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Abstract—In this paper, we study the problem of multi- network, e.g., in the form adynamic spectrum leasir{g]—[6]
channel medium access control (MAC) in cognitive radio (CR) in the property model or bgpectrum sensinfy], [8] in the
networks. While most of the previously proposed MAC protocds -, ymons model. In order to implement a scalable system that
for CR networks are heuristic and are based on the simplistic . . . .
protocol model, we design a distributed MAC protocol using 'S_ ad_aptlve to the dynamic network changes in a CR network,
the more accurate signal-to-interference-plus-noise-tio (SINR)  distributedmedium access control (MAC) protocols should be
model. First, we assume that the secondary users are coop-employed by the secondary users.
erative and formulate the problem of assigning transmissio By exploiting multiple orthogonal channels, the overall
and listening probabilities for random access as a non-comx system performance of a CR network can be improved, since

network utility maximization problem. We propose a three- ¢ . take pl imult | ithout .
phase algorithm that converges to a near-optimal solution fer ~ 1@NSMISSIONS Can taxe place simultaneously without ngusi

solving a number of convex optimization problems distributvely. Multi-user interference. Different multi-channel MAC foe

Simulation results show that our proposed algorithm based o cols have been proposed for CR networks. In [9], Cordeiro
the SINR model achieves a higher aggregate throughput than et al. proposed a distributed cognitive MAC protocol that
other schemes which are based on the protocol model. Then,; - des a slotted beaconing period for nodes to negotiate o

we consider the case that the secondary users are rational. &V the ch | Set al d in 1101 t .
use coalitional game theory to study the incentive issues ofser € Channel usage. al. proposed in [10] two sensing

cooperation in a given channel for the SINR model. In particiar, Policies for the physical layer and a packet scheduling-algo
we use the solution concept of the core to analyze the stabyli rithm for the MAC layer of a distributed CR network. Jé

of the grand coalition, and the solution concept of the Shagly al. proposed in [11] a hardware-constrained cognitive MAC
value to fairly divide the payoff among the users. We show tha 1 -o16c0 that coordinates the contention and spectrumeusag
the Shapley value lies in the core when all the users are onep th d Timmetsl din 12
neighbours of each other. We illustrate the Shapley value ah among ggecon_ ary users. 'm 8l.proposed in [12] an
the core with a numerical example. energy-efficient distributed multi-channel MAC protocol fa
multi-hop CR network, which is based on the timing structure

Ind T Cogniti di twork Iti-ch | . .
fidex  STmS—LOgIie (racio  NEWors, mn-cnanne ¢ of the power-saving mode used in the IEEE 802.11 standard.

medium access control (MAC), random access, SINR model, ne

work utility maximization, non-convex optimization, coalitional In the throughput analysis of multi-channel MAC protocols,
game theory. such as [10], [12], thprotocol modebr unit disk mode[13] is
widely used to account for the effect of multi-user inteefece
|. INTRODUCTION due to its simplicity in characterizing the physical layender

H1e protocol model, a transmission is successful if theivece
s within the transmission range of its intended transméted
Rgtside the interference range of other transmitters. Newe

. . . In, reality, the interference at the receiver is tbemulative
problem of spectrum sharing between the primary (Ilcenseagwer rgceived from other nodes that are concurrently trans

users and secondary (unlicensed) users,ctiramons model POW . . i .
and theproperty mode[3] have been proposed. In the committing. As a result, theignal-to-interference-plus-noise-ratio
mons model, the secondary users access the spectrum h{)?élgl?) fmodebr physical moieE13]UcP:jarai;erleelilg1e ef;e(it

opportunisticallyso that they do not cause interference to thg 'Nierierence more accurat€ly. Under the mode’, a

primary users. In the property model, the primary users atlrgnsmlssmn is successful if and only if the SINR at the

allowed totrade some of their temporarily unused spectrunmtet?]dedéecf“éer IS glblmt/_e a przdeflggd thrishold thgt ds.ﬁ)er?t
to the secondary users in exchange for monetary return. € adopted modulation and coding schemes. Despite 1ts

this paper, we consider the setting where a set of chann!gllgl"er complexity, the SINR model is getting more attention

from the primary network are available to the secondary rec?”t years due to its higher prac_t|cal|ty and accuracy |
modeling. Some recent works have investigated contention-
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work of network utility maximization (NUM) [15], [18]-[2Q] R
In particular, we extend the mathematical models in [15] and
[20], where the former focused on the single-channel SINR
model, while the latter focused on the multi-channel protoc

model. The resultingon-convexptimization problem is more

difficult to solve than the problems in [15] and [20]. In
particular, our problem involves the dimension of channel
selection which was absent in [15], and entails a more ateura N
and complex interaction among the users due to the SINR D

model which was absent in [20].
- ig. 1. A CR network with set of uset = {1, 2, 3}, where the triangles
In the formulation of the NUM prOblem’ we assume th‘”ﬁnd circles represent the transmitters and receiversectggly. The set of

all the secondary users aceoperative Thus, an interesting available orthogonal data channels= {1,2} is provided by the primary
question is what happens if the users @tional and they aim BS. p!*) andq(® denote the transmission and listening probabilities far us
to maximize their own utilities? Previous works, such ag|[21¢ in channelc, respectively.

usenon-cooperative game theoty analyze the behaviour of
rational users in CR networks. However, this approach issmor
appropriate for analyzing the behaviourin@lividual rational
users. To analyze whatgroup of rational users can achieve As shown in Fig. 1, we consider a CR network with several
under the SINR model, where the effect of interference ¢condary nodes located in a neighbourhood, where a set
cumulative,coalitional game theory22] is a more suitable of orthogonal data channets and one control channel are
tool. Coalitional game theory has found many applications Pbtained from the primary base station (BS), e.g, in the form
communication networks [8], [23], [24]. In [24], it was apgd Of spectrum leasing. The data channels are used for data
to study the behaviour of users under the SINR model. HoWansmissions, and the control channel is used for the exggha
ever, [24] investigated cooperative communications, wagr Of control messages. The total number of data channels is
we consider random access in CR networks. To the best of 6t |C|. We consider only single-hop transmissions between
knowledge, this work is the first paper that applies coaliio the secondary nodes. We defié as the set of one-hop

game theory to study random access under the SINR mod#éRnsmitter/receiver pairs or links in the CR network, angl w
refer to each transmitter/receiver pair asuser The total

In summary, the contributions of our work are as follows: .
4 number of users i& =|A\/|. We adopt a slotted MAC protocol,

« We first assume that the secondary users are cooperativeere time is divided into equal time slots. The users attemp
We formulate the problem of random access with multipl® access the shared channel at the beginning of each time slo
channels as a NUM problem using the SINR mode#&ccording to theitransmission probabilitiesn each channel.
where the optimization variables are the transmission af#iat is, each usef € N can access a channelwith a
listening probabilities of the users. certain transmission probabilitgf.c), and we define a vector

o We propose a distributed three-phase algorithm usimpg= (PEC), Vi € N,c € C). Also, we introduce a vector

convex optimization and the coordinate ascent method §o = (qfc), Vi € N,c € C), where q(C) is the listening

3

obtain a near-optimal solution for the non-convex NUMbrobability of receiveri in channele. We have the following

——> Data Channel 1
"> Data Channel 2

Primary BS

Il. SYSTEM MODEL

problem. constraints:
o We then study the case where the secondary users are ra- () () )
tional. We formulate the problem as a coalitional game to Zpi <1 and Zqi <L VieN @)
ceC ceC

analyze the interactions among the users under the SINR
model. We apply the solution concepts of tbaere and For the SINR modelif useri: € A/ chooses to transmit in
the Shapley valug22] to characterize the stability andchannele € C, then the SINR at receiveris given by
fair allocation of the aggregate utility among the rational P
users, respectively. We show that the Shapley value lies 6\ = ﬁ7
in the core when all users are one-hop neighbours. Lt

« Simulation results show that the proposed scheme based . . ()
on the SINR model achieves a higher aggregate throu%_ereﬂ- is the transmit power of user G;;” is the channel

)

put than other schemes which are based on the proto gi'n from the transmitter of userto the receiver of user
{ In channelc. Ll(-c) and nl(.c) are the interference and noise
powers received by userin channele, respectively. Given

that receiveri has tuned to channet for reception, the
The rest of the paper is organized as follows. The systesammunication of user is successful if

model. A numerical example is given to illustrate bot
the Shapley value and the core.

model is described in Section Il. We formulate the random JXels

. : ‘o (c) th (c) i (o)
access problem in Section Il and present our distributed 0,7 >0" & 1’ < gin n;’, (3)
algorithm in Section IV. The coalitional game is discussed i

in Section V and simulation results are presented in Sectiaere 61" is the SINR threshold. LeN; be the power set
VI. Conclusions and future work are given in Section VII. (i.e., the set of all subsets) 0¥\ {i}. As an example, for



N = {1,2,3}, No = {{},{1},{3},{1,3}}. Assuming that Whereul(.c) is the peak data rate for uséein channele, and
the transmit power$P;, Vi € N) are fixed, we defian(.c) vectorg; = (qfc), Vce C) contains the listening probabilities
as a set where each element is a set of users that can tranefmieceiver: in all the channels. Givep andg;, we have the
simultaneously with user without affecting the reception of following lemma, which states that the average datarate
receiveri in channek (i.e., 6! can be achieved). The ﬂmf.c) over-estimated when the protocol model is used.

obtained with the SINR model is given by Lemma 2:7(p, q;, M;.prc) > 7i(p, q;, Mi s1N R)-

Proof: From (8) and Lemma 1, we have

PG
MYyyn = {MEN: Y PuGl) < =0 —9) () 0 () (e
SINE { m% i 7i(p,q;, Mi.prc) = 1i(p,q;, Mi sinr) + ZME 'piq
ceC
If the protocol modelis used, only pairwise interference is
consid_ered. Usem is aninterfgreror one-hop neighbouto = Z H pto) H (1 _pgf))
user: if the SINR due to the interference from user only MM, \M() meM kEAN\M, k£
is below the SINR threshold. That is, prTe LS
> 7ri(p,q;, Mi,sINR). |
PG " -
ﬁ . (5) For the rest of the paper, we assume that Mﬁ@ in (4)
PGy + 1y and (6) are given, so we write;(p, q;, M,) asr;(p,q,) for
c . . L simplicity.
The setME ) obtained with the protocol model is given by plictty
© © P-G(.?) © IIl. NETWORKUTILITY MAXIMIZATION
M; prc = {M ENit PGy < —etﬁ” g, Vm e M} We now formulate the multi-channel random access prob-

(6) lem as a NUM problem with vectogs andq as the optimiza-
Intuitively, more users are allowed to transmit simultandion variables. The NUM problem is given by
ously in the protocol model than in the SINR model. This is maximize Z Us(ri(p. 1))
confirmed by the following lemma. P, q LU

ieN
Lemma 1:M{%, v C M\ e subjectto Y.cenl” <1, Yoced? <1, VieWN,
e, (e) (o) ;

Proof: Observing the fact tha} ., PmGﬁ,iZ < % — O<pita =1 vieNc e, 9)
n{? in (4) implies P,,G'*) < %}” —n!? ¥m e Min (6), whereU;(ri(p,q,)) is a concave and non-decreasing function
- - c ! c in r;(p, q;). However, due to the product form of the variables
it follows directly thath(.,gINR C ME}TC. [ |

) . ! . in (7), problem (9) isnon-convexeven if the utility functions
Example 1:We consider Fig. 1 Whgre the transmit POWETZ e concave. As a result, the problem is difficult to solve in
of all users are the same. Assuming that all users hav

) . ggneral. An example of a concave utility function useful for
selected channel 1, at a certgm transmit power !e!v,eINe {esource allocation is the-fair function [25] defined as
can observe the following: Since transmitter 1 is close to

receivers 2 and 3, user 1 interferes with users 2 and 3. . (1—a;)"'ri ™ if a; € [O,l)u(l,oo),v, N
However, since transmitters 2 and 3 are far away from recei el(m_ Inr;, if a; =1, reN
1, users 2 and 3 do not interfere with user 1 as long as (10)

they do not transmit simultaneously. Users 2 and 3 are far|ntuitively, r; increases Whequ‘:) increases or whep'®’
from each other and do no(tlinterfere with each other. For ti@creases; +# i. This is confirmed by the following lemma:
protocol model, we haved|'pr = {{},{2}.{3}.42.3}L,  Lemma 3:For i ¢ N, we have: (a)r;(p,q;) is a non-

1 1
MY e = {{},{3}), and My = {{},{2}}. However, decreasing function gf®), V¢ € C.

the protocol model does not take into account that user 1 M@ 7:(p.q;) is a non-increasing function of)(c) Vi €
. .. (3 y 4 7
be interfered when bot? )users 2and 3 tran:smmjltar}e)cmsly M\{i},ceC
. 1 o 1 5 .
In(tlr)ns case, V\(lle) haVMLS”V(ff)_ {{}’{2(}1’){3}} <My pre, Proof: (a) From (8), »; can be written in the form
My sivr = Ms pros @ndM; gy g = My pre- (0, q;) = Y ee w70\, where
The probability of successful transmission of usgein

channele is given by c e) (c ¢ c
v =" Y <Hp5n)> I -5

suce,(c c) (c c c M MEC) meM kEN\M, k#i

piee = pig @ N ( II pSn)>< 11 (1—p;(c))>- ©

Mem©\meM kEN\M, ki Since:z:z(.c) > 0 and it is independent olf;z(.c), ri(p,q;) is a
(7)  non-decreasing function (pf-c), Veel.
We defineM; = {M{” V¢ € C}. The average data rate of (b) Let; c NM\{i} be given. We first define two sets of
users is given by users that exclude useisand j:

_ N (o), suee(e) i
ri(p, g Mi) = Y " p; , (8) 39 = {3:SGN\{i,j},SGMf.C),Su{j} eM§C>}
ceC ’



Sincep is not in the form as shown on the left hand side
of (11), there exists: # ¢; such thatpl(.c) > 0. We define

and
(¢) _ . .o (e) . (c)
S = {8 :S e M\{i,j}, S e M, SU{j} ¢ M, }
p* = (p\?%, Vi € N,c € C), where

From (8), we can write; as

c c ( ) H _ .
ripa) = > up% e = Jpis ife=c, (17)
ceC ! 0, otherwise.
[ S (Hp(c)> < I «a _pl(f))> + Notice thatr; in (16) is independent of'® for ¢ # ¢;, and
Ses© \ses KEN\S,k#i,j it is a non-increasing function qf () ,VjeN\{i},ceC as
) shown in Lemma 3(b). Thus, we have
Z H p(c) H (1 _p(c)) (1 _p(_c)) N % .
o k J ’ Tz(pqu)grl(p 7qi)v V’LGN (18)
SESEC,-) sES keEN\S, k#i,j
7 SinceU;(r;) is a non-decreasing function in, Vi € N, we
which is a non-increasing function @\é‘:), Veel. m have
Although it is possible that the users may occupy more > Ui(rilp.q})) < D _ Ui(ri(p™.q}))- (19)
than one channel at an optimal solution, we can show based ieN ieN

on Lemma 3 that we can always find another optimal solutigtombining (15) and (19), we have
where each user occupies only one channel.
Theorem 1:A global optimal solution of problem (9), Y Ui(ri(p,a,)) <> Ui(ri(p.q})) < > _ Ui(ri(p*,q}))

(p*,q"*), is in the form: ieN ieN ieN (20)
(@« | €10,1], if c=g¢, ()% 1, if e=g¢, To sum up, given any feasible poip, g), we can always
i -0 otherwise dg” = 0. otherwise.  find another feasible pointp*, g*) in the form of (17) and

(11) (14), which yields an objective value that is not smallemtha
that for (p, g) and each user occupies only one channel. The

wherec; is the channel chosen by user
result thus follows. [ |

Proof: Assume thatp, q) is feasible in problem (9), byt

and q are not in the form of (11). From (8), we have
IV. THREE-PHASE DISTRIBUTED ALGORITHM USING

c)
(P, q;) Z S; (12) SEQUENTIAL CONVEX OPTIMIZATION
cee In this section, our goal is to solve non-convex NUM prob-
where lem (9). We propose a low-complexity three-phase algorithm
where the transmitters and receivers have to solve a number
( ) ( ) ( ) Z ( H Pﬁ?)( H (1- p( ))>- of convex optimization problems distributively. Convenge
Mem(® \meM keN\M, ki and local optimality of the solution are guaranteed.
We define
i = argmeagcs( (p), Vi e N, (13) A. Transmission Probability Optimization
(o) We define the vectop, = (p, © vee C). Transmitteri €
andq; = (¢;"", Vi € N,c €C), where N needs to solve the foIIowmtpcaI optimization problem,
L i e e which has the same objective function as problem (9):
qZ(C)* — ) .’L7 (14)
0, otherwise. < )
maxunlze ZO pZ
We have cec
i) = s P)d” < 5 (p) = rilp.a}). Vie N, + > U (Z (v§?p§°> i (1 —pE”)))
ceC JEN\{i} ceC

where the inequality in the mlddle |s due to the definition ofsubjectto >- .. Pl(-c) <1, 0< Pl(-c) <1,Vced,
¢; in (13) and the fact thazcec ql * < 1. SinceU;(r;) is a
non-decreasing function in;, Vi € N, we have

Z Ui(ri(p.q;)) < Z Ui(ri(p,q;))- (15) of9 = 19 ¢ Z ( H pS,?) H (1 _p;:)) 7
ieN ieN MeME“) meM EEN\M ki
Given g*, we have (22)

ripg;) = ppl o = fl9pgl

< 3 <Hp5:;>> I a-»).ae) x> < I1 pS,?)( II (1—p§f))>,(23)

MEMEC” meM keEN\M, k#i MEM§C):1'€M meM\{i} keEN\M,k#j

(21)
where



and Algorithm 1 Three-Phase Distributed Algorithm to Obtain a
© © (@) (©) Near-optimal Solution for Problem (9).

Wi = M P, 1: Initialize p* such thaty . p{”" < 1,¥i € N, and0 <
P <1VieN,ceC
x Y ( 11 p“’) 11 (1 —P;(f)) .(24) 2. Initialize = such thaty _.¢(¥" < 1,¥i € A, and0 <
MeM(?): ig M \mEM KEN\M k#j,i ¢ <1,VieN,cecC
3: Set the convergence thresheld> 0
The coefficientso!”, J( and wj ) should be computed by 4: Set the iteration counter:= 1
transmitteri based on the broadcast messages from othér Setu := —oo and A := oo
transmitters and receivers + Phase |: Channel Probing
) 7 while A > ¢
Theorem 2:Problem (21) is @&onvexoptimization problem 8:  for each transmittei € A/
in p,. 9: IfteT; the(nc) _
Proof: First, the constramts in problem (21) are linear'"" Cam”'ateogc YeecCusing (22)
Also, aso\”, v'?, ) andw'; are independent of.”’, and since L Calculateu; it Vj € N\{i}, ¢ € C using (23)
the arguments within the utility functions are Imearml the ig galculatewll , ¥j € N\{i}, c € C using (24)
N L . : olve problem (21) to obtain the solutigsf
objective function is concave ip; [26, pp. 79]. Thus, problem 4. Broadcastp; to other users using the control channel
(21) is a convex optimization problem. H 15 Setu*(t) := 3, Ui (ri(p*, q}))
Hence, we can solve problem (21) by using fheerior 16: Sett:=t+1
point method26]. i end if
18:  end for
19: SetA :=u"(t) —uw andu := u*(¢)
B. Listening Probability Optimization 20: end while

L . .. 21: Phase II: Channel Selection
Receiveri € N needs to solve the followinigcal optimiza- 55 for each receiver € A

tion problem with the same objective function as problem (93: It t € 7; then

24: Calculatea VC € C using (26)
) (¢) 25: Setc; ;= argmaxcec a( )
maxnnlze a; U; (ri(p,q;
(Zc % ) _ /\/Z i (3. a;)) 26: Setq!”*, V¢ € C using (27)
. °c () 7€ (3{1} 27: Broadcaslg; to other users using the control channel
subjectto > .ccq <1, 0<¢"” <1,Vcel, 28: Setp!@* .= 0,if c £ ¢, VeeC
(25) 20 setu'(t) = 3,0 Us(ri(p", a))
where 30: Sett:=t¢t+1
3L end if
() () () 32: end for
a; Nz Pl Z ( H P(C)> H (L=p;") |- 33 Phase Ill: Transmission Probability Allocation
MeM\mEM EEN\M ki 34: SetA := 0

(26) 35: Repeat Lines 7 to 20 once

Theorem 3:Let ¢; = argmax,.cc a( ). A closed-formsolu-
tion of problem (25) is

q_; =(qy,---,9,_1,49;11,---,4qy)- Considering transmitter
i, the basic idea of this method is that we fix ; and
q, and maximize the aggregate utility’, ., U;(r:(p,q;))
Proof: First, notice thaia{” and >ienngiy Ui (ri(p,a;))  with respect top; (i.e., problem (21)). Similarly, for receiver
are independent aft”). Sincel; is a non-decreasing function,i, We fix p and g_;, and maximize the aggregate utility
problem (25) is equivalent to the following linear programzzeNU (ri(p,q;)) with respect tog; (i.e., problem (25)).

1, ife=g¢,

(e)x _
% _{ 0, otherwise. (27)

ming problem The updates of the solutions are carried sutcessively
Notice that the solution of problem (25) as stated in Theorem
(e) (o) . .
maxémlze Z a; "q; 3 represents a channel selection. Once the channel isexblect
) ' ceC © (28) by the receiver, the transmitter will not attempt to trartsimi
subjectto Y .coq; <1, other channels, to which the receiver is not listening. As a
0< q§0> <1, Veel, result, the receivers should defer their decisions of selgc

a channel until after the transmitters have coordinated the

transmission probabilities.

o _ With this idea, we propose our Algorithm 1 with three

C. Three-Phase Distributed Algorithm phases. In phase |, the receivers are initialized to listen t
Having introduced the local optimization problems for theach channel with a certain probability. The transmittBent

transmitter and receiver of usere N, we are now ready probe the channels by adjusting their transmission prébabi

to present Algorithm 1 for obtaining a near-optimal soluities until the aggregate utility converges. In phase lichea

tion of problem (9) based on theoordinate ascent methodtransmitter/receiver pair selects the channel that re$ulthe

[27, pp.207]. Letp_; = (py,...,P;_1,Pis1,----Pxn) @nd highest average data rate. The reason for choosing only one

the solution of which is given by (27). |



channel is given by Theorem 1. In phase lll, based on thase rational and aim to maximize their own utilities. In fact,
channel selection, the transmitters adjust their trarsioms if user: is rational and there is no coordination among the
probabilities again until the aggregate utility converges users, usef may choose to transmit in a particular chansel

In Algorithm 1, 7; is the set of time slots in which userby settingpgcf’) = qf‘”') =1 andpgc) = q§0> =0forc#¢; in
i € N solves the local optimization problem. Also, we userder to maximizd/; as suggested by the proof of Theorem 1.
variableu to keep track of the aggregate utility achieved ience, a significant amount of interference will be genekate
the previous iteration, and we let(¢) be the aggregate utility In the worst case (e.g., when the number of chandels
achieved in iteratior. The algorithm transitions from phase Ismall), it is possible that the utilities of all the users|Iviie
to phase Il and from phase Il to the exit if the differente=  zero. To prevent this problem, the users may coordinate gmon
u*(t) — u is less than the predefined convergence threshakbmselves in the form of eoalition. The users belonging to
e. The complexity of Algorithm 1 is relatively low becausethe same coalition coordinate their transmission andnlistg
it involves solving only convex problem (21) and evaluatingrobabilities to maximize the aggregate utility, which e
closed-form equation (27). Transmitterand receiveri need divided among themselves.
only to broadcast the solutions; and q; in (21) and (27)  Example 2:We continue with Example 1, and assume that
using the control channel, respectively. Thus, the sigmall the three users have selected channel 1 and transmit with
overhead grows linearly with the number of usérs power P. We assume that their peak data rates @are= 5,

We have the following theorems that show the convergenge= 2, and u3 = 1. If all the users are willing to coordinate
of Algorithm 1 and the local optimality ofp*, ¢*) obtained by their transmission probabilitiep, the optimal transmission
Algorithm 1. Notice that even in a centralized setting, ¢hisr probabilities based on throughput maximization (ice= 0 in
no guarantee that we can obtain the globally optimal satutigproblem (9)) for both the SINR and protocol models are given
of problem (9) due to its non-convexity. by pi =1, p5 =0, andp; = 0. From (10), the corresponding

Theorem 4:The aggregate utility.*(t) converges to a fixed Uutilities areU/; = 5 andU, = Us = 0. However, if users 2 and
point u*. That is,lim; ., u*(t) = u*. Moreover,u*(t) is a 3 are rational, they may not be satisfied with zero utilityr Fo
non-decreasing sequencetinThat is,u*(t) < u*(t + 1) for ~the protocol model, users 2 and 3 havebagaining power
all t > 0. with user 1 to increase their utilities. On the other hané, th
Proof: In both phases | and Ill, because we fix , and SINR mod_el reveals that users 2 and 3 can threat.en_ user 1_to

ftransmit simultaneously and jam user 1's transmissions Thi

q* to solve problem (21) fop;, and update the solution o . i
transmission probabilitiep* in the Gauss-Seidel manner [27’eﬁect is not captured by the protocol model. In the follogyin

pp.185], we can show by [27, Proposition 3.9, pp. 219] thi¢e apply coalitional game theory to study .the. ingentives of

w*(t) converges to a fixed point. In each iteratigrsince we rational user cooperation and the payoff distribution agon

are maximizing the objective functiol, ., U; (r,(p* q*)) the users. We note that coalitions can also be formed in the
ic 7 7 y Yq

over some variables, while the other variables are fixed, \HéOtOCF" model. Hc_)wever, in this case, the significance ef th
must haveu*(t) < w*(t + 1) for all ¢t > 0. formation of coalitions may be undermined by the fact that

. . . the protocol model does not capture the cumulative effect of
Theorem 5:The solution(p*, ¢*) is at least docal optimal

. interference.
solution of problem (9).

Proof: Let (p*, ¢*) be a fixed point obtained using Algo-a  coalitional Game
rithm 1. That is,p} is the optimal solution of problem (21)

givenp_, — p*, andq — ¢*. Also, ¢* is the optimal solution Since the channels are orthogonal, we focus on one partic-

of problem (25) giveng_;, = ¢*, andp = p*. (Notice ular channel, and refer to the set of users that have selected

that from (17)-(19) in the proof of Theorem 1 and (27) ir%hat channel byV for notational simplicity. In this case, the

Theorem 3, we can show that" will not change even if average data rate of usein (8) can be simplified to

we involve problem (25) for listening probability optimizan o

in phase I1l.) Since problems (21) and (25) aenvex the ri(p) = wipi 3 ( 11 pm>< 11 }(l_pk)>’ (29)
Karush-Kuhn-Tucker (KKT) conditions are batlecessarand MEM SmeM RENAM ke
sufficient[26]. (p*, ¢*) must satisfy the union of all the KKT Where we drop the superscript for chanrebnd the term
conditions of problems (21) and (25), for ale A/, which are for the listening probability. We further restrict our atten
equal to the KKT conditions of problem (9). That i@*, ¢*) © non-decreasing concave utility functiori (r;), where
is a stationary point [28] in problem (9). Becauge', ¢*) is  Ui(0) = 0.

obtained by solving a number of minimization problems (21) We define the coalitional gamg with transferable utility
and (25), which have the same objective function as probldd?] as a pair(\,v), where N is the set of players or the

(9), it is clear thaip*, ¢*) is at least a local optimal solutiongrand coalition andw : 2V — R is thevalue of a coalition
of problem (9). m S C N that the members of the coalition can distribute among

themselves. In our problem, this value is defined as
V. COALITIF)NAL GAME THEORY FORSINR MODEL v(S) = maximize Z Ui(ri(p))
In the previous section, we have assumed that all the p ies

secondary nodes cooperate to maximize the aggregatg.utilit subjectto 0 <p; <1, Vies,
This gives rise to the question of what happens if the users pj =1, VjeNS.

(30)



That is, v(S) = > ,c5 Ui(ri(p*(S))), wherep*(S) is the B. The Core
optimal solution of problem (30). The users within coalitio 14 getermine thestability of the grand coalition, we use the
S coordinate among themselves to maximize the aggregaifution concept of theore [22]. It is possible that a subset

utility, subject to theworst-case interferencBom users;j €
M\S when they choose transmission probabilities= 1. All

of users may opt out of the grand coalition to form a smaller
coalition, if the users in the smaller coalition receive Heg

users in set\V'\S are not coordinating with the users withinijities than when they participate in the grand coalititm

coalitionS. Instead, each usgre N'\S transmits withp; = 1

that case, the core ismpty The core is formally defined as

in order to maximize its own utility, becaudé;(r;(p)) is a fgjiows:

non-decreasing function ip; from Lemma 3(a)»(S) can be
obtained from Algorithm 1 with a few minor changes: Choose

C = 1. Run line 13 ifi € S, but replace it with “Sep; := 1"
if i e M\S.

The property ofsuperadditivity[22] is often observed in
coalitional games, including gani It is defined as follows:

Definition 1: A game is superadditive ib(S; U S3) >
v(81) +v(82),VS81, S C N with §§ NSy = ¢.

Theorem 6:Gameg is superadditive.

Proof: Let p*(S1),
mal probabilities maximizing)(S), v(S2), andv(S; U Ss),

respectively, as defined in (30). F6r NSz = ¢, we construct

a vectorp(S; U S»), where thei element is

pf(81)7 if 1 € 81,
pi(S1US) = ¢ pi(Sa), ifi €Sy,
1, otherwise.

Sop(S1US,) is feasible in problem (30) witls = S; USs.

From (30), we have (S;) =1 if i € N\S;. Thus, we have

=pi(S1 U S2),
> pi(S1USy),

if 4 €S,
IfZEN\Sl

v {
From Lemma 3(b), we have
ri(P*(S1)) < ri(p(S1US2)),Vi € Sy.
SinceU; is a non-decreasing function of, we have

Ui(ri(p*(S1))) < Ui(r:i(p(S1 USs))), Vi € Si,

which implies that

Z Ui(ri(p*(81))) < Z Ui (ri(p(S1 U 82))).

€S €Sy

Similarly, we have

Z Ui(ri(p*(S2))) < Z Ui (ri(p(S1 U 82))).

€S i€Ss

Overall, we have

Y Ui(ri(p"(81)) + ) Ui(ri(p*(S2)))

1€ST 1€S2

< Ui(rp($1US)) < > Ui(ri(p*(S1USy))),
1€S51US 1€S51US2

which concludes the proof. [ |

p*(S2), andp*(S; U Ss) be the opti-

Definition 2: The core is the set of feasible utility allocation
vectorsU = (U;,Vi € N') where

Upore = {U Y U= o), S Ui 2 w(S), VS © N}.
iEN €S (31)

In some special cases, it can be shown that the core is non-
empty. One such special case is when all the users are one-hop
neighbours to each other (i.e., ugaes a one-hop neighbour to
userj, Vi,j € N, 1 # j, whereone-hop neighbouis defined
in (5)). In this case, sinc®l; s;yr andM; prc are null sets
Vi e N from (4) and (6), the SINR model is identical to the
protocol model. So, the average data rate of user(29) can
further be simplified as

rilp) =mpi [ (1—py).
JEN\{i}
Theorem 7:If all the users are one-hop neighbours to each
other, then the core is non-empty.

Proof: Sincep;, = 1,Vj € N\S from (30), we have
r; =0,Vi e S c N from (32) if all the users are one-hop
neighbours to each other, which implies thés) = 0, VS C
N. Notice that any vectol/ = (U;,Vi e N : >, Ui =
v(N), U; > 0,Vi e N) satisfiesy ;s U; > v(S) =0,VS C
N.SoU € Uy, and the core is thus non-empty. [ |

(32)

C. Shapley Value

As a solution concept, the core has a few drawbacks. It can
be emptyand the allocation of payoff according to the core
may beunfair. In Example 2, with the use of the SINR model,
we can show that({1,2})=v({1,3})=v({1,2,3}) =5 using
(30). The only allocation of utilities that lies in the core i
U, =5, Uy=Us=0. This allocation is stable since no smaller
coalitions can be formed where the members can receiver
a higher payoff than when they are in the grand coalition.
However, it is unfair in the division of the payoff among
the users as it does not take into account the contribution of
each user to a coalition. In the following, we propose to use
the Shapley valug22] to fairly divide the payoff among the
players. Let the total number of users in coalit®ihe S = |S].

Definition 3: The Shapley value is the payoff allocation
vectorg(v) = (¢1(v),...,én(v)), where

> HEE v -us). @
SCN\{i} '

¢i(v) =

In fact, ¢;(v) represents the expectedarginal contribu-
tion of user: to different coalitionsS without useri. The
Shapley value has a number of nice properties. First, we have
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Fig. 2. Aggregate utility obtained using an exhaustive cfeand the three-

phase distributed algorithm (i.e., Algorithm 1) based oa thulti-channel Fig. 3. Convergence of the aggregate utility () using the three-phase

SINR model. We can see that Algorithm 1 achieves a near-aptiolution.  distributed algorithm (i.e., Algorithm 1). Notice that theggregate utility
obtained in each iteration is non-decreasing. The usefsepifte channels in
phase | and select the best channel in phase Il. In phaséélransmission

Zie/\/ ¢l(v) _ v(./\/) Moreover, it is fair in the sense thatprobabmtles are adjusted based on the channels selattplaise II.

users who make the same contribution to different coaktion

receive the same payoff. Mathematically, «fS U {i}) = L
W SULY), VS € NF\){Zj}, thenes (v) — (b:/(v)t. As vEe}Lave selected to be betweenMbps and10 Mbps. For simplicity,

discussed in Example 2, with the use of the _S_INR mo_d © dﬁ not ;[ake_ |nt;(?)cci)unt;[he erl:fect Of Tad'r?g (?nd model
users 2 and 3 can threaten to leave the coalition to joinfi)¢ channel gain a&; ; = 1/d];, whered; is the distance
jam user 1's transmission. The Shapley value in this cadgWeen the transmitter of userand the receiver of usey,
is ¢(v) = (3.33,0.83,0.83) and both users 2 and 3 receivéNd 7 is the path loss exponent. We adopt= 2. When the
positive utilities. It is worth mentioning that since usérand €Tect of channel fading is considered, Algorithm 1 is still
3 have no bargaining power in the protocol model, we catPPlicable. In this case, after estimating the channel G%Tfi
show that the Shapley value in this casegi®) = (5,0,0) M €Vvery cohe_rence interval, we rerun Algorithm 1 to obtain a
and both users 2 and 3 receive zero utility. updated solution. The transmit powers o_f all the_users anele_q
In general, the Shapley value is not directly related to tf¥1d Set to a value which yields a minimum signal-to-noise-
core. However, the Shapley value lies in the core in sonﬁ%t'o (SNR) of 10 dB at the receivers. The SINR threshold

th _ pth . H
special cases, including the case where all the users are dpd: = 0, Vi € N, ?”d is set ta) dB. The convergence
hop neighbours to each other for our problem. thresholde is set to10~*. All the users have the samefair

. tility functions with o; = «, Vi € N. For initialization, we
Theorem 8:If all the users are one-hop neighbours to eac ()% _ (e)* . - :
o(N) - Usep,”" =¢“"=1/C,Vi € N,c € Cinlines 1 and 2 in
other, then (ay;(v) = =52, Vi € N, and (b)p(v) € Ueore. AIgorzithm 1 ¢

Proof: (a) If all the users are one-hop neighbours to each\yg first evaluate the optimality of the solution obtained
other, we havev(S) = 0,vS C N, from the proof of \yih Algorithm 1. We consider the case of five users, two
Theorem 7. From (33), notice that the only non-zero tergihogonal channels with identical channel conditionsd an
in the summation is given b§ — N\ {i}. Therefore, we have , _ 5 The optimal solution under the SINR model is obtained

. _ (N=-DI(N—=(N-D)-=1)! _ . ) . . ) ) .
di(v) = N [vN) —vWN\{i}D)] = =5~ with an exhaustive search. As shown in Fig. 2, the solution

(b) From part (a), we havg_,.\ ¢i(v) = v(N). AlsO, gptained with Algorithm 1 is near-optimal. In Fig. 3, we
Yies @i(v) = Sv(N)/N >0 =0(S), VS C N. From (31), eyaluate the convergence of Algorithm 1 far= 10, C'=3,
we know thatg(v) € Uecore- B anda = 0. From Theorem 4, the algorithm converges to a

_Thus, in this case, the payoff allocation veci(v), which fixed point lim;_. u*(t) = u*. Also, the aggregate utility
distributes the total payoff equally among the users, is ifx(+) obtained in iterationt is a non-decreasing sequence,
the core. Empirical investigations regarding the core drel t; o u*(t) < u*(t + 1). The improvement inu*(t) in phase
Shapley value in the general setting, where not all the usgfiSis more significant than that in phase 1. In phase I, the
are one-hop neighbours, are provided in the next section. ransmitters may transmit in all channels, i.e., a significa

amount of interference is generated. However, in phase lll,
VI. PERFORMANCEEVALUATIONS since the users have selected to transmit and listen to oy o

In this section, we evaluate the performances of Algorithehannel, the number of potential interferers in each chianne
1 for the SINR and protocol models, and compare with thig reduced. As a result, the improvementufi(t) is more
of a heuristic scheme. We also illustrate the significance significant.
the core and the Shapley value. Unless specified otherwiseln Fig. 4, we consider the cas® = 10, ¢ = 4, and
we assume that the secondary nodes are randomly placed in & 0 when the set of data channels changes due to
50 m x 50 m area. The peak data rate of a user is randomdlynamic spectrum leasing. Specifically, we assume that two
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Fig. 6. A CR network with eight users. User 5 generates aneives the
Fig. 4. The change in aggregate utility (t) when the set of data channgls least amount of interference due to its isolated position.
changes due to dynamic spectrum leasing. Initially, werassthat there are
four data channels available. We assume that two data clsaareeremoved
from C and then one data channel is added baaR.t@/e run the three-phase
distributed algorithm (i.e., Algorithm 1) based on the jpoe¢ solution after
setC has changed. We can see thét(t) converges again quickly to a fixed
point when the sef changes.

60

Average Aggregate Throughput

o™ (dB)
104 —+&— SINR Model
——*— Protocol Model Fig. 7. Aggregate utility of the grand coalition(N') = >, ¢i(v)
0 ‘ ‘ +M‘MAC and the Shapley valueb(v) for the secondary users in Fig. 6. Whé#"
1 2 3 4 5 6 is increasedyp (/) is decreased because the interference range is increased.
Number of Available Orthogonal Channels C When 6" is increased td5 dB, v(\) is equally shared among these one-

hop neighbours as stated in Theorem 8. Notice that user SHeatartgest
Fig. 5. Average aggregate throughput versus the number thbgonal share of payoff forg** < 15 dB due to its large marginal contribution to
channels available for Algorithm 1 using the SINR model, ghetocol model, different coalitions.
and the MMAC [29]. Notice that the design based on the SINRehadhieves
the highest aggregate throughput.

with collision avoidance (CSMA/CA) protocol. We assume

that the channel is sensed busy if any one-hop neighbour
channels are removed frothwhen the lease expires, and ong¢ransmits. In other words, the sensing is based on the mbtoc
new channel is leased and added back ttater. As we can model. Since Algorithm 1 obtains a locally optimal solution
see, by running Algorithm 1 based gsf from the previous from a given starting point, we execute Algorithm 1 from
solution after each change in s€t the solution converges thirteen randomly generated feasible starting poipts ¢*),
quickly to a fixed point again and adapts to these dynamamd record the solution that yields the maximum aggregate
network changes. utility to obtain a solution that is close to the globally opal

Next, we compare the aggregate throughput achieved withe. As shown in Fig. 5, whe@i increases, less interference is

Algorithm 1 for the SINR model (usiniyl; = M; s;vr, Vi € experienced by each user, so the overall system througéput i
N) and protocol model (usinyl; = M; prc, Vi € N), and increased. Also, we notice that the design based on the SINR
the multi-channel MAC (MMAC) protocol [29] forV = 10 model always achieves a higher throughput than that usig th
and o = 0 averaged over 100 different random topologiegrotocol model and the MMAC protocol.
when the number of orthogonal channels varies. The  Finally, we investigate the payoff distribution for the $ha
MMAC protocol is a multi-channel extension of the IEEHey value and the existence of the core for the network
802.11 distributed coordination function and is suitalolethe scenario shown in Fig. 6. Eight secondary users are randomly
spectrum leasing model in CR networks. In MMAC, the userdaced in a75 m x 75 m open areap = 0, and the peak
first select the channel with the least scheduled traffic, addta rate of each user is fixed 1@ Mbps. The minimum
then contend for it by using the carrier sense multiple a&ceSNR is guaranteed to be at leaXl dB and we consider



different SINR threshold9)*", e.g., for different bit error [5]
rate requirements. The aggregate utility of the grand toali
v(N) = > ,cn ¢i(v) and the Shapley valug(v) are shown
in Fig. 7. By increasing*”, the receivers become less tolerant

to interference from other users, so the interference range

is increased and the spatial reuse factor is reduced. As|

6

result,v(N\) is reduced as shown in Fig. 7. From (5), when
6'" is increased up to a certain value, all users are one-hog)
neighbours to each other. This holds true in this settingnNhe[ !
6*" > 15 dB. As expected from Theorem 8, all the users
equally share the aggregate utility in this case. Also,ceathat
user 5 generates and receives the least amount of intecéeren
due to its isolated position. Thus, it has a large marginab]
contribution to different coalitions, and receives thegésst

proportion of the payoff fod*" < 15 dB. Moreover, it can be 4,

El

shown that the constraints in (31) can be satisfied and the cor
exists in this example for all the values 6 that we have 12]
studied. However, the Shapley value lies only in the core fBr

oth

all the users are one-hop neighbours to each other as state

> 10 dB, which includes the case®" > 15 dB where

Theorem 8.

VII. CONCLUSIONS
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