
An Online Learning Algorithm for
Demand Response in Smart Grid

Shahab Bahrami, Student Member, IEEE, Vincent W.S. Wong, Fellow, IEEE, and Jianwei Huang, Fellow, IEEE

Abstract—Demand response program with real-time pricing
can encourage electricity users towards scheduling their energy
usage to off-peak hours. A user needs to schedule the energy
usage of his appliances in an online manner since he may not
know the energy prices and the demand of his appliances ahead of
time. In this paper, we study the users’ long-term load scheduling
problem and model the changes of the price information and
load demand as a Markov decision process, which enables us to
capture the interactions among users as a partially observable
stochastic game. To make the problem tractable, we approximate
the users’ optimal scheduling policy by the Markov perfect
equilibrium (MPE) of a fully observable stochastic game with
incomplete information. We develop an online load scheduling
learning (LSL) algorithm based on the actor-critic method to
determine the users’ MPE policy. When compared with the
benchmark of not performing demand response, simulation
results show that the LSL algorithm can reduce the expected cost
of users and the peak-to-average ratio (PAR) in the aggregate
load by 28% and 13%, respectively. When compared with the
short-term scheduling policies, the users with the long-term
policies can reduce their expected cost by 17%.

Keywords: Demand response, real-time pricing, partially observ-
able stochastic game, online learning, actor-critic method.

I. INTRODUCTION

The future smart grid aims to empower utility compa-
nies and users to make more informed energy management
decisions. This motivates the utility companies to provide
users with incentives to adjust the timing of their electricity
usage [1]. The incentives may be through a demand response
program with time-varying pricing schemes such as real-time
pricing (RTP) and inclining block rate (IBR) pricing [2].
With a properly designed demand response program, the
utility company can decrease its generation cost due to the
reduction of peak-to-average ratio (PAR) in the aggregate
load. Meanwhile, users can reduce their payment by taking
advantage of low prices at off-peak hours.

There are several challenges for users to optimally deter-
mine their energy schedule in a demand response program.
First, if the utility company uses RTP or IBR, the users’
scheduling decisions are coupled since the appliances’ energy

Manuscript received on Oct. 8, 2016, revised on Jan. 11, 2017, and accepted
on Feb. 2, 2017. This work is supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) under Strategic Project Grant
(STPGP 447607-13), and the Theme-based Research Scheme (Project No.
T23-407/13-N) from the Research Grants Council of the Hong Kong Special
Administrative Region, China. S. Bahrami and V.W.S. Wong are with the
Department of Electrical and Computer Engineering, The University of British
Columbia, Vancouver, BC, Canada, V6T 1Z4. J. Huang is with the Department
of Information Engineering, The Chinese University of Hong Kong, Hong
Kong, email: {bahramis, vincentw}@ece.ubc.ca, jwhuang@ie.cuhk.edu.hk

schedule of a user affects the price that is charged to all
users, hence affects other users’ cost. Second, each user is
uncertain about the total demand of other users, as well as the
time of use and operation constraints of his own appliances.
In particular, each appliance’s operation depends on its task
specifications (e.g., task duration, start time/deadline of the
task), which are not known a priori until the user decides to
turn on that appliance. Third, the users may not know the price
information ahead of time.

There have been some efforts in tackling the above chal-
lenges. We divide the related literature into two main threads.
The first thread is concerned with techniques for scheduling
the energy usage of the appliances in a household with a
myopic user, who aims to minimize his cost in a short period
of time (e.g., one day). Samadi et al. in [3] proposed pricing
algorithms based on stochastic approximation to minimize
the PAR of the aggregate load in one day for a single
household. Chen et al. in [4] proposed a robust optimization
approach to minimize the worst-case daily bill payment of
a myopic user in a market with the RTP scheme. Eksin et
al. in [5] captured the interactions among myopic users with
heterogeneous but correlated consumption preferences with the
RTP scheme as a Bayesian game. Forouzandehmehr et al.
in [6] proposed a differential stochastic game framework to
capture the interactions among myopic users with controllable
appliances. In these works, however, it was not mentioned how
the proposed scheduling algorithms can be used for foresighted
users, who aim to minimize their long-term costs.

The second thread is concerned with techniques for schedul-
ing the appliances in a household with a foresighted user. Wen
et al. in [7] proposed a reinforcement learning algorithm to
address the appliances scheduling problem in a household.
Kim et al. in [8] proposed a load scheduling algorithm based
on Q-learning for a microgrid with time-of-use pricing scheme.
Liang et al. in [9] proposed a Q-learning approach to minimize
the bill payment and discomfort cost of a foresighted user in a
household. Ruelens et al. in [10] proposed a batch reinforce-
ment learning algorithm to schedule controllable loads such as
water heater and heat-pump thermostat. These works, however,
did not mention how the proposed learning algorithms can
capture the decision making of multiple foresighted users.
Xiao et al. in [11] applied dynamic programming to model
the interactions among multiple foresighted suppliers. Yao et
al. in [12] studied the electricity sharing problem among mul-
tiple foresighted users with the RTP scheme. The scheduling
problem of each individual user is formulated as a Markov
decision process. A specific structure for the suboptimal policy
of each user is determined. Jia et al. in [13] proposed a

learning algorithm based on stochastic approximation for the
utility company to determine the day ahead price values in a
market with multiple foresighted users. These works, however,
did not study the operation constraints of different electrical
appliances in residential sectors.

In this paper, we focus on designing a load scheduling
learning (LSL) algorithm for multiple residential users, who
schedule their appliances in response to RTP information. Each
user is aware that the total energy consumption (not just his
own) will affect the price announced by the utility company.
Furthermore, each user is selfish and aims to minimize his
own bill payment. We study the long-term interactions among
foresighted users instead of the short-term interactions among
myopic users. It enables us to model the users’ decision
making with uncertainty about the price information and load
demand of their appliances as a Markov decision process with
different states for different possible scenarios. We capture the
interactions among users as a stochastic game [14]. Markov
perfect equilibrium (MPE) is a standard solution concept for
analyzing stochastic games. Several algorithms have been
proposed to determine an MPE in fully observable stochastic
games [15]–[22]. Some algorithms are model-based and re-
quire knowledge of the dynamics of the system, i.e., the state
transition probabilities. The model-based learning algorithms
include rational learning methods [15]–[17], linear program-
ming based algorithms [18], [19], and homotopy method [20].
Some other learning algorithms are model-free and aim to
determine an MPE when the system dynamics are unknown.
Examples of model-free approaches include Lyapunov opti-
mization [21] method and reinforcement learning algorithms
[22]. In the demand response program, the underlying game is
partially observable [23]–[25], since each user only observes
his own state and is uncertain about other users’ states. The
key challenge in our model is to characterize the MPE under
the partial observability of each user and the interdependency
among the users’ policies. This paper is an extension of our
previous work [26] that takes into account the uncertainty in
the energy price and users’ load demand.

The contributions of this paper are as follows:
• Novel Solution Approach: The partially observable

stochastic game is a realistic framework to model the in-
teractions among users, but it is difficult to solve. To make
the problem tractable, we propose an algorithm executed
by each user to approximate the state of all users using
some additional information from the utility company. It
enables us to approximate the users’ optimal policy by the
MPE policy in a fully observable stochastic game with
incomplete information, which is more tractable.

• Learning Algorithm Design: We formulate an individual
optimization problem for each household, its global op-
timal solution corresponds to the MPE policy of the pro-
posed fully observable stochastic game with incomplete
information. We develop an actor-critic method [27]–
[30]-based distributed LSL algorithm that converges to
the MPE policy. The algorithm is online and model-free,
which enables users to learn from the consequences of
their past decisions and schedule their appliances in an
online fashion without knowing the system dynamics.

• Performance Evaluation: We evaluate the performance of
the LSL algorithm in reducing the PAR in the aggregate
load and the expected cost of users. Compared with
the benchmark of not performing demand response, our
results show that the LSL algorithm can reduce the PAR
in the aggregate load and the expected cost of foresighted
users by 13% and 28%, receptively. We compare the
policy of the foresighted and myopic users, and show
that foresighted users can reduce their daily cost by 17%.
When compared with the Q-learning method (e.g., in [7]
and [8]), the LSL algorithm based on the actor-critic
method converges faster to the MPE policy.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, we model the
interactions among users as a partially observable stochastic
game and approximate it by a fully observable stochastic game
with incomplete information. In Section IV, we develop a
distributed learning algorithm to compute the MPE. In Section
V, we evaluate the performance of the proposed algorithm
through simulations. Section VI concludes the paper.

II. SYSTEM MODEL

We consider a system with one utility company and a set
N ={1, . . . , N} of N households. Each household is equipped
with an energy consumption controller (ECC) responsible for
scheduling the appliances in that household. The ECC is con-
nected to the utility company via a two-way communication
network, which enables the exchange of the price information
and the household’s load demand. Users participate in demand
response program for a long period of time (e.g., several
weeks). We divide the time into a set T = {1, . . . , T} of T
equal time slots, e.g., 15 minutes per time slot. In this paper,
we use ECC, household, and user interchangeably.

A. Appliances Model

Let Ai = {1, . . . , Ai} denote the set of appliances in
household i ∈ N , where Ai is the total number of appliances.
In each time slot, an appliance is either awake or asleep,
indicating whether it is ready to operate or not. We define
the appliance’s operation state as follows:

Definition 1 (Appliance Operation State): For household i ∈
N , the operation state of appliance a ∈ Ai in time slot t ∈ T is
a tuple sa,i,t = (ra,i,t, qa,i,t, δa,i,t), where ra,i,t is the number
of remaining time slots to complete the current task, qa,i,t is
the number of time slots for which the current task can be
delayed, and δa,i,t is the number of time slots since the most
recent time slot that appliance a becomes awake with the most
recent new task.

Fig. 1 shows the values of ra,i,t, qa,i,t, and δa,i,t for
appliance a ∈ Ai, which has a task that should be operated
for three time slots with a maximum delay of three time slots.
When appliance a becomes awake in time slot t, ra,i,t and
qa,i,t are initialized based on the current task (e.g., here we
have ra,i,t = qa,i,t = 3), and δa,i,t is set to 1. The value
of ra,i,t decreases when appliance a executes its task and
becomes 0 when the appliance has completed its task and is

Fig. 1. The values of ra,i,t, qa,i,t, and δa,i,t for appliance a, which should
be operated for three time slots with a maximum delay of three time slots.

asleep in time slot t. The value of qa,i,t remains unchanged
when the task is executed, and decreases when the task is
delayed. When qa,i,t is 0, the ECC cannot delay the appliance’s
task. The value of δa,i,t increases in each time slot and is
reset to 1 when appliance a becomes awake with a new task.
The appliance may start a new task right after completing the
current task. Thus, without becoming asleep, ra,i,t and qa,i,t
are initialized based on the new task, and δa,i,t is set to 1.

ECC i does not know when an appliance becomes awake
ahead of time. Instead, it has a belief regarding Pa,i(δa,i,t), the
probability that the difference between two sequential wake-up
times for appliance a is δa,i,t, for δa,i,t ≥ 1. Such a probability
distribution can be estimated, for example, based on the awake
history for appliance a. ECC i can approximate Pa,i(δa,i,t)
by the ratio of the events that the difference between two
consecutive wake-up times is δa,i,t in a given historical data
record. Appliance a may become awake in the next time slot
(for a new task) if either appliance a is asleep or it will
complete the current task in the current time slot. In Appendix
A, we show that given current time t, the probability Pa,i,t+1

that appliance a ∈ Ai becomes awake with a new task in the
next time slot t+ 1 ∈ T is

Pa,i,t+1 =
Pa,i(δa,i,t)

1−
∑δa,i,t−1

∆=1 Pa,i(∆)
. (1)

We partition the set of appliances into must-run and control-
lable. Let AM

i denote the set of must-run appliances in house-
hold i. Examples of must-run appliances include lighting and
TV. The ECC has no control over the operation of must-run
appliances. On the other hand, the ECC can control the time
of use for the controllable appliances. The set of controllable
appliances in household i can further be partitioned into two
sets: the set AN

i of non-interruptible appliances, and the set
AI
i of interruptible appliances. Examples of non-interruptible

appliances include washing machine and dish washer, and
examples of interruptible appliances include air conditioner
and electric vehicle (EV). The ECC may schedule a non-
interruptible appliance during several consecutive time slots,
but cannot interrupt its task. The ECC may delay or interrupt
the operation of an interruptible appliance.

Each time an appliance a ∈ Ai becomes awake, it sends
information about its new task’s specifications to the ECC i.

Definition 2 (Task’s Specifications): For an appliance a ∈ Ai,
the specifications of its task include the average power con-
sumption pavg

a,i to execute the task, the scheduling window
Ta,i = [tsa,i, t

d
a,i] corresponding to a time interval which

includes the earliest start time tsa,i ∈ T and the deadline
tda,i ∈ T for the task, the operation duration da,i for a
must-run or non-interruptible appliance corresponding to the
total number of time slots required to complete the task,
and the interval [dmin

a,i , d
max
a,i] for an interruptible appliance

corresponding to the range of the operation duration.

The value of the average power consumption pavg
a,i is assumed

to be fixed and known a priori for each appliance a. The
operation duration da,i for a non-interruptible appliance a ∈
AN
i is fixed. On the other hand, the operation duration da,i

for a task of an interruptible appliance a ∈ AI
i can be any

value in the range of [dmin
a,i , d

max
a,i], and we have dmin

a,i ≥ 0 and
dmax
a,i ≤ tda,i − tsa,i.
We use the binary decision variable xa,i,t ∈ {0, 1} to

indicate whether an appliance a ∈ Ai is scheduled to operate
in time slot t (xa,i,t = 1) or not (xa,i,t = 0). Notice that xa,i,t
is equal to 0 when appliance a is asleep (i.e., ra,i,t = 0). Let
xi,t = (xa,i,t, a ∈ Ai) denote the scheduling decision vector
for all appliances in household i in time slot t.

ECC i can infer the state sa,i,t+1 of appliance a in the next
time slot t + 1 from the current state sa,i,t, the probability
Pa,i,t+1, appliance’s type, the task’s specifications, and the
scheduling decision xa,i,t as follows:

1) Must-run appliances: The feasible action for appliance
a ∈ AM

i in time slot t ∈ T is

xa,i,t =

{
1, if ra,i,t ≥ 1
0, if ra,i,t = 0.

(2)

When appliance a ∈ AM
i becomes awake with a new task,

ra,i,t is set to da,i, and ECC i operates the appliance without
delay, i.e., qa,i,t is equal to 0. Given current time t, the
operation state in time slot t+ 1 can be obtained as follows:
• If either appliance a ∈ AM

i is asleep (i.e., ra,i,t = 0)
or it will complete its task in the current time slot (i.e.,
ra,i,t = 1), then appliance a becomes awake in time slot
t + 1 with probability Pa,i,t+1, with the corresponding
next state as

sa,i,t+1 = (da,i, 0, 1), (3)

and the appliance is asleep in time slot t + 1 with
probability 1 − Pa,i,t+1, with the corresponding next
state as

sa,i,t+1 = (0, 0, δa,i,t + 1). (4)

• If ra,i,t ≥ 2, then appliance a ∈ AM
i has not completed

its task yet. With probability 1, the corresponding next
state as

sa,i,t+1 = (ra,i,t − 1, 0, δa,i,t + 1). (5)

2) Non-interruptible controllable appliances: The feasible
action for appliance a ∈ AN

i in time slot t ∈ T is

xa,i,t =

 0 or 1, if t ∈ Ta,i, ra,i,t ≥ 1, qa,i,t ≥ 1,
1, if t ∈ Ta,i, ra,i,t ≥ 1, qa,i,t = 0,
0, if ra,i,t = 0.

(6)

Equation (6) implies that ECC i can decide to operate a non-
interruptible appliance a or not when the appliance is awake

(ra,i,t ≥ 1) and its current task can be delayed (qa,i,t ≥ 1).
ECC i has to operate an awake appliance if the task cannot
be delayed (qa,i,t=0). ECC i will not schedule appliance a if
it is asleep (ra,i,t = 0).

When appliance a ∈ AN
i becomes awake, ra,i,t and qa,i,t

are set to da,i and tda,i − tsa,i − da,i + 1, respectively. Given
current time t, the operation state in the next time slot is as
follows:
• If either appliance a∈AN

i is asleep (i.e., ra,i,t = 0) or it
will complete the current task in the current time slot (i.e.,
ra,i,t = 1 and xa,i,t = 1), then the appliance becomes
awake in time slot t + 1 with probability Pa,i,t+1, with
the corresponding next state as

sa,i,t+1 = (da,i, t
d
a,i − tsa,i − da,i + 1, 1), (7)

and the appliance is asleep in time slot t+ 1 with prob-
ability 1−Pa,i,t+1, with the corresponding next state as

sa,i,t+1 = (0, 0, δa,i,t + 1). (8)

• If ra,i,t ≥ 2 and xa,i,t = 1, then appliance a ∈ AN
i

has not completed its task yet and is scheduled in the
current time slot t. The appliance cannot be delayed in
the next time slot, i.e., qa,i,t+1 = 0. With probability 1,
the corresponding next state as

sa,i,t+1 = (ra,i,t − 1, 0, δa,i,t + 1). (9)

• If ra,i,t ≥ 1 and xa,i,t = 0, then appliance a ∈ AN
i

has not completed its task yet and is not scheduled in the
current time slot t. With probability 1, we have sa,i,t+1 =
(ra,i,t, qa,i,t−1, δa,i,t+ 1). The action set in (6) implies
that xa,i,t cannot be equal to 0 if qa,i,t is 0 in time slot t.

3) Interruptible controllable appliances: Equation (6) is the
feasible action for appliance a ∈ AI

i in time slot t ∈ T . When
an interruptible appliance a ∈ AI

i becomes awake with a new
task, ra,i,t is set to the maximum operation duration dmax

a,i . To
operate the appliance for at least dmin

a,i time slots, ECC i can
delay the task in at most tda,i − tsa,i − dmin

a,i + 1 time slots. The
maximum operation duration may not be completed before
the deadline within the scheduling horizon Ta,i. In this case,
if t+ 1 6∈ Ta,i, the interruptible appliance will become either
asleep or awake with a new task in the next time slot t + 1.
The operation state in the next time slot t+ 1 is as follows:
• If the next time slot is not in the scheduling window (i.e.,
t+1 6∈ Ta,i), appliance a ∈ AI

i is asleep (i.e., ra,i,t = 0),
or the appliance will complete its task in the current time
slot (i.e., ra,i,t = 1 and xa,i,t = 1), then the appliance
becomes awake in time slot t+1 with probability Pa,i,t+1,
with the next state as

sa,i,t+1 = (dmax
a,i , t

d
a,i − tsa,i − dmin

a,i + 1, 1), (10)

and the appliance is asleep in time slot t + 1 with
probability 1 − Pa,i,t+1, with the corresponding next
state as

sa,i,t+1 = (0, 0, δa,i,t + 1). (11)

• If the next time slot is in the scheduling window (i.e.,
t+1 ∈ Ta,i), ra,i,t ≥ 2, and xa,i,t = 1, then appliance a ∈

AI
i is scheduled in the current time slot t. The appliance

is awake in the next time slot t + 1 with probability 1,
and the next state is

sa,i,t+1 = (ra,i,t − 1, qa,i,t, δa,i,t + 1). (12)

• If t + 1 ∈ Ta,i, ra,i,t ≥ 1, and xa,i,t = 0, then the task
of appliance a ∈ AI

i is not scheduled in the current time
slot t. The appliance is awake in the next time slot t+ 1
with probability 1, with the corresponding next state as

sa,i,t+1 = (ra,i,t, qa,i,t − 1, δa,i,t + 1). (13)

B. Pricing Scheme and Household’s Cost

In a dynamic pricing scheme, the payment by each house-
hold depends on the time and total amount of energy con-
sumption. Let li,t =

∑
a∈Ai

pavg
a,i xa,i,t denote the aggregate

load of household i in time slot t. Let lothers
t denote the

aggregate background load demand of other users in time slot
t that do not participate in the demand response program. The
utility company knows lothers

t at the end of time slot t. Let
lt = lothers

t +
∑
i∈N li,t denote the aggregate load demands of

all users in time slot t.
We assume that the utility company uses a combination of

RTP and IBR [3], [31]. In time slot t ∈ T , the unit price λt is

λt
(
lt
)

=

{
λ1,t, if 0 ≤ lt ≤ ltht ,
λ2,t, if lt > ltht ,

(14)

where λ1,t ≤ λ2,t, t ∈ T . Here, λ1,t and λ2,t are the unit
price values in time slot t when the aggregate load is lower and
higher than the threshold ltht , respectively. We define the vector
of price parameters in time slot t as λt = (λ1,t, λ2,t, l

th
t). The

price parameters are set by the utility company according to
different factors such as the time of the day, day of the week,
wholesale market conditions, and the operation conditions of
the power network. We can capture the price changes by
making the following assumption:

Assumption 1 The price parameters are generated according
to a hidden Markov model.

In each hidden state, the price parameters are generated from
a probability distribution which is unknown to the users [32],
[33]. Assumption 1 is consistent with many realistic situations
of price determination. For example, the price parameters
λt may change periodically. In this case, the hidden states
correspond to the time of the day, and the price parameters
vector for each hidden state is fixed. In a more general model,
a hidden state corresponds to the time of the day and the price
parameters are chosen from a known probability distribution
(e.g., a truncated normal distribution) in each hidden state. If
this is the case, the probability distribution for each time slot
can be estimated by examining the historical prices of the same
time slot from many days [33]. In Section V, we compare the
users scheduling decisions when the utility company applies
the periodic and random price parameters, respectively.

The payment of household i in time slot t is li,t λt(lt).
When the ECC interrupts the operation of the interruptible ap-
pliances, the corresponding user will experience a discomfort

cost. When an interruptible appliance a ∈ AI becomes awake,
it sends the user’s desirable operation schedule xdes

a,i,t for all
time slots t ∈ Ta,i and the coefficients ωa,i,t, a ∈ AI

i, t ∈ Ta,i
(measured in terms of $) to the ECC to reflect the user’s
discomfort caused by any potential change of the operation
schedule of interruptible appliance a. For each household i, we
capture the discomfort cost from scheduling the interruptible
appliances by the weighted Euclidean distance between the
operation schedule with demand response and the desirable
operation schedule as

∑
a∈AI

i
ωa,i,t

∣∣xa,i,t − xdes
a,i,t

∣∣, which is
also used in [34].

The total cost for each household i in time slot t involves
the payment and discomfort cost. That is,

ci,t(lt) = li,t λt(lt) +
∑
a∈AI

i

ωa,i,t
∣∣xa,i,t − xdes

a,i,t

∣∣ . (15)

In the long-term scheduling problem, the scheduling horizon
T is a large number (e.g., if the scheduling horizon is six
months and each time slot is 15 minutes, then we have
T ≈ 17000). Thus, it is reasonable to approximate the
problem with an infinite scheduling horizon, and consider the
expected discounted cost of each household i with the discount
factor β [35, pp. 150] as

(1− β)

∞∑
t=1

βt−1ci,t(li,t, l−i,t). (16)

The parameter β in (16) can be used to characterize a wide
range of users’ behaviour. When β is close to zero, the users
are myopic, i.e., they aim to minimize their short-term cost
(e.g., daily cost) without considering the consequences of their
short-term policy on their future cost. When β is close to
one, the users are foresighted, i.e., they aim to minimize their
long-term cost. One may assume different values of β for
different participating users. In this paper, we assume that all
users have the same value of β. In a more general future study,
one may consider the case where different users have different
values of β.

In the cost model (16) with an infinite scheduling horizon,
we can consider the stationary scheduling decision making that
is independent of time. Specifically, the decision making only
depends on the price parameters and the appliance operation
state in a time slot, but is independent of time slot index t.
Therefore, we can remove time index t from the appliances’
states, price parameters, and the household’s cost.

III. PROBLEM FORMULATION

Due to privacy concerns, each household does not reveal the
information about its appliances to other households. We have

Assumption 2 The ECC can only observe the operation state
of the appliances in its own household.

We capture the interactions among households in demand
response program as a partially observable stochastic game.

Game 1 Households’ Partially Observable Stochastic Game:
Players: The set of households N .
States: The state of household i is si = (sa,i, a ∈ Ai).

Observations: The observation of household i is oi =
(si,λ) ∈ Oi, where Oi is the set of possible observations
for household i. Let o = (oi, i ∈ N) ∈ O denote the
observation profile of all households, where O =

∏
i∈NOi.

We use notations z(oi) and z(o) to denote the value of an
arbitrary parameter z in observation oi of household i and
observation profile of all households o, respectively.

Actions: We define the action vector of household i in ob-
servation profile o as xi(o) = (xa,i(o), a ∈ Ai). Let x(o) =
(xi(o), i ∈ N) denote the action profile of all households.
Let Xi(oi) denote the feasible action space obtained from (2),
(6) for household i with observation oi.

Transition Probabilities: Given the current price parameters,
Assumption 1 implies that the price parameters vector is
Markovian. From Section II-A, the next state of an appliance
depends only on its current state and action. Thus, the tran-
sition between the observations of a household is Markovian.
Let Pi(o′i |oi, xi(o)) denote the transition probability from
observation oi ∈Oi to o′i ∈Oi with action xi(o). It depends
on the appliances wake-up probability in (1). Furthermore,
the users have independent preferred plans of using their
appliances. Hence, the states of different households are inde-
pendent. The transition probability from observation o ∈ O
to o′ ∈ O with action profile x(o) is P (o′ |o, x(o)) =∏
i∈N Pi(o

′
i |oi, xi(o)).

Stationary Policies: Let πi(o,xi(o)) denote the probability
of choosing a feasible action xi(o) in observation o. Let
πi(o)=(πi(o,xi(o)), xi(o)∈Xi(oi)) denote the probability
distribution over the feasible actions. We define the stationary
policy for household i as the vector πi = (πi(o), o ∈ O). Let
π = (πi, i ∈ N) denote the joint policy of all households, and
π−i denote the policy for all households except household i.

Value functions: Under a given joint policy π, the value
function V πi : O → R returns the expected discounted cost
for household i starting with observation profile o. It can be
expressed as the following Bellman equation [14]:

V πi (o) = Eπi(o)

{
Q
π−i

i

(
o,xi(o)

)}
, ∀ o ∈ O, (17)

where Eπi(o){·} denotes the expectation over the probability
distribution πi(o). Function Qπ−i

i

(
o,xi(o)

)
is the Q-function

for household i with action xi(o) in observation profile o
when other households’ policy is π−i [14]. We have

Q
π−i

i

(
o,xi(o)

)
= Eπ−i(o)

{
(1− β) ci (o,x(o))

+β
∑
o′∈O

P (o′ |o,x(o)) V πi (o′)
}
. (18)

It is computationally difficult to determine the optimal
policies for the households in such a partially observable
stochastic game. In a partially observable stochastic game
among users, each user needs to know what other users are
observing in each time slot. Inspired by the works in [23]–
[25], we propose an algorithm executed by each ECC to
estimate the observation profile of all households. It enables
us to study the users’ optimal policy in a fully observable
stochastic game with incomplete information, in which the
households play a sequence of Bayesian games.

Algorithm 1 Executed by ECC i ∈ N .
1: Communicate the average load demand lavg

i (oi) for all feasible
actions xi(oi) ∈ Xi(oi) to the utility company.

2: Receive the average aggregate load lavg(o) from utility company.
3: Approximate the observation profile by ô :=(lavg(o),λ).

A. Observation Profile Approximation Algorithm

To make the analysis of Game 1 tractable, we propose an
algorithm executed by each ECC to approximate the observa-
tion of all households using some additional information. Let ô
denote the approximate observation profile of all households.
Algorithm 1 describes how ECC i obtains ô. ECC i sends the
average load demand lavg

i (oi) of all feasible actions xi(oi) ∈
Xi(oi) to the utility company. ECC i knows λ and receives the
average aggregate load lavg(o)= 1

N

∑
j∈N l

avg
j (oj). It approx-

imates the observation profile o by vector ô = (lavg(o), λ).
In Algorithm 1, each household receives information on

the average aggregate load demands. Thus, the privacy of
each individual household is protected. All ECCs obtain the
same approximation for an observation profile. Thus, we can
consider a fully observable stochastic game with incomplete
information. Under a given approximate observation profile
ô, the households play a Bayesian game, as each household i
may have different observations oi, and thus different sets of
feasible actions.

Game 2 Households’ Fully Observable Stochastic Game with
Incomplete Information:
This game is constructed from Game 1 if the households define
their actions and policy as follows:

Actions: Let Oi(ô) ⊆ Oi denote the set of possible
observations for household i in the approximate observation
profile ô. We define the set of actions for household i in
the approximate observation profile ô as X̂i(ô) = {xi(oi) :
xi(oi) ∈ Xi(oi), oi ∈ Oi(ô)}. The feasibility of an action
xi(ô) ∈ X̂i(ô) depends on the observation oi of household i.

Policies: We define the stationary policy πi(ô,xi(oi)) as
the probability of choosing a feasible action xi(oi) ∈ Xi(oi)
in an approximate observation profile ô when the observation
of household i is oi ∈ Oi(ô). Let Pi(oi|ô) be the probability
that household i has observation oi ∈ Oi(ô) when the
approximate observation profile is ô. Hence, the probability
of choosing any action xi(ô) ∈ X̂i(ô) is πi(ô,xi(ô)) =
Pi(oi|ô)πi(ô,xi(oi)). Let πi(ô) = (πi(ô,xi(ô)), xi(ô) ∈
X̂i(ô)) denote the probability distribution over the actions
for household i in an approximate observation profile ô. We
define the policy for household i in Game 2 as the vector
πi = (πi(ô), ô ∈ O).

B. Markov Perfect Equilibrium (MPE) Policy

In this subsection, we discuss how each household i de-
termines a policy πi(ô) in Game 2 for any approximate
observation profiles ô to minimize its value function V πi (ô).
The MPE is a standard solution concept for the partially
observable stochastic games. The MPE corresponds to the
users’ policies with Markov properties and is compatible with

the assumption for the appliance model in Section II-A. The
MPE in Game 2 is defined as follows:

Definition 3 A policy πMPE = (πMPE
i , i ∈ N) is an MPE if

for every household i ∈ N with a policy πi, we have

V
(πi,π

MPE
−i)

i (ô) ≥ V (πMPE
i ,πMPE

−i)
i (ô), ∀ i ∈ N , ∀ ô ∈ O. (19)

The MPE policy is the fixed point solution of every house-
hold’s best response policy. Household i solves the following
Bellman equations when other households’ policies are fixed:

V π
MPE

i (ô) = minimize
πi(ô)

Eπi(ô)

{
Q
πMPE
−i

i (ô,xi(ô))
}
, ∀ ô∈O. (20)

As the following Theorem states, the existence of the MPE
is guaranteed for Game 2 .

Theorem 1 Game 2 has at least one MPE in stochastic
stationary policies.

The proof of Theorem 1 can be found in Appendix B. The
MPE is the fixed point of N recursive problems in (20) for
all households. Problem (20) implies that for household i with
action xi(ô) under observation profile ô in the MPE, we have
V π

MPE

i (ô) ≤ Q
πMPE
−i

i (ô,xi(ô)). We introduce an equivalent
non-recursive optimization problem for each household, which
is more tractable. For household i ∈ N , we define the
Bellman error [14] for an action xi(ô) in an approximate
observation profile ô as

Bi (V πi , ô,xi(ô)) = Q
π−i

i (ô,xi(ô))− V πi (ô). (21)

We define function f obj
i (V πi ,πi) as the sum of the expected

Bellman errors for all observations ô ∈ O. That is

f obj
i (V πi ,πi) =

∑
ô∈O

Eπi(ô)

{
Bi (V πi , ô,xi(ô))

}
. (22)

Each household i aims to determine the policy πi and the
value function V πi to minimize f obj

i (V πi ,πi) by solving the
following optimization problem.

minimize
V π
i ,πi

f obj
i (V πi ,πi) (23)

subject to Bi(V πi , ô,xi(ô)) ≥ 0, ∀ ô ∈ O, ∀xi(ô)∈ X̂i(ô).

Problem (23) is generally a non-convex problem, and may
have several local minima. We show that the MPE policy of
household i is the global minimum of problem (23).

Theorem 2 The policy πMPE is an MPE of Game 2 if and only
if for all households i∈N with action xi(ô)∈ X̂i(ô), we have

πMPE
i (ô,xi(ô)) Bi

(
V π

MPE

i , ô,xi(ô)
)

= 0, ∀ ô ∈ O. (24)

The proof can be found in Appendix C. Theorem 2 implies that
the Bellman error is zero for an action with positive probability
at the MPE. Thus, f obj

i (V π
MPE

i ,πMPE
i) = 0 and the MPE is the

global optimal solution of problem (23) for all households.
Solving problem (23) is still challenging, as each ECC

requires the values of the unavailable transition probabilities
between the observations. This motivates us to develop a
model-free learning algorithm that enables each ECC to sched-

ule the appliances in an online manner without knowing the
system dynamics. Basically, each ECC updates the policy and
value function based on the consequences of its past decisions.

As part of the learning algorithm, we need to record the
observation and action spaces for a household. In order to
reduce the complexity, we use the linear function approxima-
tion to estimate the value function [36, Ch. 3]. For household
i, let φi(ô) = (φv,i(ô), v ∈ V) denote the row vector
of basis functions, where V is the set of basis functions.
Let θi = (θv,i, u ∈ V) denote the row vector of weight
coefficients. The approximate value function for household i is

V πi (ô,θi) = θi φ
T
i (ô), (25)

where T is the transpose operator. It enables ECC i to compute
vector θi with |V| elements instead of the value function
V πi (ô) for all approximate observation profiles ô. We param-
eterize the policy πi for household i via softmax approxima-
tion [36, Ch. 3]. Let µi(ô,xi(ô)) =

(
µp,i(ô,xi(ô)), p ∈ P

)
denote the row vector of basis functions, where P is the set
of basis functions. Let ϑi = (ϑp,i, p ∈ P) denote the row
vector of weight coefficients. The approximate probability of
choosing action xi(ô)∈X̂i(ô) is

πi(ô,xi(ô),ϑi)=
e(ϑiµ

T
i(ô,xi(ô)))∑

x′i(ô)∈X̂i(ô) e
(ϑiµT

i(ô,x′i(ô)))
. (26)

To simplify the computation of this approximation, we
use the vector of compatible basis functions ψi(ô,xi(ô)) =(
ψp,i(ô,xi(ô)), p ∈ P

)
, where

ψp,i(ô,xi(ô)) =
∂ ln(πi(ô,xi(ô),ϑi))

∂ ϑp,i
. (27)

We can show that for the softmax parameterized policy, the
vector of basis functions µi(ô,xi(ô)) can be replaced with
vector ψi(ô,xi(ô)) [30].

IV. ONLINE LEARNING ALGORITHM DESIGN

In this section, we propose a load scheduling learning
(LSL) algorithm executed by the ECC of each household to
determine the MPE policy. We use an actor-critic learning
method, which is more robust than the actor-only methods
(such as the policy evaluation [22, Ch. 2]) and faster than
the critic-only methods (such as the Q-learning and temporal
difference (TD) learning [22, Ch. 6]). The concept of the actor-
critic was originally introduced by Witten in [27] and then
elaborated by Barto et al. in [28]. A detailed study of the actor-
critic algorithm can be found in [29], [30]. Our LSL algorithm
is based on the first proposed algorithm in [30]. The ECC is
responsible for the actor and critic updates. In the critic update,
the ECC evaluates the policy to update the value function. In
the actor update, it updates the policy to decrease the objective
value of problem (23) based on the updated value function. In
the policy update, we use the gradient method with a smaller
step size compared with the step size in the value function’s
update, thereby using a two-timescale update process [30].

Algorithm 2 describes the LSL algorithm executed by
ECC i. The index k refers to both iteration and time slot.
Our algorithm involves the initiation and scheduling phases.

Line 1 describes the initialization in time slot k = 1. The loop
involving Lines 2 to 14 describes the scheduling phase, which
includes the observation profile approximation, the critic up-
date, the actor update, and the basis function construction.

In Lines 3, ECC i executes Algorithm 1 to obtain the
approximate observation profile ô. In time slot k = 1, ECC
i does not have any experience from its past decisions and
chooses an action in Line 11. For k > 1, the critic and actor
updates are executed. ECC i determines the updated vector θki
using the TD approach [22, Ch. 6]. The TD error ek−1

TD is

ek−1
TD = (1− β)ci

(
ôk−1,xk−1(ôk−1)

)
+βV π,k−1

i

(
ôki , θ

k−1
i

)
−V π,k−1

i

(
ôk−1, θk−1

i

)
. (28)

The critic update for ECC i is

θki = θk−1
i + γk−1

c ek−1
TD φi

(
ôk−1

)
, (29)

where γkc is the critic step size in iteration k. In the
actor update module, ECC i determines the updated
vector ϑki using the gradient method with descent
direction. In particular, ECC i uses the descent direction
πk−1
i

(
ôk−1,xk−1

i (ôk−1),ϑk−1
i

)
∇ϑk−1

i
f obj
i

(
V π,k−1
i ,πk−1

i

)
to

ensure convergence to the MPE. Since the gradient is not
available, ECC i uses vector ek−1

TD ψi(ô
k−1,xk−1

i (ôk−1)) as
an estimate of the gradient [30, Algorithm 1]. Therefore, the
convergence to the MPE is guaranteed, since the TD error
ek−1

TD is an estimate for the Bellman error for action xk−1
i in

iteration k−1. Thus, the descent direction is zero if condition
(24) is satisfied. The actor update for ECC i is

ϑki = ϑk−1
i − γka πk−1

i

(
ôk−1,xk−1

i (ôk−1),ϑk−1
i

)
× ek−1

TD ψi(ô
k−1,xk−1

i (ôk−1)), (30)

where γka is the actor step size in iteration k. We use the
approach in [37] to autonomously construct the new basis
functions ψ|P|+1,i(ô,xi(ô)) and φ|V|+1,i(ô). The candidate
for the basis function ψ|P|+1,i(ô,xi(ô)) is the TD error ek−1

TD
in (28), which estimates the Bellman error. The expectation
over the Bellman errors of the feasible actions xi(ôk−1) ∈
Xi(ok−1

i) is the candidate for φ|V|+1,i(ô). We have

ψ|P|+1,i(ô,xi(ô)) = ek−1
TD , (31)

φ|V|+1,i(ô) = E
{
Bk−1
i

(
V π,k−1
i , ôk−1,xi(ô

k−1)
)}
. (32)

The expectation in (32) is over the probability of choosing
each feasible actions xi(ôk−1) ∈ Xi(ok−1

i). In Appendix D,
we explain how to approximate the Bellman error for each
feasible action. In Line 7, ECC i checks the convergence of
θki and decides whether to add the new basis functions or not.

In Line 11, ECC i schedules the appliances in the cur-
rent time slot k. In Line 12, ECC i receives the cost
ci
(
ôki ,x

k(ôki)
)
. Next time slot is started in Line 13. In

Line 14, the stopping criterion is given. From Theorem 2,
LSL algorithm converges to the MPE if the objective value
f obj
i (V π,k−1

i ,πk−1
i) is zero. ECC i computes the approximate

objective value by summing over the expected Bellman errors
up to iteration k − 1 as

f̂ obj
i (V π,k−1

i ,πk−1
i) =

Algorithm 2 LSL Algorithm Executed by ECC i ∈ N .
1: Set k := 1, ε := 10−3, and ξ = 10−3. Set φ1,i(·) := 1 and
ψ1,i(·) :=1, and randomly initialize θ11,i and ϑ1

1,i.
2: Repeat
3: Observe oki := (ski ,λ

k). Approximate ôki using Algorithm 1.
4: If k 6= 1,
5: Determine the updated vector θki according to (29).
6: Determine the updated vector ϑk

i according to (30).
7: If |θki − θk−1

i | < ε,
8: Construct new basis functions ψ|P|+1,i(ô,xi(ô)) and

φ|V|+1,i(ô) using (31) and (32).
9: End if

10: End if
11: Choose action xk

i (ô
k
i) using policy πk

i (ô
k
i ,ϑ

k
i).

12: Receive the cost ci
(
ôki ,x

k(ôki)
)

from the utility company.
13: k := k + 1.
14: Until ||f̂ obj

i (V π,k−1
i ,πk−1

i)|| < ξ.

k−1∑
j=1

Eπk−1
i (ôj)

{
Bji
(
V π,k−1
i , ôj ,xi(ô

j)
)}
. (33)

The sufficient conditions for the actor and critic step sizes to
ensure the convergence of the LSL algorithm are given in [29].

In the proposed model-free LSL algorithm, ECC i does not
know the next states of the appliances until the next time
slot begins in Line 13. The ECC updates its value function
using the TD error in (28), which depends on the next time
slot observation. Therefore, the ECC only goes through one
iteration per time slot.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the LSL
algorithm in a system, where one utility company serves 200
households that participate in the demand response program.
The scheduling horizon is six months. Each time slot is 15
minutes. We consider six controllable appliances for each
household, e.g., dish washer, washing machine, and stove
are non-interruptible appliances, and EV, air conditioner, and
water heater are interruptible appliances. We model other
appliances such as refrigerator and TV as must-run appliances.
Table I summarizes the task specifications of the controllable
appliances [38]. For the EV in each household i, we have
dmin
a,i = (Bd

i − B0
i)/pavg

a,i and dmax
a,i = (Bmax

i − B0
i)/pavg

a,i , where
B0
i is the initial charging level when the EV awakes, Bd

i

is the charging demand for the next trip, and Bmax
i is the

battery’s maximum capacity. The charging demand of the EV
in household i is uniformly chosen at random from the set
{18 kWh, 18.75 kWh, . . . , 24 kWh}. The battery capacity is set
to 30 kWh. Typically, the user is indifference between the
charging patterns for the EV as long as the charging is finished
before the deadline. Thus, we set coefficients ωa,i,t, t ∈ T
to zero for the EV. Coefficients ωa,i,t, t ∈ T are chosen
uniformly at random from the interval [$0, $0.5] for the air
conditioner and water heater. We set the desired load pattern
(xdes
a,i,t, t ∈ T) of the air conditioner to a 16-hour period,

during which the appliance turns on for an hour and turns off
in the next hour in a periodic fashion. We set the desired load
pattern of the water heater to a 5-hour period without interrup-
tion. To simulate the non-interruptible appliances, we consider

TABLE I
OPERATING SPECIFICATIONS OF CONTROLLABLE APPLIANCES.

Appliance
(
p

avg
a,i, da,i, d

min
a,i , d

max
a,i

)
Dish washer (1.5 kW, 2 hr,−,−)

Washing machine (2.5 kW, 3 hr,−,−)
Stove (3 kW, 3 hr,−,−)

EV (3 kW,−, (Bd
i −B

0
i)/p

avg
a,i, (B

max
i −B0

i)/p
avg
a,i)

Air conditioner (1.5 kW,−, 2 hr, 8 hr)

Water heater (2.5 kW,−, 0 hr, 5 hr)

12 pm 6 pm 12 am 6 am
0.7

0.9

1.1

1.3

1.5

7 am

12 pm 6 pm 12 am 6 am
20

40

60

80

100

7am

Fig. 2. Price parameters over one day: (a) ltht ; (b) λ1,t and λ2,t.

several scheduling windows selected uniformly between 10 am
and 10 pm, with a length that is uniformly chosen at random
from set {4 hr, 5 hr, 6 hr, 7 hr}. For the washing machine, we
model (Pa,i(∆), ∆ ≥ 1) as a truncated normal distribution
which is lower bounded by zero, and has a mean value of
288 time slots and a standard deviation of 60 time slots. For
other appliances, we use a truncated normal distribution with a
mean value of 96 time slots and a standard deviation of 20 time
slots. In practical implementations, the probability distribution
(Pa,i(∆), ∆ ≥ 1) for each appliance a can be approximated
by using the historical record on the usage behaviour of each
user i.

Unless stated otherwise, the price parameters vary periodi-
cally with a period of one day. As discussed in Section II-B,
the periodic price parameter vector is a special case for the
hidden Markov model in Assumption 1. Figs. 2 (a) and (b)
show ltht , t ∈ T , and λ1,t and λ2,t, t ∈ T over one day,
respectively. The actor and critic step sizes in iteration k of
the LSL algorithm are set to γka = ma/k

2
3 and γkc = mc/k,

respectively. Since each ECC may use different values for
ma and mc in practice, we choose ma and mc uniformly
from [0.5, 2] for each household. Unless stated otherwise,
the discounted factor β is set to 0.995, i.e., the users are
foresighted.

For the benchmark scenario without demand response, the
non-interruptible appliances are operated as soon as they be-
come awake. The air conditioner and water heater are operated

 6 am 12 pm 6 pm 12 am 6 am 12 pm 6 pm 12 am 6 am

Time (hour)

0

3

6

9

12
L

oa
d

de
m

an
d

(k
W

)
Without load scheduling
With load scheduling

12 pm 6 pm 12 am 6 am
Time (hour)

0

0.4

0.8

1.2

1.6

2

A
gg

re
ga

te
 lo

ad
 (

M
W

) Without load scheduling
With load scheduling
Must-run load

6 am

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
0

0.4

0.8

1.2

1.6

2

2.4

Fig. 3. (a) Load demand for household 1 over two days; (b) aggregate load
demand of users over one day; (c) aggregate load demands of all users over
seven days with and without load scheduling.

according to their desired load patterns. The EV starts to
charge when it is plugged in. We simulate both the benchmark
case and LSL algorithm for several scenarios using Matlab in
a PC with processor Intel Core i5 3337U CPU 1.80 GHz.

First, we compare the load profiles for household 1 over two
days in the benchmark scenario (without load scheduling) and
the LSL algorithm (with load scheduling) in Fig. 3 (a). The
EV charging demands of household 1 in the first and second
days are 6 and 8 hours, respectively. With the LSL algorithm,
the ECC of household 1 schedules the operating appliances to
reduce the payment. In particular, since the peak load with
scheduling in the first day is much lower than that in the
second day, the ECC of the foresighted household 1 charges
the EV for 8.5 hours in the first day (larger than the demand
of 6 hours in the first day), in order to reduce the charging
hour to 5.5 hours in the second day. Such a charging schedule
reduces the peak load in the second day. Fig. 3 (b) shows the
aggregate load demand of all users during one sample day.
The peak load is about 1.9 MW around 8 pm without load
scheduling. When the households deploy LSL algorithm, the
ECCs schedule the controllable appliances to off-peak hours

0 500 1000 1500 2000 2500 3000
3.5

4

4.5

5

Fig. 4. Daily average cost for myopic and foresighted household 1.

at the MPE. The peak load decreases by 27% to 1.4 MW. Fig.
3 (c) shows the aggregate load profile of all users over one
week. The peak load reduction can be observed in all days
with the LSL algorithm.

The LSL algorithm benefits the users by reducing their
daily average cost. We perform simulations for β =
0.995, 0.8, 0.5, 0.2, 0.05, which includes the extreme cases of
foresighted users (β = 0.995) and myopic users (β = 0.05).
We present the daily average cost of household 1 for different
values of β in Fig. 4. The initial value of $4.8 per day is the
daily average cost without load scheduling. When household
1 is foresighted, its daily average cost decreases by 28% (from
$4.8 per day to $3.5 per day). When β decreases, the daily
average cost increases gradually. For a myopic user, the daily
average cost decreases by 11% (from $4.8 per day to $4.3
per day). The reason is that the ECC for foresighted users
schedules the appliances considering the price in the current
and future time slots. Fig. 5 (a) shows the charging profile
of the EV for household 1 with a myopic user. Fig. 5 (b)
shows the dynamics of electricity price over two days when
the users are myopic. The ECC of the myopic user (with
β = 0.05) considers the daily price fluctuations and charges
the EV just to fulfill the charging demand (for 6 hours). Fig.
5 (c) shows the charging profile of the EV for household 1
with a foresighted user. Fig. 5 (d) shows the dynamics of
electricity price when the users are foresighted. The ECC of
the foresighted user (with β = 0.995), on the other hand,
takes advantage of the price fluctuations over multiple days
(in particular the low current price) and charges the EV more
than the current charging demand (for 8.5 hours) in order to
reduce cost in the following day when the price in the charging
period is high.

The LSL algorithm helps the utility company reduce the
PAR in the aggregate load demand. We compute the expected
PAR over a period of 2 months in Fig. 6. We consider two
special cases of the hidden Markov model in Assumption 1,
i.e., the periodic and random price parameters, respectively,
to evaluate the performance of LSL algorithm. With periodic
price parameters, the LSL algorithm performs well and reduces
the PAR from 2.3 to 2.02 (13% reduction) in 3000 time slots
(about a month). For random price parameters, we assume
that the utility company chooses ltht , t ∈ T from a truncated
normal distribution with a mean value shown in Fig. 2 (a)
and a standard deviation of 0.2 MW. The parameters λ1,t

and λ2,t, t ∈ T are also chosen from a truncated normal
distribution with a mean value shown in Fig. 2 (b) and a

 6 am 12 pm 6 pm 12 am 6 am 12 pm 6 pm 12 am 6 am
0

1

2

3

4
E

V
 c

ha
rg

in
g

ra
te

 (
kW

) Myopic user

6 am 12 pm 6 pm 12 am 6 am 12 pm 6 pm 12 am 6 am

Time (hour)

20

40

60

80

100

Pr
ic

e
($

/M
W

)

0
 6 am 12 pm 6 pm 12 am 6 am 12 pm 6 pm 12 am 6 am

1

2

3

4

E
V

 c
ha

rg
in

g
ra

te
 (

kW
) Foresighted user

c

6 am 12 pm 6 pm 12 am 6 am 12 pm 6 pm 12 am 6 am

Time (hour)

20

40

60

80

100

Pr
ic

e
($

/M
W

)

Fig. 5. (a) The EV’s charging schedule when household 1 is myopic (β =
0.05); (b) the electricity price when users are myopic; (c) the EV’s charging
schedule when household 1 is foresighted (β = 0.995); (d) The electricity
price when users are foresighted.

standard deviation of 5 $/MW. The random price parameters
can model abnormal fluctuations (such as spikes in the price
values). In practice, the probability distributions for the price
parameters can be estimated from the historical price data.
Nevertheless, our LSL algorithm is model-free, hence the
ECCs do not need to know the probability distributions of
the price parameters. Results shows that the ECCs can still
effectively determine their MPE policies through learning,
but it takes 6500 time slots (about two months) for the

0 1000 2000 3000 4000 5000 6000 7000
2

2.1

2.2

2.3

2.4

Iteration number

Ex
pe

ct
ed

PA
R With random price parameters

With periodic price parameters

Fig. 6. Expected PAR of the LSL algorithm with periodic and random price
parameters.

PAR to converge to 2.07. Thus, LSL algorithm has a robust
performance even in a market with random fluctuations in the
price parameters.

We show that Algorithm 2 converges to the MPE by
using the MPE characterization in Theorem 2. Fig. 7 depicts
the absolute values of the approximate objective function
||f̂ obj
i (V π,ki , πki)|| for households 1, 2, and 3. It shows that the

objective values converge to zero (we have the same result
for other households), which is the global optimal solution
of problem (23). Thus from Theorem 2, the LSL algorithm
converges to the MPE of Game 2. Though the action and state
spaces of each household are large, the speed of convergence
is acceptable as a result of using the value function and policy
approximations. The jumps in the curves in Fig. 7 correspond
to the iterations where the basis functions in (31) and (32) are
added to the basis function sets. In our simulation, the running
time of the LSL algorithm per iteration per household is only
a few seconds. As the households only need to go through
one iteration of computation per time slot (e.g., 15 mins), the
proposed algorithm is suitable for real-time executions.

We compare the LSL algorithm with a scheduling algorithm
based on Q-learning to demonstrate the benefit of the actor-
critic method. Q-learning has been used in some existing
learning algorithms for demand response (e.g., [7] and [8]).
We consider an algorithm based on Q-learning with the
same structure as LSL algorithm, with the only difference
that the ECC updates the Q-functions [22, Ch. 6]. Fig. 8
shows the daily average cost of household 1 using the LSL
algorithm and the Q-learning benchmark. In each iteration of
the Q-learning benchmark, the policies are obtained from the
updated values of the Q-functions (which is computed based
on the Boltzmann exploration as in [7]). The policy update
suffers from high fluctuations and slow learning. Our proposed
algorithm converges much smoother, with a total convergence
time around 25% of that of the Q-learning benchmark.

To study how the observation profile approximation in Algo-
rithm 1 affects the users’ policy, we compare the households’
policies in two scenarios. In the first scenario, the states are
partially observable to the ECCs. They will use Algorithm 1
to approximate the observation profile of all households. In
the second scenario, the utility company shares the state of
all households with each ECC. Thus, the states become fully
observable to the ECCs. The LSL algorithm can be used in
both scenarios to determine the MPE policy of the households.

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

Iteration number

fob
j

i
(V

 π,
k

i
,π

k)

Household 1

Household 2

Household 3

Fig. 7. Objective value ||fobj
i (V π,k

i , πk
i)|| for households 1, 2, and 3.

0 3000 6000 9000 12000
3.5

4

4.5

5

Fig. 8. Daily average cost for household 1 with the algorithm based on
Q-learning and our proposed LSL algorithm.

12 pm 6 pm 12 am 6 am
Time (hour)

0

0.4

0.8

1.2

1.6

2

A
gg

re
ga

te
 lo

ad
 (

M
W

) Without load scheduling
Partially observable load scheduling
Fully observable load scheduling

6 am

Fig. 9. The aggregate load demand with the partially observable load
scheduling and fully observable load scheduling.

Fig. 9 shows the aggregate load demand in both scenarios over
one day, with and without load scheduling. When the states
are partially observable, the ECCs play a sequence of Bayesian
games in Game 2. As each ECC has incomplete information
about other households’ states, it determines an optimal policy
that minimizes the expected cost in all possible states of other
households under a given approximate observation profile.
When the states are fully observable, the ECCs play a sequence
of normal form games. As each ECC knows the actual state
of other households, its policy becomes the best response
for the actual state of the system. Fig. 9 shows that when
the states become fully observable, the peak in the aggregate
load demand further decreases when the aggregate load is
around the threshold ltht . This reduces the expected cost of
the households, e.g., the daily average cost of household 1 is
reduced by 6.3% (from $3.5 per day to $3.28 per day).

VI. CONCLUSION

In this paper, we formulated the scheduling problem of
the controllable appliances in the residential households as a

partially observable stochastic game, where each household
aims at minimizing its discounted average cost in a real-
time pricing market. We proposed a distributed and model-
free learning algorithm based on the actor-critic method to
determine the MPE policy. We used the value function and
policy approximation technique to reduce the action and state
spaces of the households and improve the learning speed.
Simulation results show that the expected PAR in the aggregate
load can be reduced by 13% when users deploy the proposed
algorithm. Furthermore, the foresighted users can benefit from
28% reduction in their expected discounted cost in long-term,
which is 17% lower than the expected cost of the myopic
users. For future work, we plan to extend our LSL algorithm
to a deregulated market, where multiple households participate
in demand response program and can choose to purchase
electricity from multiple utility companies.

APPENDIX

A. The Proof of Equation (1)

Consider appliance a ∈ Ai in household i. According to
Definition 1, δa,i,t for t ∈ T is the number of time slots since
the most recent time slot that appliance a becomes awake
with the most recent new task. In other words, appliance a
has not become awake with a new task again in time slots
t − δa,i,t + 1, . . . , t since it became awake in time slot t −
δa,i,t + 1. The value of Pa,i(δa,i,t) is the probability that the
difference between two sequential wake-up times for appliance
a is δa,i,t. Given the current time slot t, the probability Pa,i,t+1

that appliance a ∈ Ai becomes awake with a new task in the
next time slot t + 1 ∈ T can be obtained from the Bayes’
rule as

Pa,i,t+1 =
Prob{E1 |E2}Prob{E2}

Prob{E1}
, (34)

where E1 is the event that appliance a has not become awake
with a new task until time slot t, and E2 is the event that
appliance a becomes awake in time slot t+ 1 after δa,i,t time
slots since it became awake with the most recent task. With
probability Prob{E1 |E2} = 1, appliance a has not become
awake with a new task until time slot t conditioned on the
event that it becomes awake with a new task in time slot
t + 1. With probability Prob{E2} = Pa,i(δa,i,t), appliance a
becomes awake in time slot t+1 after δa,i,t time slots since it
became awake with the most recent task. Appliance a has not
become awake in time slots t−δa,i,t+1, . . . , t with probability
Prob{E1} = 1−

∑δa,i,t−1
∆=1 Pa,i(∆). Therefore, Pa,i,t+1 can be

obtained as (1). This completes the proof. �

B. The Proof of Theorem 1

The MPE policy in Game 2 is the fixed point solution of
every household’s best response policy. Household i solves
the Bellman equations (20) for all approximate observation
profiles ô ∈ O when other households’ policies are fixed.
We construct a Bayesian game from the underlying fully
observable game with incomplete information as follows:

Game 3 Bayesian Game Among Virtual Households:

Players: The set of virtual households, where each virtual
household (i, ô) corresponds to each real household i ∈ N
and observation profile ô ∈ O.

Types: The type of each virtual household (i, ô) is the
observation oi ∈ Oi of household i. Pi(oi|ô) is the probability
that virtual household (i, ô) has type oi.

Strategies: The strategy for virtual household (i, ô) is the
probability distribution πi(ô) over the actions xi(ô) ∈ X̂i(ô).

Costs: The cost of each virtual household (i, ô) with
strategy πi(ô) is equal to Eπi(ô)

{
Q
π−i

i (ô,xi(ô))
}

, where
Q
π−i

i (ô,xi(ô)) is defined in (18).
We consider the Bayesian Nash equilibrium (BNE) solution

concept for the underlying Bayesian game among virtual
households. We show that the BNE corresponds to the MPE
of Game 2 among households i ∈ N . In Game 3, each
virtual household (i, ô) aims to determine its BNE strategy
πBNE
i (ô) to minimize EπBNE

i (ô)

{
Q
πBNE
−i

i (ô,xi(ô))
}

when other
virtual households’ strategies are fixed. Therefore, in the
BNE all virtual households solve the Bellman equations in
(20). Consequently, the BNE of the Game 3 among virtual
households corresponds to the MPE of Game 2 among real
households. A BNE always exists for the Bayesian games with
a finite number of players and actions [17, Ch. 6]. Thus, an
MPE exists for the fully observable game with incomplete
information among households. This completes the proof. �

C. The Proof of Theorem 2

We use an approach similar to [9, Theorem 3.8.2] to show
that the joint policy π is an MPE if and only if f obj

i (V πi ,πi) =
0 for all households i ∈ N . Then, we obtain the condition in
(24) for the policy in an MPE. Our proof involves two steps.

Step (a) Consider the joint policy π and value functions
V πi (ô), i ∈ N , in the feasible set of problem (23), for
which we have f obj

i (V πi ,πi) = 0 for i ∈ N . We show
that the policy π is an MPE. According to the constraint
set of problem (23), the Bellman errors for the actions in
an approximate observation profile ô are non-negative. Since
f obj
i (V πi ,πi) is the expectation over the Bellman errors, its

value is nonnegative for all feasible policies and value func-
tions. If f obj

i (V πi ,πi) = 0 for all i ∈ N , then the policy π and
the value functions V πi (ô), i ∈ N are the global optimum of
problem (23) for all households. Hence, no household has the
incentive to unilaterally change its policy, in order to further
reduce its objective value f obj

i (V πi ,πi). In other words, the
policy π is an MPE.

Next, we show that for an MPE policy πMPE, we
can determine a value function V π

MPE

i (ô) such that
f obj
i (V π

MPE

i ,πMPE
i) = 0. From (22), f obj

i (V π
MPE

i ,πMPE
i) = 0

is equivalent to∑
ô∈O

EπMPE
i (ô)

{
Bi

(
V π

MPE

i , ô,xi(ô)
)}

= 0, ∀ i ∈ N . (35)

According to the constraint set of problem (23), the Bellman
errors for the actions in an observation profile ô are nonneg-

ative in the MPE. Thus, each term of the summation in (35)
should be zero. That is

EπMPE
i (ô)

{
Bi

(
V π

MPE

i , ô,xi(ô)
)}

= 0, ∀ ô ∈ O, ∀ i ∈ N ,
(36)

which is equivalent to

EπMPE
i (ô)

{
Q
πMPE
−i

i (ô,xi(ô))−V π
MPE

i (ô)
}

= 0, ∀ ô ∈ O, ∀ i ∈ N .
(37)

πMPE
i (ô) is a randomized policy. Hence, we have

EπMPE
i (ô)

{
V π

MPE

i (ô)
}

=V π
MPE

i (ô). Hence, for all approximate
observation profile ô ∈ O, (37) can be rewritten as

V π
MPE

i (ô)=EπMPE
i (ô)

{
Q
πMPE
−i

i (ô,xi(ô))
}
, ∀ i ∈ N . (38)

For household i, we define the average cost in approximate
observation profile ô as c̄i(ô) = EπMPE(ô) {ci(ô,x(ô))}. We
define the average transition probability from observation ô
to ô′ as P̄ (ô′ | ô) = EπMPE(ô) {P (ô′ | ô,x(ô))}. We define
vectors c̄i=(c̄i(ô), ô ∈ O) and V π

MPE

i =
(
V π

MPE

i (ô), ô ∈ O
)
,

and define the transition matrix P̄ =
[
P̄ (ô′ | ô), ô, ô′ ∈ O

]
.

By substituting (18) into (38), we have

V π
MPE

i = (1− β)c̄i + βP̄ V π
MPE

i . (39)

By rearranging the terms in (39), we obtain(
I − βP̄

)
V π

MPE

i = (1− β)c̄i, (40)

where I is the identity matrix. Matrix P̄ is a stochastic
matrix (i.e., each of its entries is a nonnegative real number
representing a probability), and thus its eigenvalues are less
than or equal to one. Besides, the discount factor β is less than
one. Hence, the eigenvalues of matrix I − βP̄ are positive,
and thereby it is invertible (or nonsingular). From (40), we
can obtain V π

MPE

i as

V π
MPE

i = (1− β)
(
I − βP̄

)−1
c̄i. (41)

Therefore, for the MPE policy πMPE, we obtain the value
function V π

MPE

i (ô) in (41) such that f obj
i (V π

MPE

i ,πMPE
i) = 0

for all households i ∈ N .
Step (b) We obtain the condition in (24) for the policy in

an MPE. For each household i ∈ N , the objective function
f obj
i (V π

MPE

i ,πMPE
i) in (22) can be expressed as

f obj
i (V π

MPE

i ,πMPE
i) =∑

ô∈O

∑
xi(ô)∈X̂i(ô)

πMPE
i (ô,xi(ô))Bi

(
V π

MPE

i , ô,xi(ô)
)
. (42)

The Bellman error Bi(V
πMPE

i , ô,xi(ô)) is nonnegative.
Hence, from (42), f obj

i (V π
MPE

i ,πMPE
i) = 0 is equivalent to

πMPE
i (ô,xi(ô))Bi

(
V π

MPE

i , ô,xi(ô)
)

= 0 for all households

i ∈ N with action xi(ô) ∈ X̂i(ô) in observation profile ô.
This completes the proof. �

D. Bellman Error Approximation

The basis function in (32) is equal to the expec-
tation over the Bellman errors for all feasible actions

xi(ô
k−1) ∈ Xi(ok−1

i). ECC i knows the observation ok−1
i ,

the approximate observation profile ôk−1, and the cost
ci
(
ôk−1,xk−1

i (ôk−1),xk−1
−i (ôk−1)

)
for the chosen action

xk−1
i (ôk−1) in iteration k − 1, as well as the current obser-

vation oki and the approximate observation profile ôk. ECC i
needs to use these available information to approximate the
Bellman error for an arbitrary feasible action xi(ô

k−1) ∈
Xi(ok−1

i). We use the TD error as an estimation for the
Bellman error [14, Lemma 3]. We have

Bk−1
i

(
V π,k−1
i , ôk−1,xi(ô

k−1)
)

≈ (1− β) ci
(
ôk−1,xi(ô

k−1),xk−1
−i (ôk−1)

)
+ β V π,k−1

i

(
ôk
(
xi(ô

k−1)
)
, θk−1

i

)
−V π,k−1

i

(
ôk−1, θk−1

i

)
, (43)

where ôki
(
xi(ô

k−1)
)

is the approximate observation profile
in the current time slot k if household i chooses action
xi(ô

k−1) in the previous time slot k − 1. ECC i determines
ôki
(
xi(ô

k−1)
)

in the following two steps:
Step (a) ECC i knows observations ok−1

i and oki . Thus it
can determine the set of appliances that become awake with a
new task in the current time slot k. ECC i can also determine
the state of other operating appliances for an arbitrary feasible
action xi(ôk−1). Therefore, ECC i can determine the state of
its own household for an arbitrary feasible action xi(ôk−1).

Step (b) The states of other households are fixed. Further-
more, ECC i knows the approximate observation profile ôk for
the chosen action xk−1

i (ôk−1). Using the result of Step (a),
ECC i can compute the average aggregate load demands for
the feasible actions of all households for an arbitrary feasible
action xi(ôk−1) ∈ Xi(ok−1

i), and thus it can determine the
approximate observation profile ôk(xi(ô

k)) for all households
for action xi(ôk−1).

In addition to computing the approximate observa-
tion profile ôki

(
xi(ô

k−1)
)
, ECC i needs to compute the

cost ci
(
ôk−1,xi(ô

k−1),xk−1
−i (ôk−1)

)
for feasible action

xi(ô
k−1) ∈ Xi(ok−1

i). ECC i knows the payment to the
utility company for the chosen action xk−1

i (ôk−1). Since
the load demand of one household is much smaller than the
aggregate load demand of all households, we can assume that
the price value is unchanged when household i unilaterally
changes its load demand. Thus, ECC i can estimate its
payment for an arbitrary feasible action xi(ôk−1) ∈ Xi(ok−1

i).
ECC i can also determine the discomfort cost for action
xi(ô

k−1) ∈ Xi(ok−1
i). Therefore, it can compute the cost

ci
(
ôk−1,xi(ô

k−1),xk−1
−i (ôk−1)

)
for an arbitrary feasible ac-

tion xi(ôk−1). Finally, ECC i is able to compute the approx-
imate Bellman error in (43).

REFERENCES

[1] Office of Electricity Delivery & Energy Reliability, “Customer partici-
pation in the smart grid: Lessons learned,” U.S. Department of Energy,
Tech. Rep., Sept. 2014.

[2] The Brattle Group, Freeman, Sullivan & Co., and Global Energy
Partners, LLC, “A national assessment of demand response potential,”
Federal Energy Regulatory Commission, Tech. Rep., Jun. 2009.

[3] P. Samadi, A. Mohsenian-Rad, V.W.S. Wong, and R. Schober, “Real-
time pricing for demand response based on stochastic approximation,”
IEEE Trans. on Smart Grid, vol. 5, no. 2, pp. 789–798, Mar. 2014.

[4] Z. Chen, L. Wu, and Y. Fu, “Real-time price-based demand response
management for residential appliances via stochastic optimization and
robust optimization,” IEEE Trans. on Smart Grid, vol. 3, no. 4, pp.
1822–1831, Dec. 2012.

[5] C. Eksin, H. Delic, and A. Ribeiro, “Demand response management in
smart grids with heterogeneous consumer preferences,” IEEE Trans. on
Smart Grid, vol. 6, no. 6, pp. 3082–3094, Nov. 2015.

[6] N. Forouzandehmehr, M. Esmalifalak, A. Mohsenian-Rad, and Z. Han,
“Autonomous demand response using stochastic differential games,”
IEEE Trans. on Smart Grid, vol. 6, no. 1, pp. 291–300, Jan. 2015.

[7] Z. Wen, D. O’Neill, and H. Maei, “Optimal demand response using
device-based reinforcement learning,” IEEE Trans. on Smart Grid,
vol. 6, no. 5, pp. 2312–2324, Sept. 2015.

[8] B. Kim, Y. Zhang, M. van der Schaar, and J. Lee, “Dynamic pricing
and energy consumption scheduling with reinforcement learning,” IEEE
Trans. on Smart Grid, vol. 7, no. 5, pp. 2187–2198, Sept. 2016.

[9] Y. Liang, L. He, X. Cao, and Z. J. Shen, “Stochastic control for smart
grid users with flexible demand,” IEEE Trans. on Smart Grid, vol. 4,
no. 4, pp. 2296–2308, Dec. 2013.

[10] F. Ruelens, B. J. Claessens, S. Vandael, B. D. Schutter, R. Babuska,
and R. Belmans, “Residential demand response of thermostatically
controlled loads using batch reinforcement learning,” accepted for pub-
lication in IEEE Trans. on Smart Grid, 2016.

[11] Y. Xiao and M. van der Schaar, “Distributed demand side management
among foresighted decision makers in power networks,” in Proc. of IEEE
Conf. on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2013.

[12] J. Yao and P. Venkitasubramaniam, “Optimal end user energy storage
sharing in demand response,” in Proc. of IEEE SmartGridComm, Miami,
FL, Nov. 2015.

[13] L. Jia, Q. Zhao, and L. Tong, “Retail pricing for stochastic demand with
unknown parameters: An online machine learning approach,” in Proc. of
Allerton Conf. on Communication, Control, and Computing, Monticello,
IL, Oct. 2013.

[14] J. Filar and K. Vrieze, Competitive Markov Decision Processes. NY:
Springer, 1997.

[15] E. Kalai and E. Lehrer, “Rational learning leads to Nash equilibrium,”
Econometrica, vol. 39, no. 10, pp. 1019–1045, Jul. 1993.

[16] A. Sandroni, “Does rational learning lead to Nash equilibrium in finitely
repeated games?” Journal of Economic Theory, vol. 78, no. 1, pp. 195
– 218, 1998.

[17] M. Bowling and M. Veloso, “Rational and convergent learning in
stochastic games,” in Proc. of Int’l Conf. on Artificial Intelligence,
Seattle, WA, Aug. 2001.

[18] L. M. Dermed and C. L. Isbell, “Solving stochastic games,” in
Advances in Neural Information Processing Systems 22, Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, Eds.
Curran Associates, Inc., 2009, pp. 1186–1194. [Online]. Available:
http://papers.nips.cc/paper/3825-solving-stochastic-games.pdf

[19] L. Li and J. Shamma, “LP formulation of asymmetric zero-sum stochas-
tic games,” in Proc. of IEEE Annual Conf. on Decision and Control, Los
Angeles, CA, Dec. 2014.

[20] R. N. Borkovsky, U. Doraszelski, and Y. Kryukov, “A user’s guide
to solving dynamic stochastic games using the homotopy method,”
Operations Research, vol. 58, no. 4-part-2, pp. 1116–1132, Jul. 2010.

[21] M. Neely, “A Lyapunov optimization approach to repeated stochastic
games,” in Proc. of Allerton Conference on Communication, Control,
and Computing (Allerton), Monticello, IL, Oct. 2013.

[22] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[23] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun, “Approx-
imate solutions for partially observable stochastic games with common
payoffs,” in Proc. of Int’l Conf. on Autonomous Agents and Multiagent
Systems, New York, NY, Jul. 2004.

[24] F. Oliehoek, S. Whiteson, and M. Spaan, “Approximate solutions for
factored Dec-POMDPs with many agents,” in Proc. of Int’l Conf. on
Autonomous Agents and Multiagent Systems, Saint Paul, MN, May 2013.

[25] L. MacDermed, C. Isbell, and L. Weiss, “Markov games of incomplete
information for multi-agent reinforcement learning,” in Proc. of Int’l
Conf. on Artificial Intelligence, San Fransico, CA, Aug. 2011.

[26] S. Bahrami and V.W.S. Wong, “An autonomous demand response
program in smart grid with foresighted users,” in Proc. of IEEE
SmartGridComm, Miami, FL, Nov. 2015.

[27] I. H. Witten, “An adaptive optimal controller for discrete-time Markov
environments,” Information and Control, vol. 34, no. 4, pp. 286–295,
Aug. 1977.

[28] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
on Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 834–846, Sept.
1983.

[29] V. Konda and J. Tsitsiklis, “On actor-critic algorithms,” SIAM Journal
on Control and Optimization, vol. 42, no. 4, pp. 1143–1166, Aug. 2003.

[30] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor-
critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482, Nov.
2009.

[31] A. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load con-
trol with price prediction in real-time electricity pricing environments,”
IEEE Trans. on Smart Grid, vol. 1, no. 2, pp. 120–133, Sept. 2010.

[32] D. W. Bunn, Modelling Prices in Competitive Electricity Markets.
Tornoto, Canada: Wiley Finance, 2004.

[33] R. S. Mamon and R. J. Elliott, Hidden Markov Models in Finance. NY:
Springer, 2014.

[34] P. Yang, G. Tang, and A. Nehorai, “A game-theoretic approach for
optimal time-of-use electricity pricing,” IEEE Trans. on Power Systems,
vol. 28, no. 2, pp. 884–892, Aug. 2013.

[35] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University
Press, 2008.

[36] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
FL: CRC Press, 2009.

[37] R. Parr, C. Painter-Wakefield, L. Li, and M. L. Littman, “Analyzing
feature generation for value-function approximation,” in Proc. of Int’l
Conf. on Machine Learning, New York, NY, Jun. 2007.

[38] Toronto Hydro. [Online]. Available: http://www.torontohydro.com/sites
/electricsystem/residential/yourbilloverview/Pages/ApplianceChart.aspx

Shahab Bahrami (S’12) received the B.Sc. and
M.A.Sc. degrees both from Sharif University of
Technology, Tehran, Iran, in 2010 and 2012, re-
spectively. He is currently a Ph.D. candidate in the
Department of Electrical and Computer Engineering,
The University of British Columbia (UBC), Vancou-
ver, BC, Canada. His research interests include opti-
mal power flow analysis, game theory, and demand
side management, with applications in smart grid.

Vincent W.S. Wong (S’94, M’00, SM’07, F’16) re-
ceived the B.Sc. degree from the University of Man-
itoba, Winnipeg, MB, Canada, in 1994, the M.A.Sc.
degree from the University of Waterloo, Waterloo,
ON, Canada, in 1996, and the Ph.D. degree from the
University of British Columbia (UBC), Vancouver,
BC, Canada, in 2000. From 2000 to 2001, he worked
as a systems engineer at PMC-Sierra Inc. (now
Microsemi). He joined the Department of Electrical
and Computer Engineering at UBC in 2002 and
is currently a Professor. His research areas include

protocol design, optimization, and resource management of communication
networks, with applications to wireless networks, smart grid, and the Internet.
Dr. Wong is an Editor of the IEEE Transactions on Communications. He
was a Guest Editor of IEEE Journal on Selected Areas in Communications
and IEEE Wireless Communications. He has served on the editorial boards of
IEEE Transactions on Vehicular Technology and Journal of Communications
and Networks. He has served as a Technical Program Co-chair of IEEE Smart-
GridComm’14, as well as a Symposium Co-chair of IEEE SmartGridComm’13
and IEEE Globecom’13. Dr. Wong is the Chair of the IEEE Communications
Society Emerging Technical Sub-Committee on Smart Grid Communications
and the IEEE Vancouver Joint Communications Chapter. He received the 2014
UBC Killam Faculty Research Fellowship.

Jianwei Huang (S’01-M’06-SM’11-F’16) is an
IEEE Fellow, a Distinguished Lecturer of IEEE
Communications Society, and a Thomson Reuters
Highly Cited Researcher in Computer Science.
He is an Associate Professor and Director of
the Network Communications and Economics Lab
(ncel.ie.cuhk.edu.hk), in the Department of Informa-
tion Engineering at the Chinese University of Hong
Kong. He received the Ph.D. degree from Northwest-
ern University in 2005, and worked as a Postdoc
Research Associate at Princeton University during

2005-2007. He is the co-recipient of 8 Best Paper Awards, including IEEE
Marconi Prize Paper Award in Wireless Communications in 2011. He has co-
authored six books, including the textbook on “Wireless Network Pricing”.
He received the CUHK Young Researcher Award in 2014 and IEEE ComSoc
Asia-Pacific Outstanding Young Researcher Award in 2009. He has served
as an Associate Editor of IEEE/ACM Transactions on Networking, IEEE
Transactions on Wireless Communications, and IEEE Journal on Selected
Areas in Communications - Cognitive Radio Series, and IEEE Transactions
on Cognitive Communications and Networking. He has served as the Chair
of IEEE ComSoc Cognitive Network Technical Committee and Multimedia
Communications Technical Committee.

