
Security-Constrained Unit Commitment for
ac-dc Grids with Generation and Load Uncertainty

Shahab Bahrami, Student Member, IEEE, and Vincent W.S. Wong, Fellow, IEEE

Abstract—The uncertainties in renewable generators and load
demand make it a challenge for system operators to execute the
security-constrained unit commitment (SCUC) program in an
ac-dc grid. The SCUC is a nonlinear mixed-integer optimization
problem due to the power flow equations, constraints imposed
by the ac-dc converters, and the binary variables associated with
the generators’ on/off states. In this paper, we study the SCUC
problem in ac-dc grids with generation and load uncertainty.
We introduce the concept of conditional value-at risk (CVaR) to
limit the risk of deviations in the load demand and renewable
generation. We relax the binary variables and introduce a l1-
norm regularization term to the objective function, and then
use convex relaxation techniques to transform the problem into
a semidefinite program (SDP). We develop an algorithm based
on the iterative reweighted l1-norm approximation that involves
solving a sequence of SDPs. Simulations are performed on
an IEEE 30-bus test system. Results show that the proposed
algorithm returns a solution within 2% gap from the global
optimal solution for the underlying test system. When compared
with the multi-stage algorithm in the literature, our algorithm
has a lower running time and returns a solution with a smaller
gap from the global optimal solution.

Keywords: security-constrained unit commitment, conditional
value-at risk, l1-norm regularization, semidefinite program.

I. INTRODUCTION

The advancement in power electronic technologies in ac-dc
converters has led to the revival of dc power for high voltage
transmission, particularly for connecting off-shore wind farms
to the power grid [1]. In an ac-dc grid with renewable energy
sources, the security-constrained unit commitment (SCUC)
program plays an important role to determine the set of operat-
ing generators with the minimum cost. In general, the objective
of the SCUC problem includes the generators’ operation cost
and the system’s losses [2]. The SCUC problem in an ac-
dc grid is typically subject to power balance equations, power
flow limits of the transmission lines, bus voltage limits, voltage
and current limits of the ac-dc converters, as well as the
generators’ constraints such as the capacity limits, minimum
on/off time requirements, and ramping up/down rate limits.

There are challenges in solving the ac-dc SCUC problem.
First, the system operator typically uses the forecasted load
demand and the renewable generation. However, the actual
system condition may deviate from the presumed condition
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due to the uncertainties in the load demand and renewable
generators. Thus, the system operator requires to take into
account some corrective actions such as committing reserve
generators. Second, the SCUC is a nonlinear mixed-integer
optimization problem with nonconvex constraints imposed by
the power flow equations and the ac-dc converters, as well as
a large number of binary variables associated with the on/off
states of the generators. Therefore, the SCUC is in the class of
NP-hard problems [3] and is difficult to be solved optimally.

There have been some efforts in tackling the above chal-
lenges. We divide the related literature into two main threads.
The first thread is concerned with the solution approaches for
the deterministic SCUC problem. One approach is to divide the
SCUC problem into a master problem that solves the unit com-
mitment and some sub-problems that evaluate the feasibility of
the network constraints. The nonlinear mixed-integer program
(MIP) and Lagrange relaxation approach are generally used
to formulate the master problem [4], [5]. Different techniques
such as the Benders cut method [6], Newton-Raphson method
[7], and branch-and-bound method [8] are used to solve the
sub-problems. The multi-stage algorithms are not guarantee to
converge to a good local optimal, since the unit commitment
decisions from the first stage are fixed in the subsequent
stages. Furthermore, the MIP and the Lagrange relaxation
approach with large number of multipliers for the constraints
generally suffers from the curse of dimensionality in large
networks. Convex relaxation techniques such as quadratically-
constrained quadratic program [9] and semidefinite relaxation
[10] are the alternative approaches to solve the SCUC problem.
The second thread is concerned with the uncertainties in the
load demand and renewable energy generators. The scenario-
based stochastic optimization is commonly used to address
the uncertainty issues using the approximate probability dis-
tribution [11], [12] and the available historical data record [13]
for the uncertain variables. Robust optimization methods [14]–
[16] are used to address the unavailibility of probability distri-
bution functions of the uncertain variables. Nevertheless, the
robust optimization methods consider the worst-case scenario
and ignore the severity of other possible scenarios.

In this paper, we focus on a convex relaxation technique
incorporated with a risk minimization approach to solve the
ac-dc SCUC problem with load and generation uncertainty.
We transform the problem into a semidefinite program (SDP)
and introduce the conditional value-at-risk (CVAR) [17] to
minimize the likelihood of high deviations in the load demand
and renewable generation. This paper is an extension of our
previous work [18] by taking into account the unit commitment
constraints, as well as the load and generation uncertainties.



The main contributions of this paper are as follows:

• Addressing the Uncertainty Issues: To address the un-
certainties in the load demand and renewable generator,
we introduce a penalty based on CVAR to the objective
function. It enables us to limit the risk of high deviations
in the net power supply within a confidence level.

• Novel Solution Approach: Unlike most of the existing
approaches (e.g., [4]–[8], [11]–[16]) that apply either dc
or linearized ac power flow models, we consider the full
ac power flow model to formulate the SCUC problem
as a nonlinear mixed-integer optimization problem. We
relax the binary variables and introduce a weighted l1-
norm regularization term to the objective function to
enforce the relaxed variables to be either 0 or 1. We use
convex relaxation techniques to transform the problem
into an SDP, and develop an iterative reweighted l1-norm
approximation algorithm that solves a sequence of SDPs.

• Performance Evaluation: Simulations are performed on
an IEEE 30-bus system connected to some dc grids.
We show that for 1000 different initial conditions, the
proposed algorithm returns a near-global optimal solution
with 2% gap in all scenarios, and returns the near-global
optimal solution with 1% gap in 98% of the scenarios.
When compared with the multi-stage deterministic SCUC
approaches (e.g., in [6] and [7]) in a number of test
systems, our algorithm returns a solution with a smaller
gap from the global optimal solution in a lower execution
time. When compared with a robust multi-stage SCUC
algorithm (e.g., in [14]–[16]), the optimal objective value
with our algorithm is smaller, as it takes into account the
likelihood of deviations in the net power supply instead
of the worst-case scenario.

The rest of this paper is organized as follows. Section II
introduces the system model for the ac-dc grid. In Section
III, we formulate the SCUC problem and transform it into an
SDP. We propose an iterative algorithm to solve the problem.
In Section IV, we evaluate the perfomance of the proposed
algorithm through simulations. Section V concludes the paper.

II. SYSTEM MODEL

Consider an ac-dc grid comprising a set of buses N and a
set of lines L. The components operating on dc power (e.g.,
photovoltaic (PV) panels, dc loads) are connected to the ac net-
work through three-phase voltage source converters (VSCs).
Fig. 1 shows the schematic of a VSC station consisting of an
ac-dc converter, phase reactor, ac filter, and transformer. For
simplicity in the notations, we partition the set of buses into
four distinct subsets: The set N conv

ac ⊆ N of ac side converter
buses, the set Nac ⊆ N of ac buses that are not connected
to the converters, the set N conv

dc ⊆ N of dc side converter
buses, and the set Ndc ⊆ N of dc buses that are not connected
to the converters. Let N conv = N conv

ac ∪ N conv
dc denote the set

of all converter buses. For example, for the VSC station in
Fig. 1, we have s ∈ N conv

dc , k ∈ N conv
ac , and f ∈ Nac. In the

following subsections, we introduce the models of the VSC,
energy storage system, generator, load, and ac-dc network.

Figure 1. A VSC station schematic with dc converter bus s ∈ N conv
dc , ac

converter bus k ∈ N conv
ac , and filter bus f ∈ Nac.

A. VSC Station and Energy Storage System Models

Fig. 1 shows a VSC station with a two- or three-level
converter using the pulse-width modulation switching method.
In this figure, XCk denotes the phase reactor of the con-
verter connected to ac bus k ∈ N conv

ac and RCk denotes
the resistance modeling the losses of this phase reactor. Let
BCk =

−XCk
R2
Ck

+X2
Ck

denote the susceptance of the phase reactor
connected to bus k ∈ N conv

ac . The ac filter connected to
bus f ∈ Nac is modeled by the shunt susceptance Bf . The
transformer connected to bus f ∈ Nac is modeled by its series
reactance XTf and resistance RTf [19].

We divide the operation cycle into a set T = {1, . . . , T} of
T time slots with equal length. The losses in a VSC station in
time slot t ∈ T can be approximated by a quadratic function of
its ac current magnitude |Ik(t)| injected into ac bus k ∈ N conv

ac
[20]. Let P conv

loss,k(t) denote the losses of the VSC station with
ac bus k ∈ N conv

ac in time slot t. We have

P conv
loss,k(t) = ak + bk|Ik(t)|+ ck|Ik(t)|2, (1)

where ak, bk, and ck are positive coefficients, which depend
on the components and the power rating of the VSC station.
Let PCk(t) and QCk(t) denote the injected active and reactive
power into ac converter bus k ∈ N conv

ac in time slot t,
respectively. Let PCs(t) denote the injected active power into
dc converter bus s ∈ N conv

dc in time slot t. The active power
balance in time slot t ∈ T for the ac-dc converter connected
to buses k ∈ N conv

ac and s ∈ N conv
dc is

PCk(t) + PCs(t) + P conv
loss,k(t) = 0. (2)

Let Vk(t) denote the voltage at bus k ∈ N in time slot t.
Let Imax

k and V max
k denote the maximum current and voltage

magnitude at bus k ∈ N , respectively. Let Snom
Ck

denote
the nominal value of the apparent power of the converter
connected to bus k ∈ N conv

ac . In time slot t ∈ T , the active
and reactive power flow in a VSC station with converter bus
k ∈ N conv

ac and filter bus f ∈ Nac are bounded by [21], [22]

QCk(t) ≤ |BCk |V max
k (V max

k − |Vf (t)|) , (3)
−mq

k S
nom
Ck
≤ QCk(t), (4)

(PCk(t))
2

+ (QCk(t))
2 ≤ (|Vk(t)|Imax

k )
2
, (5)

where mq
k is a positive constant and can be determined by the

type of the converter connected to bus k ∈ N conv
ac [21].

Let mv
ks denote the maximum modulation factor of the

converter connected to ac bus k ∈ N conv
ac and dc bus s ∈ N conv

dc .
In time slot t ∈ T , we have [22]

|Vk(t)| ≤ mv
ks|Vs(t)|. (6)

Let PBk(t) denote the active power injected into (PBk(t) >
0) or absorbed from (PBk(t) < 0) bus k by the battery in time



slot t. The power rating of the battery has limits Pmin
Bk

< 0 and
Pmax
Bk

> 0. That is

Pmin
Bk
≤ PBk(t) ≤ Pmax

Bk
, k ∈ N , t ∈ T . (7)

If no battery is connected to bus k ∈ N , then Pmin
Bk

= Pmax
Bk

= 0.
Let Binit

k ≥ 0 denote the initial energy level of the battery in
bus k ∈ N at the beginning of the operating cycle. The stored
energy in the battery until time T ′ ≤ T is nonnegative and
upper bounded by the limit Bmax

k . We have

0 ≤ Binit
k −

T ′∑
t=1

PBk(t) ≤ Bmax
k , k ∈ N , T ′ ≤ T. (8)

B. Generator and Load Models
We use binary variable uk(t) ∈ {0, 1} to indicate whether

the generator in bus k is on (uk(t) = 1) or off (uk(t) = 0)
in time slot t. The generation cost of a committed generator
in bus k with generation level PGk(t) ≥ 0 in time slot t
can be approximated by a quadratic function ck2 (PGk(t))

2
+

ck1PGk(t) + ck0, where ck0, ck1, and ck2 are nonnegative
coefficients [23]. In addition, a generator in bus k has a fixed
startup cost csu

k when it is turned on and a fixed shutdown
cost csd

k when it is turned off. We use a binary variable
sk(t) ∈ {0, 1} to indicate whether the generator in bus k
is started up (sk(t) = 1) or not (sk(t) = 0) in time slot t.
We use a binary variable dk(t) ∈ {0, 1} to indicate whether
the generator in bus k is shut down (dk(t) = 1) or not
(dk(t) = 0) in time slot t. We have sk(t) = dk(t) = 0 if
generator k is neither started up nor shut down in time slot t.
Let vector PG(t) = (PGk(t), k ∈ N ) denote the generation
profile of all generators in time slot t. We define variable
vectors u(t) = (uk(t), k ∈ N ), s(t) = (sk(t), k ∈ N )
and d(t) = (dk(t), k ∈ N ) for all generators. The grid-wide
operation cost of the generators in time slot t is

Cgen(PG(t),u(t), s(t), d(t)) =
∑
k∈N

ck2 (PGk(t))
2

+ ck1PGk(t) +ck0 uk(t) + csu
k sk(t) + csd

k dk(t). (9)

We have ck0 = ck1 = ck2 = csu
k = csd

k = 0, when either a
renewable generator or no generator is connected to bus k.

Let PDk(t) and QDk(t) denote the active and reactive load
components in bus k in time slot t, respectively. We assume
that the reactive power uncertainty can be mitigated using the
reactive power compensator. However, the scheduled output
power PGk(t) and the active load PDk(t) for the next day may
not match with the actual output power P̂Gk(t) and demand
P̂Dk(t) in time slot t, respectively. An alternative is to study
the deviation of the actual net power supply P̂Gk(t)− P̂Dk(t)
from its presumed value PGk(t) − PDk(t) in bus k in time
slot t. The excess net supply can be curtailed or stored in the
battery energy storage. We also assume that in those buses
with a renewable generator or load demand, there exists a
reserve unit that can be turned on to compensate the shortage
in the net supply. We model the generation cost for the reserve
generator in bus k in time slot t as cres,k

[
PGk(t)− PDk(t)−

(P̂Gk(t) − P̂Dk(t))
]+

, where [·]+ = max{·, 0} and cres,k is
the nonnegative marginal cost in $/MW of the reserve unit

connected to bus k. Let vector P̂G(t) = (P̂Gk(t), k ∈ N )
denote the actual generation profile in time slot t. Let vectors
PD(t) = (PDk(t), k ∈ N ) and P̂D(t) = (P̂Dk(t), k ∈ N )
denote the presumed and actual load profiles in time slot t,
respectively. The total cost of reserve units in time slot t is

Cres
(
PG(t), P̂G(t), PD(t), P̂D(t)

)
=∑

k∈N

cres,k
[
PGk(t)− PDk(t)− (P̂Gk(t)− P̂Dk(t))

]+
. (10)

When a generator in bus k is operating, its output active
power PGk(t) and reactive power QGk(t) in time slot t are
bounded by the limits Pmin

Gk
, Pmax

Gk
, Qmin

Gk
, and Qmax

Gk
. That is

uk(t)Pmin
Gk
≤ PGk(t) ≤ uk(t)Pmax

Gk
, k ∈ N , t ∈ T (11a)

uk(t)Qmin
Gk
≤ QGk(t) ≤ uk(t)Qmax

Gk
, k ∈ N , t ∈ T . (11b)

Let ru
k and rd

k denote the maximum ramp up and ramp down
rates for the generator in bus k, respectively. Let rsu

k and rsd
k

denote the maximum startup ramp and shutdown ramp rates
for the generator in bus k, respectively. For t ∈ T , we have

PGk(t)− PGk(t− 1) ≤ uk(t− 1) ru
k + sk(t) rsu

k , (12a)

PGk(t− 1)− PGk(t) ≤ uk(t− 1) rd
k + sk(t) rsd

k . (12b)

Parameters ru
k, rd

k, rsu
k , and rsd

k are set to a large number if the
generator in bus k ∈ N is a renewable energy source.

A generator in bus k has a minimum up time tuk and down
time tdk to start up and shut down. We have

t∑
t′=t−tu

k+1

sk(t′) ≤ uk(t), k ∈ N , t ∈ T (13a)

t∑
t′=t−td

k+1

dk(t′) ≤ 1− uk(t), k ∈ N , t ∈ T . (13b)

The values of sk(t) and dk(t), k ∈ N at t ≤ 0 are set based
on the generators’ state before starting the operating horizon.
The binary variable sk(t) is equal to 1 only when generator
k is off in time slot t− 1 and is on in time slot t. The binary
variable dk(t) is equal to 1 only when generator k is on in
time slot t− 1 and is off in time slot t. Thus, we have

uk(t)− uk(t− 1) = sk(t)− dk(t), k ∈ N , t ∈ T . (14)

The binary variables uk(t), k ∈ N at t = 0 are set based on
the on/off state of the generators before the operating horizon.
Constraints (13a), (13b), and (14) enforce variables sk(t), and
dk(t) to be either 0 or 1 even if we relax variables sk(t) and
dk(t) to take any value in the interval [0, 1]. Thus, we have

uk(t) ∈ {0, 1}, k ∈ N , t ∈ T (15a)
0 ≤ sk(t), dk(t) ≤ 1, k ∈ N , t ∈ T . (15b)

C. ac-dc Network Model

The losses in the ac-dc network are equal to the total
generation minus the total load. We obtain

Ploss(t) =
∑
k∈N

(PGk(t) + PBk(t)− PDk(t)) , t ∈ T . (16)



Let AT denote the transpose of an arbitrary matrix or vector
A. Let Y denote the admittance matrix. For the vector of the
bus voltages v(t) = (V1(t), . . . , V|N |(t)) and injected currents
i(t) = (I1(t), . . . , I|N |(t)) in time slot t, we have

v(t) = Y iT(t). (17)

Let z∗ denote the conjugate of an arbitrary complex number z.
The power balance equations in time slot t ∈ T are

PGk(t) + PBk(t)−PDk(t) = Re{Vk(t)I∗k(t)}, k ∈ N \N conv

(18a)
PCk(t) = Re{Vk(t)I∗k(t)}, k ∈ N conv (18b)
QGk(t)−QDk(t) = Im{Vk(t)I∗k(t)}, k ∈ Nac (18c)
QCk(t) = Im{Vk(t)I∗k(t)}, k ∈ N conv

ac . (18d)

In (18a) and (18c), if bus k is not a generator bus, then
PGk(t) = QGk(t) = 0. Let V min

k denote the lower bound
on the bus voltage at bus k. Let Smax

lm denote the maximum
apparent power flow through the line (l,m) ∈ L. We have

V min
k ≤ |Vk(t)| ≤ V max

k , k ∈ N (19a)
|Slm(t)| ≤ Smax

lm , (l,m) ∈ L. (19b)

III. PROBLEM FORMULATION

The system operator aims to jointly minimize the generation
cost Cgen(·) in (9), the cost Cres(·) in (10) associated with
the net power supply uncertainty, and the total system losses
Ploss(t) in (16). The cost Cres(·) in (10) depends on the random
variables P̂G(t) and P̂D(t). We consider the risk measure
CVaR [24] to limit the risk of the net supply shortage. For
a confidence level β ∈ (0, 1) and vectors PG(t) and PD(t)
in time slot t, we define

CVaRβ
(
PG(t),PD(t)

)
= E

{
Cres
(
PG(t), P̂G(t),PD(t),

P̂D(t)
) ∣∣Cres

(
PG(t), P̂G(t),PD(t), P̂D(t)

)
≥ αβ

}
, (20)

where E(·) is the expectation over the random variables P̂G(t)

and P̂D(t) and αβ = min
{
α(t)

∣∣∣Pr
{
Cres(·) ≤ α(t)

}
≥ β

}
.

In general, the probability distributions of random variables
P̂G(t) and P̂D(t) are not available. It is possible to estimate
the CVaR by adopting sample average approximation (SAA)
technique [24]. We use the set J , {1, . . . , J} of J samples
of P j

G(t) and P j
D(t) of the random variables P̂G(t) and

P̂D(t) in time slot t from the historical record and obtain
Pr
{
P j
G(t), P j

D(t)
}

, the probability of the scenario with sam-
ple P j

G(t) and P j
D(t). Then, (20) can be approximated by

CVaRβ
(
PG(t),PD(t)

)
≈ min
α(t)∈R

Γβ
(
α(t),PG(t),PD(t)

)
, (21)

where

Γβ
(
α(t), PG(t), PD(t)

)
= α(t)+

∑
j∈J

(Pr{P j
G(t), P j

D(t)}
1− β[

Cres
(
PG(t),P j

G(t),PD(t),P j
D(t)

)
− α(t)

]+)
. (22)

Equation (21) implies that to compute the CVaR, it is sufficient
to minimize Γβ(·) in (22) over the variable α(t) using the
historical samples of the random variables P̂G(t) and P̂D(t).

The objective function fobj of the SCUC problem is

fobj =
∑
t∈T

(
Cgen

(
PG(t),u(t), s(t),d(t)

)
+ ωlossPloss(t)

+ ωcvar Γβ
(
α(t),PG(t),PD(t)

))
, (23)

where ωloss and ωcvar are nonnegative weight coefficients. In
(23), by increasing the value of ωloss, the total system losses
have a larger weight in the objective function as compared
with the total generation cost and CVaR. For small-scale grids,
the typical value of ωloss is around the value of coefficients
ck1, k ∈ N , for the generators, since the total system losses
Ploss(t), t ∈ T , is a linear function of the generators’ output
power. For large-scale test systems, the impact of coefficients
ck2, k ∈ N , on the grid-wide generation cost increases.
Hence, one may set ωloss to be a larger value than ck1, k ∈ N ,
(e.g., 10 to 100 times larger). By increasing the value of ωcvar,
the cost associated with the net power supply shortage has a
larger weight in the objective function, and thus the system op-
erator is more risk-averse. The typical value for ωcvar is around
the value of ck1/cres,k, k ∈ N , since Γβ

(
α(t), PG(t), PD(t)

)
in (22) is a linear function of cres,kPGk(t).

Let ψ = (Vk(t), Ik(t), uk(t), sk(t), dk(t), PGk(t), QGk ,
PDk(t), PBk(t), k ∈ N , Slm(t), (l,m) ∈ L, α(t), PCk(t),
QCk(t), PCs(t), k ∈ N conv

ac , s ∈ N conv
dc , t ∈ T ) denote

decision variables vector. The SCUC problem is formulated as

minimize
ψ

fobj (24)

subject to (1)−(8) and (11a)−(19b).

Problem (24) is a nonlinear mixed-integer optimization prob-
lem, which is difficult to be solved. We use the l1-norm
and convex relaxation techniques to relax the binary variables
uk(t), k ∈ N , t ∈ T and transform problem (24) into an
SDP. Some of our notations are similar to [18] and [23]. The
approaches given in [18] and [23] are not directly applicable
to solve problem (24), since we have binary decision variables.

We define the variable column vector x(t) =[
Re{v(t)}T Im{v(t)}T

]T
as the real and imaginary values

of the vector of the bus voltages v(t) in time slot t. We define
variable matrix W(t) = x(t)(x(t))T. The VSC losses are the
function of ac converter current. We define the variable column
vector ik(t) =

[ Imax
k +|Ik(t)|

2 Imax
k −|Ik(t)|

]T
, k ∈ Nac, t ∈ T .

We define variable matrix Ik(t), k ∈ N conv
ac , t ∈ T as

Ik(t) = ik(t)ik(t)T. In Appendix A, we present the SDP
form of problem (24). First, we express constraints (1)−(8)
and (11a)−(19b) in terms of matrix variables W(t) and
Ik(t), k ∈ N conv

ac , t ∈ T . Second, we relax the variable
uk(t) to take any value in the interval [0, 1] and include the
following l0-norm constraint into the constraint set.

‖uk(t)‖0 + ‖1− uk(t)‖0 = 1, k ∈ N , t ∈ T , (25)

where ‖z‖0 is the l0-norm of an arbitrary vector z. When
z is a nonnegative scalar, we have ‖z‖0 = 0 for z = 0,
otherwise ‖z‖0 = 1. Third, we obtain fSDP

obj , the SDP form
of the objective function in (23). We introduce the auxiliary
variables ϑk(t), k ∈ N , t ∈ T and replace Cgen(·) in (9) with∑
k∈N ϑk(t) +ck0uk(t) + csu

k sk(t) + csd
k dk(t). We write the



system losses in (16) in terms of W(t). We introduce the
auxiliary variable µj(t) for sample j in time slot t to upper
bound each term [Cres(·)− α(t)]

+ in (22). We introduce the
auxiliary variable ηjk(t) for bus k and sample j in time slot t to
upper bound the term [PGk(t)−PDk(t)−(P̂Gk(t)−P̂Dk(t))]+

in function Cres(·) in (21). We replace function Γβ(·) in
(23) with α(t)+ 1

1−β
∑
j∈J Pr

{
P j
G(t), P j

D(t)
}
µj(t). In Ap-

pendix A, we obtain the feasible set ΦSDP of decision variables
φ = (ϑk(t), uk(t), sk(t), dk(t), PBk(t), µj(t), ηjk(t), j ∈
J , k ∈ N , α(t),W(t), Ik(t), k ∈ N conv

ac , t ∈ T ) excluding
the l0-norm constraint (25). We obtain the SDP form of
problem (24) as follows:

minimize
φ∈ΦSDP

fSDP
obj (26a)

subject to constraint (25), (26b)
rank(Ik(t)) = 1, k ∈ N conv

ac , t ∈ T , (26c)
rank(W(t)) = 1, t ∈ T , (26d)
Ik(t) � 0, k ∈ N conv

ac , t ∈ T , (26e)
W(t) � 0, t ∈ T . (26f)

Problem (26) is equivalent to the SCUC problem (24), and is a
nonconvex optimization problem due to the l0-norm constraint
(26b) and the rank constraints (26c) and (26d). We tackle the
nonconvexity of problem (26) in the following subsections.

A. l1-norm Relaxation of the SCUC Problem

We remove the nonconvex constraint (26b) from the
constraint set of problem (26) and introduce the penalty∑
k∈N

∑
t∈T ‖uk(t)‖0 + ‖1− uk(t)‖0 with a weight coef-

ficient ς to the objective function. We have the following l0-
regularized SCUC problem:

minimize
φ∈ΦSDP

fSDP
obj + ς

∑
t∈T

∑
k∈N

(‖uk(t)‖0 + ‖1− uk(t)‖0) (27)

subject to constraints (26c)−(26f).

The value of ‖uk(t)‖0 + ‖1− uk(t)‖0 is 1, if uk(t) is binary.
Otherwise, we have ‖uk(t)‖0 + ‖1− uk(t)‖0 = 2. Thus,
in problem (27), with a sufficiently large ς , the solution to
variables uk(t), k ∈ N , t ∈ T are all binary. The term∑
t∈T

∑
k∈N ‖uk(t)‖0+‖1− uk(t)‖0 is equal to T |N | for bi-

nary variables uk(t), k ∈ N , t ∈ T . Hence, for a sufficiently
large ς , problems (26) and (27) are equivalent.

Next, we replace the terms ‖uk(t)‖0+‖1− uk(t)‖0 with the
l1-regularization term θk1(t) ‖uk(t)‖1 + θk2(t) ‖1− uk(t)‖1
for k ∈ N in the objective function of problem (27) [25],
where θk1(t) and θk2(t) are weight coefficients and ‖z‖1 is
the l1-norm of an arbitrary vector z. When z is a nonnegative
scalar, ‖z‖1 = z. We define vectors θ1(t) = (θk1(t), k ∈ N )
and θ2(t) = (θk2(t), k ∈ N ) in time slot t. We also define
vectors θ1 = (θ1(t), t ∈ T ) and θ2 = (θ2(t), t ∈ T ). Under
the given vectors θ1 and θ2, the objective function of the
SCUC problem with an l1-regularization term becomes

fREG
obj,θ1,θ2 = fSDP

obj + ς
∑
t∈T

∑
k∈N

(
θk1(t)‖uk(t)‖1

+ θk2(t) ‖1− uk(t)‖1
)
. (28)

The l1-regularized SCUC problem is as follows:

minimize
φ∈ΦSDP

fREG
obj,θ1,θ2 (29)

subject to constraints (26c)−(26f).

In problem (29), if θk1(t) is sufficiently larger than θk2(t),
then uk(t) will be equal to zero. If θk2(t) is sufficiently
larger than θk1(t), then uk(t) will be equal to one. Hence,
there always exist vectors θ1 and θ2, for which the optimal
solution to problem (29) is equal to the optimal solution to
problem (27). Problem (29) is still a nonconvex optimization
problem due to the rank constraints (26c) and (26d). In the next
subsection, we propose the SDP relaxation form of problem
(29) and discuss the zero relaxation gap conditions. Finally,
we propose an SCUC algorithm to determine the appropriate
vectors θ1 and θ2 to obtain a near-global optimal solution to
the SCUC problem (27) (or the original SCUC problem (24)).

B. SDP Relaxation of the l1-regularized SCUC Problem

We relax the rank constraints (26c) and (26d) in problem
(29) and only keep constraints (26e) and (26f). The SDP
relaxation of the SCUC problem is obtained as follows:

minimize
φ∈ΦSDP

fREG
obj,θ1,θ2 (30a)

subject to constraints (26e) and (26f). (30b)

Under the given vectors θ1 and θ2, problem (30) is an SDP and
can be solved efficiently. Let Wopt

θ1,θ2
(t) and Iopt

k,θ1,θ2
(t), k ∈

N conv
ac , t ∈ T denote the solution matrices to problem (30)

under the given vectors θ1 and θ2. There are some difficulties
in determining the correct solution to the original SCUC
problem (26) by solving problem (30). First, we need to
determine vectors θ1 and θ2 leading to binary values for
uk(t), k ∈ N , t ∈ T . Second, we need to obtain the condi-
tions for zero relaxation gap between problems (29) and (30).
In Theorem 1, we show that problem (30) always returns rank
two solution matrices Iopt

k,θ1,θ2
(t), k ∈ N conv

ac , t ∈ T . Hence,
the rank constraint in (26c) is not satisfied and the relaxation
gap between problems (29) and (30) is not zero.
Theorem 1 Under the given θ1 and θ2, the solution matrices
Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T to problem (30) are all rank two.

The proof can be found in Appendix B. We use the trace
norm regularization technique to obtain rank one matrices
Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T . Minimizing the trace norm

of a matrix induces sparsity to its vector of eigenvalues,
which can lead to reducing the rank of the matrix. We use
a penalty coefficient ε and introduce the penalty functions
εTr{Ik(t)}, k ∈ N conv

ac , t ∈ T to the objective function of
problem (30). We obtain the following trace norm-regularized
SCUC problem:

minimize
φ∈ΦSDP

fREG
obj,θ1,θ2 + ε

∑
t∈T

∑
k∈N conv

ac

Tr{Ik(t)} (31a)

subject to constraints (26e) and (26f). (31b)

Let bmax denote the maximum value for bk and Imin denote
the minimum value for Imax

k among all VSC stations. Let cmax
1 ,

cmax
2 , and Pmax

G denote the maximum value for ck1, ck2, and



Pmax
Gk

among all generators, respectively. In Theorem 2, we
provide an approximation for the penalty coefficient ε to obtain
rank one solution matrices Iopt

k,θ1,θ2
(t), k ∈ N conv

ac , t ∈ T .
Theorem 2 To obtain rank one solution matrices
Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T to problem (31), the penalty

coefficient ε can be approximated by

ε ≈ bmax(2cmax
2 Pmax

G + cmax
1 + ωloss)

(Imin + 1)

3 (Imin)
2 . (32)

The proof can be found in Appendix C. We can show that
if the solution matrices Wopt

θ1,θ2
(t), t ∈ T to problem (31)

are at most rank two, then we can construct a rank one
solution matrix to problem (31) as well. Thus, the relaxation
gap between problems (29) and (31) is zero. In [18, Theorem
4], it is shown that the relaxation gap is zero for the ac-
dc optimal power flow (OPF) problem in practical ac-dc
networks, including the IEEE test systems connected to some
dc grids. We adopt the result in [18, Theorem 4] to show that
problem (31) returns matrices Wopt

θ1,θ2
(t), t ∈ T with rank of

at most two for practical ac-dc networks.
Theorem 3 The solution matrices Wopt

θ1,θ2
(t), t ∈ T to SCUC

problem (31) are at most rank two, if for all set of operating
generators, the SDP relaxation gap for the OPF problem in
the underlying ac-dc grid is zero.
The proof can be found in Appendix D. If the condition in
Theorem 3 holds, then under the given vectors θ1 and θ2,
the solution to problem (31) becomes a feasible solution to
problem (29). The optimal value of problem (31) may not
be the same as the optimal value for the objective function
of problem (29) due to the trace norm regularization term
in the objective function of problem (31). Let fREG,29

obj,θ1,θ2 and
fREG,31

obj,θ1,θ2 denote the optimal values for the objective functions
of problems (29) and (31), respectively. In The following
theorem provides an upper bound for the difference between
the optimal values fREG,29

obj,θ1,θ2 and fREG,31
obj,θ1,θ2 .

Theorem 4 The difference between the optimal values of
problems (29) and (31) is bounded by

0 ≤ fREG,31
obj,θ1,θ2 − f

REG,29
obj,θ1,θ2 ≤ 0.45T ε

∑
k∈N conv

ac
(Imax
k )

2
. (33)

The proof can be found in Appendix E. In Section IV, we show
that the value for ε in (32) is small, and we can approximate
the solution to problem (29) by the solution to problem (31).

In Fig. 2, we summarize the steps to solve the original
SCUC problem (24), which is equivalent to the l0-regularized
SCUC problem (27). We formulate problem (29) to relax
the l0-norm regularization term. Next, we obtain the SDP
relaxation form of SCUC problem (30). To guarantee the zero
relaxation gap, we formulate the trace norm-regularized SCUC
problem (31). In the final step, we determine a (local) optimal
solution of problem (27) by solving problem (31).

C. SCUC Algorithm Design

We propose Algorithm 1 based on the iterative reweighted
l1-algorithm in [25] to determine the solution to the SCUC
problem. Let i denote the iteration index. In iteration i, we
solve problem (31) under the given vectors θi1 and θi2 and use

Figure 2. The procedure of solving the original SCUC problem (24).

the solution variables uopt,i
k,θi1,θ

i
2
(t), k ∈ N , t ∈ T to determine

the updated coefficients θi+1
1 and θi+1

2 as follows:

θi+1
k1 (t) =

1

uopt,i
k,θi1,θ

i
2
(t) + σ

, (34a)

θi+1
k2 (t) =

1

1− uopt,i
k,θi1,θ

i
2
(t) + σ

, (34b)

where σ is a positive constant. If we obtain binary values
for uopt,i−1

k,θi−1
1 ,θi−1

2

(t), k ∈ N , t ∈ T in Line 6, then the

algorithm returns matrices Wopt(t) := Wopt,i−1

θi−1
1 ,θi−1

2

(t) and

Iopt
k (t) := Iopt,i−1

k,θi−1
1 ,θi−1

2

(t), k ∈ N conv
ac , t ∈ T in Line 7.

According to Theorem 3, for the coefficient ε in (32), ma-
trices Iopt

k (t), k ∈ N conv
ac , t ∈ T are all rank one. If the

solution matrices Wopt(t), t ∈ T are at most rank two, then
the SDP relaxation gap is zero. In Line 9, we recover the
solution vectors xopt(t) and iopt

k (t), k ∈ N conv
ac , t ∈ T as

follows. If matrix Wopt(t) is rank two for some t ∈ T , then
we calculate two nonzero eigenvalues λ1(t) and λ2(t) with
corresponding eigenvectors ν1(t) and ν2(t) of each rank two
matrix Wopt(t). It can be shown that the rank one matrix
Wopt

1 (t) := (λ1(t) + λ2(t))ν1(t)νT
2 (t) is also the solution

of problem (31). We replace each rank two matrix Wopt(t)
with the rank one solution matrix Wopt

1 (t), and calculate the
eigenvalue λ(t) with corresponding eigenvector ν(t) of the
resulting rank one matrices for t ∈ T . We determine the
solutions as xopt(t) =

√
λ(t)ν(t) and Iopt

k (t) = iopt
k (t)iopt

k (t)T.
If the rank of Wopt(t) is greater than two for some t ∈ T ,
then the SDP relaxation gap may not be zero. One may use a
heuristic method to enforce the low-rank solution of problem
(31) to become rank one or rank two [26].
Theorem 5 If the solution matrices Wopt,i

θi1,θ
i
2
(t), t ∈ T to

problem (31) are at most rank two, then for sufficiently large
parameter ς and small parameter σ, Algorithm 1 converges to
a local optimal solution of the original SCUC problem (24).



Algorithm 1 ac-dc SCUC algorithm.
1: Set i := 1. Initialize σ and ς . Randomly initialize θ11 and θ12 .

Obtain J samples of the random variables P̂G(t) and P̂D(t).
2: Repeat
3: Solve problem (31) under given vectors θi1 and θi2.
4: Determine vectors θi+1

1 and θi+1
2 according to (34a) and (34b).

5: i := i+ 1
6: Until variables uopt,i−1

k,θi−1
1 ,θi−1

2

(t) ∈ {0, 1} for k ∈ N , t ∈ T .

7: Determine solution matrices Wopt(t) := Wopt,i−1

θi−1
1 ,θi−1

2

(t) and

Iopt
k (t) := Iopt,i−1

k,θi−1
1 ,θi−1

2

(t) for k ∈ N conv
ac , t ∈ T .

8: If solution matrices Wopt(t), t ∈ T are at most rank two
9: Calculate solution vectors xopt(t) and iopt

k (t), k ∈ N conv
ac , t ∈ T .

The proof can be found in Appendix F. The obtained
solution from Algorithm 1 depends on the initial point
of the algorithm, as well as the values of σ and ς [25],
[27, Ch. 5], and [28]. By simulations, we show that an
appropriate initialization to determine the near-optimal
solution to problem (24) is θ1

k1(t) = θ1
k2(t), k ∈ N , t ∈ T ,

which corresponds to the convex relaxations of the binary
variables in the original SCUC problem (24). The value of
σ = 10−3 is sufficiently small to be used in Algorithm 1.
Regarding the parameter ς , the weight of l1-regularization
term

∑
t∈T

∑
k∈N (θk1(t)‖uk(t)‖1 + θk2(t) ‖1− uk(t)‖1)

increases in the objective function (28) when ς increases.
Hence, Algorithm 1 may not converge to a local optimal
with small objective value fSDP

obj . A proper value for ς can be
chosen such that the value of ς

∑
t∈T

∑
k∈N (θk1(t)‖uk(t)‖1+

θk2(t) ‖1− uk(t)‖1) is around the value of fSDP
obj . The value

of ς
∑
t∈T

∑
k∈N

(
θk1(t)‖uk(t)‖1 + θk2(t) ‖1− uk(t)‖1

)
is

approximately equal to ς
∑
t∈T

∑
k∈N (‖uk(t)‖0 +

‖1− uk(t)‖0). The value of ‖uk(t)‖0 + ‖1− uk(t)‖0
is equal to 1 if uk(t) is binary. Otherwise, we have
‖uk(t)‖0 + ‖1− uk(t)‖0 = 2. Hence, the value of
ς
∑
t∈T

∑
k∈N (‖uk(t)‖0 + ‖1− uk(t)‖0) is at most

2 ς T |N |. We can approximate the value of fSDP
obj from the

solution of the first iteration of Algorithm 1. Thus, we can
choose ς such that 2 ς T |N | is greater than or equal to the
value of fSDP

obj in the first iteration of Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Algorithm
1 in solving the SCUC problem. The test system is shown
in Fig. 3, which is an IEEE 30-bus test system connected to
three wind farms in buses 14 and 30, two PV panels in buses
3 and 7, and one dc microgrid in bus 28. The data for the
IEEE 30-bus test system is from [29].

The base power of the system is 100 MVA. The generators’
specifications are given in Table I. The coefficients ck0, ck1,
and ck2, k ∈ N for the generation cost function in (9) of the
conventional generators can be found in [29]. The marginal
cost of the reserve units is set to cres,k = 200 $/pu. The
resistance of the high voltage direct current (HVDC) lines is
0.06 pu. The resistance of the dc cables is 0.001 pu. The
maximum apparent power flow through the HVDC lines and
other transmission lines is 1.1 pu. The data for the VSC
stations are given in Table II. The base power of the VSC

Figure 3. An IEEE 30-bus test system connected to three wind farms in buses
14 and 30, two PV panels in buses 3 and 7, and one dc microgrid in bus 28.

Table I
GENERATORS’ SPECIFICATIONS

k csu
k ($) csd

k ($) ru
k (pu) rd

k (pu) rsu
k (pu) rsd

k (pu) tuk (pu) rd
k (pu)

1 1000 100 0.5 0.5 0.7 0.7 3 3
2 1500 200 0.7 0.7 0.7 0.7 1 1
5 1000 100 0.5 0.5 0.7 0.7 3 3
8 1500 200 0.7 0.7 0.7 0.7 1 1
11 1000 100 0.5 0.5 0.7 0.7 1 1
13 1500 200 0.5 0.5 0.7 0.7 1 1

station is 100 MVA. To obtain the samples for the load
demands and the output power of the wind farms and PV
panels, we use the historical available data from Ontario,
Canada power grid database [30] from June 1 to August 1,
2016. For each bus, we scale the available historical data such
that the mean value is equal to the load demand given in [29]
for that bus. We consider the fixed power factor for the loads.
Fig. 4 (a) shows the average overall load demand of all buses
over 24 hours. For each renewable generator, we scale down
the available historical data such that the maximum output
power of each wind farm and PV panel over the historical data
is equal to 20 MW and 15 MW, respectively. Figs. 4 (b) and
(c) show the average output power of the PV panels and wind
farms over 24 hours, respectively. Each renewable generator is
equipped with a battery energy storage system with capacity
of 4 MW, maximum charging/discharging rate of 1 MW, and
initial energy level of 2 MW. For the underlying test system,
the base power is 100 MVA and the value of ck1, k ∈ N is
20 $/MW [29]. Hence, the weight coefficients ωloss is set to
2×103 $/pu. Furthermore, we have cres,k = 200 $/pu, and thus
ωcvar is set to 100×(ck1/cres,k) = 10. Unless stated otherwise,
β in (22) is set to 0.9. We assume that the conventional
generators are turned on in all time slots before the planning
horizon. For the benchmark scenario, we consider the test
system without renewable generators and batteries and with
the average load profiles in each bus. We perform simulations
using MATLAB/CVX with MOSEK solver in a PC with
processor Intel(R) Core(TM) i7-3770K CPU@3.5 GHz.



Table II
VSC STATION PARAMETERS WITH CONVERTER AC BUS k, CONVERTER

DC BUS s, AND FILTER BUS f

VSC parameters (pu)

RTk = 0.0005 XTk = 0.0125 Bf = 0.2 Snom
Ck

= 1

RCk = 0.00025 XCk = 0.04 V max
k = 1.06 Imax

k = 1.0526

m
q
k = 0.5 mv

ks = 1.1

VSC losses data (pu)

ak = 0.0053 bk = 0.0037 ck = 0.0018
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Figure 4. (a) Aggregate load demand, (b) average output power of the PV
panels, (c) average output power of the wind farms over 24 hours.

To evaluate the proposed SDP relaxation technique, we
study the results of Theorems 1 to 4. We first solve problem
(30) for different coefficients θ1 and θ2. All solution matrices
Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T , becomes rank two, which

confirms the result of Theorem 1. Then, we use the result
of Theorem 2 to compute the appropriate value for the
penalty factor ε. For our case study, we have ωloss = 2000,
bmax = 0.0037 pu, cmax

1 = 40 $/MW pu, cmax
2 = 0.25 $/MW2,

Imin = 1.0526 pu and Pmax
G = 180 MW. Hence from (32),

we have ε = 4.86. We solve problem (31) with ε = 4.86 for
several coefficients θ1 and θ2. We obtain rank one solution
matrices Iopt

k,θ1,θ2
(t), k ∈ N conv

ac , t ∈ T and rank two solution
matrices Wopt

θ1,θ2
(t), t ∈ T . Thus, the relaxation gap between

problems (29) and (31) is zero. This confirms the result of
Theorem 3, as the SDP relaxation gap is zero for ac-dc OPF
in the modified IEEE test systems [18]. The optimal value of
problem (31) is $601,508.1. According to the upper bound in
(33) in Theorem 4, fREG,31

obj,θ1,θ2 − f
REG,29
obj,θ1,θ2 is at most $407.085,

which is about 0.068% of the optimal value of problem (31).
Thus, we can approximate the solution to problem (29) by the
solution to problem (31), and the approximation is tight.

We use Algorithm 1 (with nonlinear ac power flow model)
to evaluate the solutions to the SCUC problem for the bench-
mark ac grid without renewable generator and the ac-dc grid
with renewable generators. Algorithm 1 guarantees to return
a local optimal solution of the SCUC problem (31). Our goal

is to demonstrate that Algorithm 1 most often converges to
a near-global optimal solution. As it is mentioned in Section
III-C, parameter σ = 10−3 is sufficiently small to be used in
Algorithm 1. There are five conventional generators, T is equal
to 24, and the value of fSDP

obj in the first iteration of Algorithm 1
is $213,182. Hence, parameter ς in the update rules (34a) and
(34b) is set to 103, which is greater than fSDP

obj /240. We run
Algorithm 1 in both cases for 1000 randomly chosen initial
weight coefficients θ1

k1 and θ1
k2, k ∈ N , t ∈ T from the

interval [0, 50]. For both case studies, the smallest obtained
objective value corresponds to the global optimal solution.
For both cases and for all initial conditions, Algorithm 1
returns a near-global optimal solution within 2% gap from
the global optimal solution. Moreover, for both case studies,
Algorithm 1 returns the near-global optimal solution within
1% gap in 98% of the initial conditions. We emphasize that
such a result for the gap from the global optimal solution
is only valid for the underlying test cases, and in general,
we cannot guarantee a specific gap. Nevertheless, Theorem 5
guarantees the convergence of Algorithm 1 to a local optimal
solution. Algorithm 1 returns the global optimal solution for
both case studies when θk1 and θk2, k ∈ N , t ∈ T are
(approximately) equal. The term in (28) is a constant when
θk1 = θk2, k ∈ N , t ∈ T . Thus, in the first iteration, the
binary variables uk(t), sk(t), and dk(t), k ∈ N , t ∈ T are
relaxed to take any value in the interval [0, 1]. Hence, the
optimal value of problem (31) in iteration 1 becomes the lower
bound for the global optimal solution of the SCUC problem.
In our case studies, when Algorithm 1 starts from the lower
bound for the global optimal solution, it converges to the
global optimal solution. The number of iterations is between
3 to 12 and the average running time is 35 seconds.

We consider the global optimal solutions to the benchmark
ac grid without renewable generator and the ac-dc grid with
renewable generators. The output power of all conventional
generators are reduced in most of the time slots in Fig. 5. The
generation cost and system losses are given in Table III. The
generation cost is lower by 23.4% in a system with renewable
generators. However, the risk of using renewable generators is
$10,430, i.e., 6.2% of the generation cost. The system losses in
the grid without renewable generators are due to the losses on
the transmission lines and are equal to 191.994 MW. Using the
renewable generators, the total system losses become 188.577
MW, which include 73.177 MW of losses on the transmission
lines and 115.4 MW of losses on the VSC stations. Hence,
using the renewable generators can reduce the losses on the
transmission lines by about 60%. However, the VSC losses
can add up to a significant fraction of total losses (65% of the
total losses) and have to be included in the SCUC problem.

Next, we apply Algorithm 1 to evaluate the solutions to the
SCUC problem for the benchmark ac grid without renewable
generator in the following case studies by using (i) the
dc power flow equations, (ii) the linearized ac power flow
equations, and (iii) the nonlinear full ac power flow equations
(as in problems (29) and (31)). The dc and linearized ac power
flow equations are commonly used in the literature to solve the
SCUC problem [4]–[8], [11]–[16]. For these case studies, we
apply the proposed iterative reweighted l1-norm approximation
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Figure 5. The output active power of the generators for the grid without
renewable energy generator and the grid with renewable energy generators.

Table III
THE GENERATION COST, SYSTEM LOSSES, AND CVAR OBTAINED FOR
THE TEST SYSTEMS WITH AND WITHOUT RENEWABLE GENERATORS.

Case study Generation
cost ($)

Total
losses (MW)

Converter
losses (MW)

CVaR
($)

Without renewable
generator 217,620.1 191.944 0 0

With renewable
generators 166,570.8 188.577 115.4 10,430

algorithm to obtain the binary solution of the SCUC problem.
Fig. 6 shows the output active power of the generators.

By using the dc power flow model, the generators in buses
5 and 8 are turned off during the operation cycle due to their
high generation cost. With the obtained output active power
profiles for the generators, no feasible solution for the ac
power flow problem can be obtained. By using the linearized
ac power flow model, the generators in buses 5 and 8 are
turned on during time slots 8 to 21. When we solve the
full ac power flow problem with the obtained output power
profiles for the generators, the objective value is $222,124.5.
By using the nonlinear full ac power flow model, the output
power of the generator in bus 5 increases during peak load
period. The objective value is $221,458.9, which is smaller
than the objective value with linearized ac power flow model.
The comparison of these scenarios shows that the generators’
schedule with the dc power flow model can be infeasible. The
generators’ schedule with the linearized ac power flow models
can deviate from the actual optimal generators’ schedule with
the full ac power flow model. These results justify the use of
nonlinear full ac model in the SCUC problem formulation.

For the purpose of comparison, we use the multi-stage
optimization technique (e.g., in [4], [6], [7]) to solve the
deterministic SCUC problem in an ac grid without generation
and load uncertainty. We perform simulations on six test
systems shown in Table IV. The data for the test systems
can be found in [29] and [31]. We randomly assign the
specifications in Table I to the generators. We use the average
load profiles over 24 hours in each bus. For IEEE 14-bus and
30-bus test systems, we set ωloss = 2 × 103 $/pu. For Other
four test systems, we set ωloss = 2×105 $/pu. The multi-stage
optimization technique involves iterative procedure between
the master problem and the sub-problems. The linearized ac

Time (hour)
   1 4 8 12 16 20 24A

ct
iv
e
P
ow

er
(M

W
)

0

50

100

150

200

250

Time (hour)
   1 4 8 12 16 20 24
0

25

50

Time (hour)
   1 4 8 12 16 20 24
0

25

50

75

100

Time (hour)
   1 4 8 12 16 20 24

A
ct
iv
e
P
ow

er
(M

W
)

0

25

50

75

100

Time (hour)
   1 4 8 12 16 20 24
0

25

50

75

100

Time (hour)
   1 4 8 12 16 20 24
0

25

50

Bus 8

Bus 5Bus 2Bus 1

Bus 11 Bus 13

Nonlinear ac Power Flow Linearized ac Power Flow dc Power Flow

Figure 6. The output active power of the generators for the scenarios with
nonlinear ac power flow, linearized ac power flow, and dc power flow.

Table IV
THE OPTIMAL VALUE AND AVERAGE CPU TIME FOR THE DETERMINISTIC

MULTI-STAGE ALGORITHM AND OUR PROPOSED ALGORITHM.

Our proposed algorithm Multi-stage algorithm

Test system f
SDP,opt
obj ($) CPU time (s) f

SDP,opt
obj ($) CPU time (s)

IEEE 14-bus 207,550.1 9 216,826.2 22

IEEE 30-bus 221,458.9 35 230,317.3 81

IEEE 118-bus 3,372,717.8 225 3,627,233.8 395

IEEE 300-bus 21,510,112.1 520 22,277,870.5 905

Polish 2383wp 45,933,712.9 4,450 49,552,733.3 6,000

Polish 3012wp 63,991,443.8 6,700 72,188,966.1 8,950

power flow model is used [4]. The objective of the master
problem is to minimize the grid-wide generation cost. The
constraints include the system power balance and operation
constraints of the generators. The master problem can be
formulated as an MIP. We use CPLEX 12.6 as the MIP solver
to solve the master problem [6], [7]. We apply the Benders
cut method and formulate a linear program for checking the
network constraints [6]. In Table IV, we compare the average
CPU time and the lowest objective value among 10 runs with
different initial conditions. MIP has a low convergence speed
in large networks. Furthermore, in the multi-stage algorithm,
the unit commitment decisions from the first stage are fixed
in the second stage. Thus, it is not guaranteed to converge
to a good local optimal. Whereas, Algorithm 1 is based on
the convex relaxation method and the global optimality of the
solution in each iteration of Algorithm 1 leads to converging
to a near-global optimal solution.

We now study the impact of confidence level β on the
net power supply variations. We consider the probability
distribution Pr{Cres

(
P opt
G (t), P̂G(t),P opt

D (t), P̂D(t)
)

= Ĉres}
for all Ĉres ≥ 0 under the given solution vectors P opt

G (t) and
P opt
D (t) to problem (31). Such a probability distribution can

be approximated by computing the value of Cres(·) from the
available historical data for the load demand and output power
of the renewable generators in [30]. Fig. 7 shows the proba-
bility distribution function of Cres(·) for β = {0.3, 0.6, 0.9}.
When β increases, the lower values of Cres(·) will have
higher probabilities. The system operator uses the conventional
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Figure 7. The probability distribution function of Cres(·) and the value of
CVaR for β = 0.3, 0.6, and 0.9.

generators instead of the renewable generators, and sets higher
values to the load demand to limit the risk of power supply
shortage. Thus, the value of CVaR decreases when β increases.

Finally, we compare the performance of Algorithm 1 with
the multi-stage robust optimization technique (e.g., in [14]–
[16])) in solving the stochastic SCUC problem (24) in an
IEEE 300-bus test system connected to five PV panels, five
off-shore wind farms, and five dc microgrids in different buses.
We apply the proposed two-level algorithm in [14]. The outer
level employs the Benders decomposition algorithm to obtain
optimal commitment decision using the results from the inner
level, which approximately solves the bilinear optimization
problem using an outer approximation algorithm. To make
our comparison fair, we consider the penalty for the shortage
in the net power supply and assume that the uncertainty set
in time slot t ∈ T is a polyhedral with parameter ∆t that
takes values between 0 and the number of buses with load
or generation uncertainty. In our case study, 208 buses have
uncertainty. Thus, we can set ∆t = 208 δt for t ∈ T , where
δt can take any value in the interval [0, 1]. δt = 0 corresponds
to the least conservative case study, in which the uncertainty
set only includes the maximum possible net power supply in
the historical data record. The value δt = 1 corresponds to
the most conservative case study that takes into account all
possible deviations in the load demand and generation. Hence,
δt = 0 and δt = 1 correspond to the scenarios with β = 0 and
β = 1 in Algorithm 1, respectively. We set cres,k = 2000 $/pu,
k ∈ N and ωcvar = 1 in Algorithm 1 and compare the
smallest objective value among 10 runs with different initial
conditions. Fig. 8 shows that the optimal value for different
values of parameter β with Algorithm 1 is smaller than the
optimal value for different δt, t ∈ T with the multi-stage
robust algorithm. Two reasons can be given. First, Algorithm 1
generally returns an optimal solution with a smaller gap from
the global optimal solution. Whereas, the proposed multi-stage
robust algorithm in [14] uses Benders decomposition and may
not return a near-global optimal solution. Second, the CVaR
takes into account the probability distribution of the scenarios.
Whereas, in the robust optimization technique, the worst-case
scenario is considered, which can have a small probability.
Thus, the multi-stage robust algorithm returns a conservative
solution with a larger objective value.

V. CONCLUSION

In this paper, we studied the SCUC problem for ac-dc grids.
The uncertainty in the load demand and renewable generation
were addressed by introducing a penalty based on CVaR in the
objective function to limit the risk of deviations in the load
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Figure 8. The objective value for different values of parameter β with
Algorithm 1 and δt, t ∈ T with the multi-stage robust algorithm in [16].

demand and renewable generation. The SCUC problem was
a nonlinear mixed-integer optimization problem. We used l0-
norm to model the constraints with binary variables, and then
applied l1-norm relaxation to obtain a problem with continuous
variables. Finally, we used convex relaxation techniques to
obtain the SDP form of the problem. An algorithm based on
the iterative reweighted l1-norm approximation was proposed
to determine the local optimal solution to the original problem.
Simulation results on a modified IEEE 30-bus test system
showed that the proposed algorithm with different initial
conditions returns the solution with at most 2% gap from the
global optimal solution for the underlying test system. When
compared with the multi-stage algorithm in the literature,
our proposed algorithm returned a solution with lower gap
from the global optimal solution in a lower CPU time. For
future work, we plan to extend our proposed algorithm to
unbalanced three-phase microgrids.

APPENDIX

A. Transforming Problem (24) into an SDP
For k ∈ N , let ek denote the kth basis vector in R|N | and

Yk = eke
T
kY . The row k of matrix Yk is equal to the row

k of the admittance matrix Y . The other entries of Yk are
zero. We use the Π model of the transmission lines. Let ylm
and ȳlm denote the value of the series and shunt elements
at bus l connected to bus m, respectively. We define Ylm =
(ȳlm+ylm)ele

T
l −(ylm)ele

T
m, where the entries (l, l) and (l,m)

of Ylm are equal to ȳlm + ylm and −ylm, respectively. The
other entries of Ylm are zero. We define matrices Yk, Ȳk,
Ylm, Ȳlm, Mk and Mlm as follows.

Yk =
1

2

[
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

]
,

Ȳk = −1

2

[
Im{Yk + Y T

k } Re{Yk − Y T
k }

Re{Y T
k − Yk} Im{Yk + Y T

k }

]
,

Ylm =
1

2

[
Re{Ylm + Y T

lm} Im{Y T
lm − Ylm}

Im{Ylm − Y T
lm} Re{Ylm + Y T

lm}

]
,

Ȳlm = −1

2

[
Im{Ylm + Y T

lm} Re{Ylm − Y T
lm}

Re{Y T
lm − Ylm} Im{Ylm + Y T

lm}

]
,

Mk =

[
eke

T
k 0

0 eke
T
k

]
,

Mlm =

[
(el − em)(el − em)T 0

0 (el − em)(el − em)T

]
.



We use the notation Tr{A} to represent the trace of an
arbitrary square matrix A. It can be shown that

Re{Vk(t)I∗k(t)} = Tr{YkW(t)}, k ∈ N (35a)
Im{Vk(t)I∗k(t)} = Tr{ȲkW(t)}, k ∈ N (35b)

|Vk(t)|2 = Tr{MkW(t)}, k ∈ N (35c)

|Vl(t)− Vm(t)|2 = Tr{MlmW(t)}, (l,m) ∈ L (35d)

|Slm(t)|2 =Tr{YlmW(t)}2+Tr{ȲlmW(t)}2, (l,m) ∈ L.
(35e)

Since Ik(t) = ik(t)ik(t)T, for a VSC station with ac
converter bus k ∈ N conv

ac , we have

Ik(t) =


(Imax
k + |Ik(t)|)2

4

(Imax
k )

2 − |Ik(t)|2

2

(Imax
k )

2 − |Ik(t)|2

2
(Imax
k − |Ik(t)|)2

. (36)

We define symmetric matrix Sk for k ∈ N conv
ac as

Sk =

[
S11
k S12

k

S21
k S22

k

]
, (37)

where S11
k =

ak+bkI
max
k +ck

(Imax
k )2 , S22

k = ak−bk+ck
4(Imax

k )
2 , and S12

k =

S21
k =

2ak+bk(Imax
k −1)+ck

(
2−4(Imax

k )2
)

4(Imax
k )

2 . The VSC losses in (1)

can be written as

P conv
loss,k(t) = Tr{SkIk(t)}, k ∈ N conv

ac , t ∈ T . (38)

In the following parts, we transform the constraints and
objective function of the SCUC problem (24) into an SDP.

1) Transforming the Constraints: Substituting (35a) into
(18b), we have PCk(t) = Tr{YkW(t)}, k ∈ N conv

ac and
PCs(t) = Tr{YsW(t)}, s ∈ N conv

dc . We also substitute
P conv

loss,k(t) = Tr{SkIk(t)} into (2). For k ∈ N conv
ac , s ∈ N conv

dc ,
and t ∈ T , we obtain

Tr{YkW(t)}+ Tr{YsW(t)}+ Tr{SkIk} = 0. (39)

We define ρk(t) = −|BCk | (V max
k )

2, ξk = (BCkV
max
k )

2, and
matrix Ck(t) = (2ρ(t)k+1)Ȳk−ξkMf for ac bus k ∈ N conv

ac
connected to filter bus f ∈ Nac. In [18], it is shown that
constraint (3) is equivalent to the following matrix inequality:
ρ2k(t)+Tr{Ck(t)W(t)} Tr{ȲkW(t)}√

2

Tr{ȲkW(t)}√
2

Tr{ȲkW(t)}
Tr{ȲkW(t)}√

2
Tr{ȲkW(t)} 0

√
2Tr{ȲkW(t)}

Tr{ȲkW(t)}√
2

0 Tr{ȲkW(t)} 0

Tr{ȲkW(t)}
√

2Tr{ȲkW(t)} 0 1

�0.

(40)

The SDP form of constraint (4) is

−mq
kS

nom
Ck
≤ Tr{ȲkW(t)}. (41)

The matrix form of inequality (5) is[
(Imax
k )2Tr{MkW(t)} Tr{YkW(t)} Tr{ȲkW(t)}

Tr{YkW(t)} 1 0

Tr{ȲkW(t)} 0 1

]
� 0. (42)

The SDP form of constraint (6) is

Tr{MkW(t)} ≤ (mv
ks)

2Tr{MsW(t)}. (43)

The active power balance equation in (18a) can be combined
with constraint (11a). Substituting (35a) into (11a), for k ∈
N \ N conv and t ∈ T , we obtain

uk(t)Pmin
Gk

+ PBk(t)− PDk(t)≤Tr{YkW(t)}, (44a)
Tr{YkW(t)}≤uk(t)Pmax

Gk
+ PBk(t)− PDk(t). (44b)

For ac buses k ∈ Nac and t ∈ T , constraint (11b) becomes

uk(t)Qmin
Gk
−QDk(t) ≤ Tr{ȲkW(t)}, (45a)

Tr{ȲkW(t)} ≤ uk(t)Qmax
Gk
−QDk(t). (45b)

The active power balance equation in (18a) for time slots
t−1 and t can be combined with constraints (12a) and (12b).
By using (35a), for k ∈ N and t ∈ T , we obtain

Tr{YkW(t)} − Tr{YkW(t− 1)} − PBk(t) + PBk(t− 1)

≤ uk(t− 1)ru
k + sk(t)rsu

k + PDk(t− 1)− PDk(t), (46a)

Tr{YkW(t− 1)} − Tr{YkW(t)} − PBk(t− 1) + PBk(t)

≤ uk(t− 1)rd
k+ sk(t) rsd

k + PDk(t)− PDk(t− 1). (46b)

By introducing constraint (25), the variable uk(t) can take
any value in the interval [0, 1]. We have

0 ≤ uk(t) ≤ 1, k ∈ N , t ∈ T . (47)

Substituting (35c) into (19a), for k ∈ N , we obtain

(V min
k )2 ≤ Tr{MkW} ≤ (V max

k )2. (48)

Substituting (35e) into (19b) and constructing its matrix
form, for (l,m) ∈ L, we have (Smax

lm )
2 Tr{YlmW(t)} Tr{ȲlmW(t)}

Tr{YlmW(t)} 1 0
Tr{ȲlmW(t)} 0 1

 � 0.

(49)

Let I12
k (t) denote the entry in the first row and the second

column of matrix Ik(t) in (36). We have Imax
k − 2I12

k (t) =
|Ik(t)|2 = (R2

Ck
+X2

Ck
)−1|Vk(t)− Vf (t)|2 in time slot t for

ac bus k ∈ N conv
ac and filter bus f ∈ Nac in a VSC station.

From (35d), we obtain

I12
k (t) =

Tr{MkfW(t)}
2
(
Imax
k − (R2

Ck
+X2

Ck
)
) . (50)

Let I11
k (t) and I22

k (t) denote the diagonal entries of matrix
Ik(t) in (36). From (36), we have

I11
k (t)+

I22
k (t)

4
=(Imax

k )
2−I12

k (t), k ∈ N conv
ac , t ∈ T (51a)

I11
k (t) ≥ (Imax

k )
2

4
, k ∈ N conv

ac , t ∈ T . (51b)

We can show that constraints (51a) and (51b) are sufficient to
obtain matrices Ik(t), k ∈ N conv

ac , t ∈ T with the form in (36).

2) Transforming the Objective Function: Substituting (35a)
into (18a) for k ∈ N , we have PGk(t) = Tr{YkW(t)} +
PDk(t)−PBk(t). Let vector PB(t) = (PBk(t), k ∈ N ) denote
the profile of injected active power from the energy storage



systems in time slot t. We have

Cgen
(
W(t), PD(t), PB(t), u(t), s(t), d(t)

)
=∑

k∈N

(
ck2

(
Tr{YkW(t)}+ PDk(t)− PBk(t)

)2
+ ck1

(
Tr{YkW(t)}+ PDk(t)− PBk(t)

)
+ ck0uk(t) + csu

k sk(t) + csd
k dk(t)

)
. (52)

We introduce the auxiliary variables ϑk(t), k ∈ N , t ∈ T
and replace Cgen(·) with

∑
k∈N ϑk(t) +ck0uk(t) + csu

k sk(t) +
csd
k dk(t). Then, we include the matrix form of inequality
ck2 (Tr{YkW(t)}+ PDk(t)− PBk(t))

2
+ ck1

(
Tr{YkW(t)}

+PDk(t) − PBk(t)
)
≤ ϑk(t) into the constraints set for all

generators. For k ∈ N and t ∈ T , we have[
ϑk(t)− ck1ωk(t)

√
ck2 ωk(t)

√
ck2 ωk(t) 1

]
� 0, (53)

where ωk(t) = Tr{YkW(t)}+PDk(t)−PBk(t) in time slot t.
By introducing the auxiliary variables µj(t) for each sample

j in time slot t and ηjk(t) for each bus k and sample j
in time slot t, we can replace function Γβ(·) in (23) with
α(t)+ 1

1−β
∑
j∈J Pr

{
P j
G(t), P j

D(t)
}
µj(t). Then, we include

the following inequalities for bus k ∈ N , sample j ∈ J , and
time slot t ∈ T into the constraints set:∑

k∈N cres,kη
j
k(t) ≤ µj(t) + α(t), (54a)

PGk(t)− PDk(t)− P jGk(t) + P jDk(t) ≤ ηjk(t). (54b)

To represent the total system losses, we can substitute (35a)
into (16). Thus, we obtain

Ploss(t) =
∑
k∈N Tr{YkW(t)}. (55)

The SDP form of (23) can be expressed as

fSDP
obj =

∑
t∈T

(∑
k∈N

(
ϑk(t) + ck0uk(t) + csu

k sk(t) + csd
k dk(t)

)
+ ωloss

∑
k∈N

Tr{YkW(t)}+ ωcvar

(
α(t)

+
1

1− β
∑
j∈J

Pr
{
P j
G(t),P j

D(t)
}
µj(t)

))
. (56)

Constraints (7), (8), (13a), (13b), (14), (15b), (39)−(51b),
and (53)−(54b) define the feasible set ΦSDP for the deci-
sion variables φ = (ϑk(t), uk(t), sk(t), dk(t), PBk(t), µj(t),
ηjk(t), j ∈ J , k ∈ N , α(t),W(t), Ik(t), k ∈ N conv

ac , t ∈ T ).

B. Proof of Theorem 1

We show that the solution matrices Iopt
k,θ1,θ2

(t), k ∈
N conv

ac , t ∈ T to problem (30) are rank two to minimize
the losses in the system. The losses on the VSC station with
converter bus k ∈ N conv

ac in time slot t ∈ T are

P conv
loss,k(t) = Tr{SkIk(t)}

= I11
k (t) S11

k + 2 I12
k (t) S12

k + I22
k (t) S22

k . (57)

To minimize the converter losses in (57), problem (30)
returns solution matrix Iopt

k,θ1,θ2
(t), k ∈ N conv

ac , t ∈ T with

minimum value for I11
k,θ1,θ2

(t) S11
k + I22

k,θ1,θ2
(t) S22

k subject to
constraints (51a) and (51b). From (51a), we have

I22
k,θ1,θ2(t) = 4

(
(Imax
k )

2−I12
k,θ1,θ2(t)− I11

k,θ1,θ2(t)
)
. (58)

Substituting (58) into I11
k,θ1,θ2

(t) S11
k + I22

k,θ1,θ2
(t) S22

k and
performing some algebraic manipulations, we obtain

I11
k,θ1,θ2(t) S11

k + I22
k,θ1,θ2(t) S22

k =

I11
k,θ1,θ2(t) (S11

k − 4 S22
k ) + 4

(
(Imax
k )

2−I12
k,θ1,θ2(t)

)
S22
k . (59)

We have S11
k =

ak+bkI
max
k +ck

(Imax
k )2 and S22

k = ak−bk+ck
4(Imax

k )
2 . Thus,

we obtain S11
k ≥ 4S22

k . To minimize (59), the entry I11
k,θ1,θ2

(t)
should be minimized. From constraint (51b), the minimum
value of I11

k,θ1,θ2
(t) is (Imax

k )2

4 . Therefore, the solution matrix
Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T does not have the form in (36),

and it is not rank one. This completes the proof. �

C. Proof of Theorem 2
From the proof of Theorem 1, the solution matrices

Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T to problem (30) are all

rank two because we have S11
k ≥ 4S22

k . We also have
I11,opt
k,θ1,θ2

(t) =
(Imax
k )2

4 , k ∈ N conv
ac , t ∈ T . We introduce

the trace norm εTr{Ik(t)}, for all k ∈ N conv
ac , t ∈ T to

the objective function of problem (31) to make the solution
matrices Iopt

k,θ1,θ2
(t), k ∈ N conv

ac , t ∈ T all rank one.
Consider a coefficient ε, for which the solution matrices

Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T to problem (31) are all rank one.

Let ∆ I11,opt
k,θ1,θ2

(t) and ∆ I22,opt
k,θ1,θ2

(t) denote the difference in the
optimal values of entries I11,opt

k,θ1,θ2
(t) and I22,opt

k,θ1,θ2
(t) of solution

matrices Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T to problems (30)

and (31), respectively. When the rank two solution matrices
Iopt
k,θ1,θ2

(t), k ∈ N conv
ac , t ∈ T in problem (30) becomes rank

one for problem (31), the system losses increase by approx-
imately

∑
t∈T

∑
k∈N conv

ac
∆ I11,opt

k,θ1,θ2
(t) S11

k + ∆ I22,opt
k,θ1,θ2

(t) S22
k .

When the losses increase, the generation level in the system
will increase as well. Let P 30

Gk
(t) and P 31

Gk
(t) denote the

output power of the generator in bus k in time slot t by
solving problems (30) and (31), respectively. Let ∆PGk(t) =
P 31
Gk

(t)−P 30
Gk

(t) denote the change in the output power of the
generator in bus k in time slot t. In the worst case, the increase
in the system losses is compensated by the conventional
generators. Hence, the CVaR term in (23) can be assumed
to be unchanged in the worst-case scenario. Let ∆Cgen denote
the change in the total generation cost in (9). Using the first-
order approximation near P 30

Gk
(t), k ∈ N , t ∈ T , we have

∆Cgen ≈
∑
t∈T

∑
k∈N

(
2ck2P

30
Gk

(t) + ck1

)
∆PGk(t). (60)

Substituting cmax
1 , cmax

2 , and Pmax
G into (60), we obtain

∆Cgen ≤ K
∑
t∈T

∑
k∈N

∆PGk(t), (61)

where K = 2cmax
2 Pmax

G + cmax
1 . The increase in the generation

levels is equal to the increase in the losses. Hence, we have∑
t∈T

∑
k∈N

∆PGk(t) =



∑
t∈T

∑
k∈N conv

ac

∆I11,opt
k,θ1,θ2

(t)S11
k + ∆I22,opt

k,θ1,θ2
(t)S22

k . (62)

Thus, we obtain

∆Cgen ≤ K
(∑
t∈T

∑
k∈N conv

ac

∆I11,opt
k,θ1,θ2

(t)S11
k +∆I22,opt

k,θ1,θ2
(t)S22

k

)
.

(63)

Furthermore, the change in other terms in the objective func-
tion of problem (31) is equal to∑

t∈T

∑
k∈N conv

ac

(
∆I11,opt

k,θ1,θ2
(t)
(
ωlossS

11
k + ε

)
+ ∆I22,opt

k,θ1,θ2
(t)
(
ωlossS

22
k + ε

) )
. (64)

For an appropriate value of ε, the change in the objective
function of problem (31) is negative. Therefore, we have∑
t∈T

∑
k∈N conv

ac

∆I11,opt
k,θ1,θ2

(t)
(
(K + ωloss) S11

k + ε
)

+ ∆I22,opt
k,θ1,θ2

(t)
(
(K + ωloss) S22

k + ε
)
≤ 0. (65)

Moreover, equation (59) implies that ∆I22,opt
k,θ1,θ2

(t) =

−4 ∆I11,opt
k,θ1,θ2

(t). Hence, inequality (65) is equivalent to∑
t∈T

∑
k∈N conv

ac

∆I11,opt
k,θ1,θ2

(t)
( (

(K + ωloss) S11
k + ε

)
− 4

(
(K + ωloss) S22

k + ε
) )
≤ 0. (66)

If ε is chosen such that
(
(K + ωloss) S11

k + ε
)
−

4
(
(K + ωloss) S22

k + ε
)
≤ 0, then inequality (66) holds. Thus,

it is sufficient to have

ε ≥ (K + ωloss)

3
(S11
k − 4 S22

k ). (67)

From S11
k =

ak+bkI
max
k +ck

(Imax
k )2 and S22

k = ak−bk+ck
4(Imax

k )
2 , we obtain

S11
k − 4 S22

k =
(Imax
k + 1)bk
(Imax
k )2

. Thus, (67) is equivalent to

ε ≥ bk (K + ωloss)
(Imax
k + 1)

3(Imax
k )2

. (68)

Inequality (68) must hold for all k ∈ N conv
ac . Thus, bk, ck1

and ck2, and Pmax
Gk

are replaced with their maximum values,
and Imax

k is relplaced with its minimum value. Thus, ε can be
approximated by (32). The proof is completed. �

D. Proof of Theorem 3

Let φopt
θ1,θ2

be an optimal solution to problem (31) under
the given vectors θ1 and θ2. Consider time slot t ∈ T . We
show that matrix Wopt

θ1,θ2
(t) is at most rank two if for all set

of operating generators, the SDP relaxation gap for the ac-
dc OPF problem in the underlying ac-dc grid is zero. We
construct an ac-dc OPF problem from the SCUC problem
(31) by replacing all variables with their optimal values in
problem (31) except for matrices W(t) and Ik(t), k ∈ N conv

ac ,
and variables ϑk(t), k ∈ N . Let fOPF

obj denote the objective

function of the obtained ac-dc OPF problem. We have

fOPF
obj =

∑
k∈N

ϑk(t) + ωloss

∑
k∈N

Tr{YkW(t)}

+ ε
∑

k∈N conv
ac

Tr{Ik(t)}. (69)

Let φ̃ = (W(t), Ik(t), k ∈ N conv
ac , ϑk(t), k ∈ N ) denote

the decision variables in the obtained ac-dc OPF problem for
time slot t. Let ΦOPF denote the feasible set for decision
variables φ̃. It can be obtained from the feasible set ΦSDP

for the SCUC problem (31) when all variables except de-
cision variables φ̃ are replaced with their optimal values in
problem (31). Hence, the ac-dc OPF problem in time slot t
obtained from problem (31) can be written as

minimize
φ̃∈ΦOPF

fOPF
obj (70a)

subject to Ik(t) � 0, k ∈ N conv
ac , (70b)

W(t) � 0. (70c)

The feasible set of problem (70) is a subset of the feasible
set of problem (31). The decision variables for problem (31)
other than those in φ̃ are set to their optimal values in problem
(70). Hence, the solution matrix Wopt(t) to problem (70) is
equal to the solution matrix Wopt

θ1,θ2
(t) to problem (31). If the

SDP relaxation gap for the OPF problem (70) is zero, then
problem (70) has a solution Wopt(t) with rank of at most
two [18]. Thus, the solution matrix Wopt

θ1,θ2
(t) to problem (31)

is at most rank two in time slot t. Using the same approach
for all time slots t ∈ T completes the proof. �

E. Proof of Theorem 4

fREG,29
obj,θ1,θ2 is the optimal value of problem (29). Hence, the

value of fREG
obj,θ1,θ2 is greater than or equal to fREG,29

obj,θ1,θ2 for
any feasible solutions of problem (29). The optimal solution
of problem (31) that satisfies the rank constraints (26c) and
(26d) is a feasible solution of problem (29). Thus, we have

fREG,29
obj,θ1,θ2 ≤ f

REG,31
obj,θ1,θ2 , (71)

which proves the left-hand side of (33).
Let Iopt,29

k,θ1,θ2
(t) and Iopt,31

k,θ1,θ2
(t), k ∈ N conv

ac , t ∈ T denote the
solution matrices to problems (29) and (31), respectively. Since
fREG,31

obj,θ1,θ2 + ε
∑
t∈T

∑
k∈N conv

ac
Tr{Iopt,31

k,θ1,θ2
(t)} is the optimal

objective value of problem (31), we have

fREG,31
obj,θ1,θ2 + ε

∑
t∈T

∑
k∈N conv

ac

Tr{Iopt,31
k,θ1,θ2

(t)}

≤ fREG,29
obj,θ1,θ2 + ε

∑
t∈T

∑
k∈N conv

ac

Tr{Iopt,29
k,θ1,θ2

(t)}. (72)

After rearranging the terms, inequality (72) becomes

fREG,31
obj,θ1,θ2 − f

REG,29
obj,θ1,θ2

≤ ε
∑
t∈T

∑
k∈N conv

ac

(
Tr{Iopt,29

k,θ1,θ2
(t)} − Tr{Iopt,31

k,θ1,θ2
(t)}

)
. (73)

We determine the upper bound for Tr{Iopt,29
k,θ1,θ2

(t)} −
Tr{Iopt,31

k,θ1,θ2
(t)}. According to Theorem 1, rank one matrices



Iopt,29
k,θ1,θ2

(t) and Iopt,31
k,θ1,θ2

(t) have the form in (36). Therefore,
there exist nonnegative numbers |I29

k (t)| and |I31
k (t)| such that

Tr{Iopt,29
k,θ1,θ2

(t)} =

(
Imax
k + |I29

k (t)|
)2

4
+ (Imax

k − |I29
k (t)|)2,

(74a)

Tr{Iopt,31
k,θ1,θ2

(t)} =

(
Imax
k + |I31

k (t)|
)2

4
+ (Imax

k − |I31
k (t)|)2.

(74b)

We can show that I29
k (t) = 0 maximizes Tr{Iopt,29

k,θ1,θ2
(t)}

in (74a). We can also show that I31
k (t) = 3

5I
max
k minimizes

Tr{Iopt,31
k,θ1,θ2

(t)} in (74b). Hence, we have

Tr{Iopt,29
k,θ1,θ2

(t)} − Tr{Iopt,31
k,θ1,θ2

(t)} ≤ 5

4
(Imax
k )2 − 4

5
(Imax
k )2

= 0.45 (Imax
k )2. (75)

By substituting the right-hand side of (75) into (73), we obtain
the upper bound in (33). The proof is completed. �

F. Proof of Theorem 5

Consider problem (27). We approximate ‖uk(t)‖0 and

‖1− uk(t)‖0 by
log
(

1+
‖uk(t)‖1

σ

)
log(1+ 1

σ )
and

log
(

1+
‖1−uk(t)‖1

σ

)
log(1+ 1

σ )
, re-

spectively. For sufficiently small σ, the approximation is tight.
We use the first order Taylor approximation of functions
log
(
1 +

‖uk(t)‖1
σ

)
and log

(
1 +

‖1−uk(t)‖1
σ

)
near an arbitrary

point ûk(t) as follows:

log
(

1 +
‖uk(t)‖1

σ

)
≈ log

(
1 +
‖ûk(t)‖1

σ

)
+
‖uk(t)‖1 − ‖ûk(t)‖1
‖ûk(t)‖1 + σ

, (85a)

log
(

1 +
‖1− uk(t)‖1

σ

)
≈ log

(
1 +
‖1− ûk(t)‖1

σ

)
+
‖1− uk(t)‖1 − ‖1− ûk(t)‖1

‖1− ûk(t)‖1 + σ
.

(85b)

We substitute (85a) and (85b) into the objective function
of problem (27) and remove the constant terms. We have the
following optimization problem.

minimize
φ∈ΦSDP

fSDP
obj +

∑
t∈T

∑
k∈N

ς ‖uk(t)‖1
‖ûk(t)‖1 + σ

+
ς ‖1− uk(t)‖1
‖1− ûk(t)‖1 + σ

(86)
subject to constraints (26c)−(26f).

The coefficients ς
‖ûk(t)‖1+σ and ς

‖1−ûk(t)‖1+σ in the objec-
tive function of problem (86) correspond to the coefficients
θk1(t) and θk2(t) in the objective function of problem (29),
respectively. The linear approximation in the right-hand side
of (85a) and (85b) are tangent majorant of the logarithmic
functions in the left-hand side of (85a) and (85b), respectively.
The right-hand sides majorize the left-hand sides with equality
at ûk(t). Hence, we can apply the majorization-minimization
(MM) algorithm [28] to obtain vector û in an iterative fashion.
Lines 1 to 6 of Algorithm 1 correspond to the iterations in

the MM algorithm. We start with an arbitrary initial vector
û1, which corresponds to the initial value for coefficients
θ1

1 and θ1
2 . In iteration i, we solve the convex optimization

problem (31) under the given vector ûik (which corresponds
to coefficients θi1 and θi2) and obtain the updated vector ûi+1

as ûi+1 = (uopt,i
k,θi1,θ

i
2
(t), k ∈ N , t ∈ T ). This procedure

corresponds to the loop within Lines 2 to 6 in Algorithm
1. The objective function in each iteration of Algorithm 1
is convex and continuously differentiable and the feasible
set is closed and convex. Hence, if the optimal solution to
problem (31) can be obtained in each iteration (i.e., matrices
Wopt,i
θi1,θ

i
2
(t), t ∈ T are at most rank two), then for sufficiently

small σ and large ς , the proposed algorithm converges to local
optimal solution [28]. The proof is completed. �
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