = 0, ∀S ⊂
N . Notice that any vectorU = (Ui, ∀ i ∈ N :

∑

i∈N Ui =
v(N ), Ui ≥ 0, ∀ i ∈ N ) satisfies

∑

i∈S Ui ≥ v(S) = 0, ∀S ⊂
N . So U ∈ Ucore, and the core is thus non-empty.

C. Shapley Value

As a solution concept, the core has a few drawbacks. It can
be emptyand the allocation of payoff according to the core
may beunfair. In Example 2, with the use of the SINR model,
we can show thatv({1, 2})=v({1, 3})=v({1, 2, 3})=5 using
(30). The only allocation of utilities that lies in the core is
U1 =5, U2 =U3 =0. This allocation is stable since no smaller
coalitions can be formed where the members can receiver
a higher payoff than when they are in the grand coalition.
However, it is unfair in the division of the payoff among
the users as it does not take into account the contribution of
each user to a coalition. In the following, we propose to use
the Shapley value[22] to fairly divide the payoff among the
players. Let the total number of users in coalitionS beS = |S|.

Definition 3: The Shapley value is the payoff allocation
vectorφ(v) =

(

φ1(v), . . . , φN (v)
)

, where

φi(v) =
∑

S⊆N\{i}

S!(N − S − 1)!

N !

[

v(S ∪{i})− v(S)
]

. (33)

In fact, φi(v) represents the expectedmarginal contribu-
tion of user i to different coalitionsS without useri. The
Shapley value has a number of nice properties. First, we have
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Fig. 2. Aggregate utility obtained using an exhaustive search and the three-
phase distributed algorithm (i.e., Algorithm 1) based on the multi-channel
SINR model. We can see that Algorithm 1 achieves a near-optimal solution.

∑

i∈N φi(v) = v(N ). Moreover, it is fair in the sense that
users who make the same contribution to different coalitions
receive the same payoff. Mathematically, ifv(S ∪ {i}) =
v(S ∪{j}), ∀S ∈ N\{i, j}, thenφi(v) = φj(v). As we have
discussed in Example 2, with the use of the SINR model,
users 2 and 3 can threaten to leave the coalition to jointly
jam user 1’s transmission. The Shapley value in this case
is φ(v) = (3.33, 0.83, 0.83) and both users 2 and 3 receive
positive utilities. It is worth mentioning that since users2 and
3 have no bargaining power in the protocol model, we can
show that the Shapley value in this case isφ(v) = (5, 0, 0)
and both users 2 and 3 receive zero utility.

In general, the Shapley value is not directly related to the
core. However, the Shapley value lies in the core in some
special cases, including the case where all the users are one-
hop neighbours to each other for our problem.

Theorem 8:If all the users are one-hop neighbours to each
other, then (a)φi(v) = v(N )

N , ∀ i ∈ N , and (b)φ(v) ∈ Ucore.

Proof: (a) If all the users are one-hop neighbours to each
other, we havev(S) = 0, ∀S ⊂ N , from the proof of
Theorem 7. From (33), notice that the only non-zero term
in the summation is given byS = N\{i}. Therefore, we have
φi(v) = (N−1)!(N−(N−1)−1)!

N ! [v(N ) − v(N\{i})] = v(N )
N .

(b) From part (a), we have
∑

i∈N φi(v) = v(N ). Also,
∑

i∈S φi(v) = Sv(N )/N > 0 = v(S), ∀S ⊂ N . From (31),
we know thatφ(v) ∈ Ucore.

Thus, in this case, the payoff allocation vectorφ(v), which
distributes the total payoff equally among the users, is in
the core. Empirical investigations regarding the core and the
Shapley value in the general setting, where not all the users
are one-hop neighbours, are provided in the next section.

VI. PERFORMANCEEVALUATIONS

In this section, we evaluate the performances of Algorithm
1 for the SINR and protocol models, and compare with that
of a heuristic scheme. We also illustrate the significance of
the core and the Shapley value. Unless specified otherwise,
we assume that the secondary nodes are randomly placed in a
50 m × 50 m area. The peak data rate of a user is randomly
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Fig. 3. Convergence of the aggregate utilityu∗(t) using the three-phase
distributed algorithm (i.e., Algorithm 1). Notice that theaggregate utility
obtained in each iteration is non-decreasing. The users probe the channels in
phase I and select the best channel in phase II. In phase III, the transmission
probabilities are adjusted based on the channels selected in phase II.

selected to be between1 Mbps and10 Mbps. For simplicity,
we do not take into account the effect of fading and model
the channel gain asG(c)

i,j = 1/dγ
i,j, wheredi,j is the distance

between the transmitter of useri and the receiver of userj,
and γ is the path loss exponent. We adoptγ = 2. When the
effect of channel fading is considered, Algorithm 1 is still
applicable. In this case, after estimating the channel gainG

(c)
i,j

in every coherence interval, we rerun Algorithm 1 to obtain an
updated solution. The transmit powers of all the users are equal
and set to a value which yields a minimum signal-to-noise-
ratio (SNR) of 10 dB at the receivers. The SINR threshold
is θth

i = θth, ∀ i ∈ N , and is set to0 dB. The convergence
thresholdǫ is set to10−4. All the users have the sameα-fair
utility functions with αi = α, ∀ i ∈ N . For initialization, we
usep

(c)∗
i = q

(c)∗
i = 1/C, ∀ i ∈ N , c ∈ C in lines 1 and 2 in

Algorithm 1.
We first evaluate the optimality of the solution obtained

with Algorithm 1. We consider the case of five users, two
orthogonal channels with identical channel conditions, and
α = 5. The optimal solution under the SINR model is obtained
with an exhaustive search. As shown in Fig. 2, the solution
obtained with Algorithm 1 is near-optimal. In Fig. 3, we
evaluate the convergence of Algorithm 1 forN = 10, C = 3,
and α = 0. From Theorem 4, the algorithm converges to a
fixed point limt→∞ u∗(t) = u∗. Also, the aggregate utility
u∗(t) obtained in iterationt is a non-decreasing sequence,
i.e., u∗(t) ≤ u∗(t + 1). The improvement inu∗(t) in phase
III is more significant than that in phase I. In phase I, the
transmitters may transmit in all channels, i.e., a significant
amount of interference is generated. However, in phase III,
since the users have selected to transmit and listen to only one
channel, the number of potential interferers in each channel
is reduced. As a result, the improvement inu∗(t) is more
significant.

In Fig. 4, we consider the caseN = 10, C = 4, and
α = 0 when the set of data channelsC changes due to
dynamic spectrum leasing. Specifically, we assume that two
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from C and then one data channel is added back toC. We run the three-phase
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point when the setC changes.
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Fig. 5. Average aggregate throughput versus the number of orthogonal
channels available for Algorithm 1 using the SINR model, theprotocol model,
and the MMAC [29]. Notice that the design based on the SINR model achieves
the highest aggregate throughput.

channels are removed fromC when the lease expires, and one
new channel is leased and added back toC later. As we can
see, by running Algorithm 1 based onp∗ from the previous
solution after each change in setC, the solution converges
quickly to a fixed point again and adapts to these dynamic
network changes.

Next, we compare the aggregate throughput achieved with
Algorithm 1 for the SINR model (usingMi = Mi,SINR, ∀ i ∈
N ) and protocol model (usingMi = Mi,PTC , ∀ i ∈ N ), and
the multi-channel MAC (MMAC) protocol [29] forN = 10
and α = 0 averaged over 100 different random topologies
when the number of orthogonal channelsC varies. The
MMAC protocol is a multi-channel extension of the IEEE
802.11 distributed coordination function and is suitable for the
spectrum leasing model in CR networks. In MMAC, the users
first select the channel with the least scheduled traffic, and
then contend for it by using the carrier sense multiple access
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Fig. 6. A CR network with eight users. User 5 generates and receives the
least amount of interference due to its isolated position.
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i∈N φi(v)
and the Shapley valueφ(v) for the secondary users in Fig. 6. Whenθth

is increased,v(N ) is decreased because the interference range is increased.
When θth is increased to15 dB, v(N ) is equally shared among these one-
hop neighbours as stated in Theorem 8. Notice that user 5 has the largest
share of payoff forθth < 15 dB due to its large marginal contribution to
different coalitions.

with collision avoidance (CSMA/CA) protocol. We assume
that the channel is sensed busy if any one-hop neighbour
transmits. In other words, the sensing is based on the protocol
model. Since Algorithm 1 obtains a locally optimal solution
from a given starting point, we execute Algorithm 1 from
thirteen randomly generated feasible starting points (p∗, q∗),
and record the solution that yields the maximum aggregate
utility to obtain a solution that is close to the globally optimal
one. As shown in Fig. 5, whenC increases, less interference is
experienced by each user, so the overall system throughput is
increased. Also, we notice that the design based on the SINR
model always achieves a higher throughput than that using the
protocol model and the MMAC protocol.

Finally, we investigate the payoff distribution for the Shap-
ley value and the existence of the core for the network
scenario shown in Fig. 6. Eight secondary users are randomly
placed in a75 m × 75 m open area,α = 0, and the peak
data rate of each user is fixed to10 Mbps. The minimum
SNR is guaranteed to be at least20 dB and we consider
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different SINR thresholdsθth, e.g., for different bit error
rate requirements. The aggregate utility of the grand coalition
v(N ) =

∑

i∈N φi(v) and the Shapley valueφ(v) are shown
in Fig. 7. By increasingθth, the receivers become less tolerant
to interference from other users, so the interference range
is increased and the spatial reuse factor is reduced. As a
result,v(N ) is reduced as shown in Fig. 7. From (5), when
θth is increased up to a certain value, all users are one-hop
neighbours to each other. This holds true in this setting when
θth ≥ 15 dB. As expected from Theorem 8, all the users
equally share the aggregate utility in this case. Also, notice that
user 5 generates and receives the least amount of interference
due to its isolated position. Thus, it has a large marginal
contribution to different coalitions, and receives the largest
proportion of the payoff forθth < 15 dB. Moreover, it can be
shown that the constraints in (31) can be satisfied and the core
exists in this example for all the values ofθth that we have
studied. However, the Shapley value lies only in the core for
θth ≥ 10 dB, which includes the casesθth ≥ 15 dB where
all the users are one-hop neighbours to each other as stated in
Theorem 8.

VII. C ONCLUSIONS

In this paper, we have studied random access in CR net-
works using the SINR model. For cooperative users in a multi-
channel model, a three-phase distributed algorithm has been
proposed to obtain a near-optimal solution for the formulated
non-convex NUM problem. It converges readily to a close-to-
optimal value even when the set of data channels changes due
to dynamic spectrum leasing. For rational users in a single-
channel model, we have used the core and the Shapley value
to characterize the stability and fair allocation of the payoff
among the users, respectively. To the best of our knowledge,
this is the first work that applies coalitional game theory
to study the incentive issues of rational user cooperation in
random access under the SINR model. In our system model,
we have assumed that (a) the set of usersN is fixed and (b) the
transmission between the transmitter and receiver of each user
is only single-hop. For (a), it can be shown that by running
Algorithm 1 starting from the previous solution afterN has
changed, the solution converges readily again to a fixed point.
For (b), we may consider the multi-hop setting by introducing
binary routing variables and flow conservation constraintsas
in [30]. Interesting topics for future work are the extension
of the proposed framework to include the transmit powers
as optimization variables, a CSMA/CA-based multi-channel
MAC, and rational user cooperation in multiple channels.
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[7] T. Yücek and H. Arslan, “A survey of spectrum sensing algorithms
for cognitive radio applications,”IEEE Communications Surveys &
Tutorials, vol. 11, no. 1, pp. 116–130, first quarter 2009.

[8] W. Wang, B. Kasiri, J. Cai, and A. S. Alfa, “Distributed cooperative
multi-channel spectrum sensing based on dynamic coalitional game,” in
Proc. of IEEE Globecom, Miami, FL, Dec. 2010.

[9] C. Cordeiro and K. Challapali, “C-MAC: A cognitive MAC protocol for
multi-channel wireless networks,” inProc. of IEEE DySPAN, Dublin,
Ireland, Oct. 2007.

[10] H. Su and X. Zhang, “Cross-layer based opportunisitc MAC protocols
for QoS provisionings over cognitive radio wireless networks,” IEEE J.
Select. Areas Commun., vol. 26, no. 1, pp. 118–129, Jan. 2008.

[11] J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A hardware-constrained
cognitive MAC for efficient spectrum management,”IEEE J. Select.
Areas Commun., vol. 26, no. 1, pp. 106 –117, Jan. 2008.

[12] M. Timmers, S. Pollin, A. Dejonghe, L. Van der Perre, andF. Catthoor,
“A distributed multichannel MAC protocol for multihop cognitive radio
networks,” IEEE Trans. on Vehicular Technology, vol. 59, no. 1, pp.
446–459, Jan. 2010.

[13] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans.
Inform. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[14] L. Fu, S. C. Liew, and J. Huang, “Effective carrier sensing in CSMA
networks under cumulative interference,” inProc. of IEEE INFOCOM,
San Diego, CA, Mar. 2010.

[15] A. H. Mohsenian-Rad, V. W. S. Wong, and R. Schober, “Optimal SINR-
based random access,” inProc. of IEEE INFOCOM, San Diego, CA,
Mar. 2010.

[16] O. Goussevskaia, Y. A. Oswald, and R. Wattenhofer, “Complexity
in geometric SINR,” inProc. of ACM MobiHoc, Montreal, Quebec,
Canada, Sept. 2007.

[17] D. Qian, D. Zheng, J. Zhang, and N. Shroff, “CSMA-based distributed
scheduling in multi-hop MIMO networks under SINR model,” inProc.
of IEEE INFOCOM, San Diego, CA, Mar. 2010.

[18] A. H. Mohsenian-Rad, J. Huang, M. Chiang, and V. W. S. Wong,
“Utility-optimal random access without message passing,”IEEE
Trans. on Wireless Communications, vol. 8, no. 3, pp. 1073–1079, Mar.
2009.

[19] ——, “Utility-optimal random access: Reduced complexity, fast conver-
gence, and robust performance,”IEEE Trans. on Wireless Communica-
tions, vol. 8, no. 2, pp. 898–911, Feb. 2009.

[20] A. H. Mohsenian-Rad and V. W. S. Wong, “Distributed multi-interface
multi-channel random access using convex optimization,”IEEE Trans.
on Mobile Computing, vol. 10, no. 1, pp. 67–80, Jan. 2011.

[21] M. Felegyhazi, M. Cagalj, and J.-P. Hubaux, “Efficient MAC in cognitive
radio systems: A game-theoretic approach,”IEEE Trans. on Wireless
Communications, vol. 8, no. 4, pp. 1984 – 1995, Apr. 2009.

[22] M. J. Osborne and A. Rubinstein,A Course in Game Theory. MIT
Press, 1994.

[23] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coalitional
game theory for communication networks,”IEEE Signal Processing
Magazine, vol. 26, no. 5, pp. 77–97, Sept. 2009.

[24] S. Mathur, L. Sankar, and N. B. Mandayam, “Coalitions incooperative
wireless networks,”IEEE J. on Selected Areas in Commun., vol. 26,
no. 7, pp. 1104–1115, Sept. 2008.

[25] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. on Networking, vol. 8, no. 5, pp. 556–567,
Oct. 2000.

[26] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[27] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, 1997.

[28] D. P. Bertsekas,Nonlinear Programming, 2nd ed. Athena Scientific,
1999.

[29] J. So and N. Vaidya, “Multi-channel MAC for ad hoc networks:
Handling multi-channel hidden terminals using a single transceiver,” in
Proc. of ACM MobiHoc, Roppongi, Japan, May 2004.

[30] A. H. Mohsenian-Rad and V. W. S. Wong, “Joint logical topology design,
interface assignment, channel allocation, and routing formulti-channel
wireless mesh networks,”IEEE Trans. on Wireless Communications,
vol. 6, no. 12, pp. 4432–4440, Dec. 2007.



11

Man Hon Cheung (S’06) received the B.Eng. and
M.Phil. degrees in Information Engineering from
the Chinese University of Hong Kong (CUHK) in
2005 and 2007, respectively. He is currently working
towards the Ph.D. degree in the Department of Elec-
trical and Computer Engineering at the University of
British Columbia (UBC). As a graduate student, he
received the IEEE Student Travel Grant for attending
IEEE ICC 2009. He was awarded the Graduate
Student International Research Mobility Award by
UBC, and the Global Scholarship Programme for

Research Excellence by CUHK. His research interests are in the design
and analysis of medium access control protocols in wirelessnetworks using
optimization theory, game theory, and dynamic programming.

Vincent W.S. Wong (SM’07) received the B.Sc.
degree from the University of Manitoba, Winnipeg,
MB, Canada, in 1994, the M.A.Sc. degree from the
University of Waterloo, Waterloo, ON, Canada, in
1996, and the Ph.D. degree from the University of
British Columbia (UBC), Vancouver, BC, Canada,
in 2000. From 2000 to 2001, he worked as a
systems engineer at PMC-Sierra Inc. He joined the
Department of Electrical and Computer Engineering
at UBC in 2002 and is currently an Associate Pro-
fessor. His research areas include protocol design,

optimization, and resource management of communication networks, with
applications to the Internet, wireless networks, smart grid, RFID systems,
and intelligent transportation systems. Dr. Wong is an Associate Editor of
the IEEE Transactions on Vehicular Technologyand an Editor ofKICS/IEEE
Journal of Communications and Networks. He is the Symposium Co-chair of
IEEE Globecom’11, Wireless Communications Symposium. He serves as TPC
member in various conferences, includingIEEE Infocomand ICC.

Robert Schober (S’98, M’01, SM’08, F’10) was
born in Neuendettelsau, Germany, in 1971. He re-
ceived the Diplom (Univ.) and the Ph.D. degrees
in electrical engineering from the University of
Erlangen-Nuermberg in 1997 and 2000, respectively.
From May 2001to April 2002 he was a Postdoctoral
Fellow at the University of Toronto, Canada, spon-
sored by the German Academic Exchange Service
(DAAD). Since May 2002 he has been with the
University of British Columbia (UBC), Vancouver,
Canada, where he is now a Full Professor and

Canada Research Chair (Tier II) in Wireless Communications. His research
interests fall into the broad areas of Communication Theory, Wireless Com-
munications, and Statistical Signal Processing.

Dr. Schober received the 2002 Heinz Maier-Leibnitz Award ofthe German
Science Foundation (DFG), the 2004 Innovations Award of theVodafone
Foundation for Research in Mobile Communications, the 2006UBC Killam
Research Prize, the 2007 Wilhelm Friedrich Bessel ResearchAward of the
Alexander von Humboldt Foundation, and the 2008 Charles McDowell Award
for Excellence in Research from UBC. In addition, he received best paper
awards from the German Information Technology Society (ITG), the European
Association for Signal, Speech and Image Processing (EURASIP), IEEE
ICUWB 2006, the International Zurich Seminar on Broadband Communi-
cations, and European Wireless 2000. Dr. Schober is also theArea Editor for
Modulation and Signal Design for the IEEE Transactions on Communications.


