
Joint Device Pairing, Reflection Coefficients, and
Power Control for NOMA Backscatter Systems

Farhad Dashti Ardakani, Rui Huang, Student Member, IEEE, and Vincent W.S. Wong, Fellow, IEEE

Abstract—Non-orthogonal multiple access (NOMA) and
backscatter communication are two emerging technologies for
low-power communication. In this paper, we consider a NOMA
backscatter system, where signals from two backscatter devices
are multiplexed on a frequency resource block using NOMA in
each time slot. Our objective is to maximize the average energy
efficiency by optimizing backscatter device pairing, reflection
coefficients of backscatter devices, and the transmit power of the
reader. We formulate the average energy efficiency maximization
problem subject to the minimum circuit power and the minimum
data rate requirements of the backscatter devices, and the
transmit power constraint of the reader. The formulated problem
is nonconvex. To obtain a suboptimal solution for this problem,
we use alternating optimization technique and decompose the
problem into two subproblems. The subproblems are solved
by using fractional programming, Dinkelbach’s algorithm, and
successive convex approximation method. Simulation results show
that our proposed algorithm converges quickly to a suboptimal
solution. Our proposed algorithm outperforms several baseline
algorithms, including the genetic algorithm, fixed device pairing
scheme, conventional device pairing scheme, maximum transmit
power allocation scheme, and random reflection coefficient
selection scheme, in terms of the average energy efficiency. The
optimality gap of our proposed algorithm is investigated by
comparing with the optimal scheme, in which the optimal device
pairing is obtained based on exhaustive search.

Index Terms—Energy efficiency, non-orthogonal multiple
access, backscatter communication, alternating optimization,
fractional programming

I. INTRODUCTION

Backscatter communication is a low-power communication
technology for the Internet of things (IoT) and has gained wide
popularity recently. Backscatter communication systems have
three main components: (a) backscatter transmitters, which
are passive tags, (b) a backscatter receiver as the reader,
and (c) a radio frequency (RF) carrier emitter source [1].
In monostatic backscatter systems, the reader and RF carrier
emitter are embedded in the same device. In backscatter
systems, a backscatter device tunes its antenna impedance and
communicates with the reader by modulating and reflecting the
incident signal from the RF carrier emitter via the reflection
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coefficient. A portion of the incident carrier signal power
is harvested in order to supply the power for the circuit of
the backscatter device when it performs backscattering. The
remaining portion of the incident signal power is reflected
back to the reader by the backscatter device. The reflection
coefficients of backscatter devices determine the portion of
the incident carrier signal power being reflected back to the
reader.

Power-domain non-orthogonal multiple access (NOMA) is
an emerging technology for the fifth generation (5G) wireless
networks [2]. NOMA can improve the spectral efficiency when
compared with orthogonal frequency division multiple access
(OFDMA) [3]. With NOMA, signals from multiple users can
be multiplexed on the same resource block. By exploiting
NOMA technique, the aggregate data rate can be enhanced
significantly. In power-domain NOMA, multiple users transmit
their messages with different power levels using the same
subcarrier. In backscatter systems, the reflection coefficients
of backscatter devices are tunable parameters. Signals from
multiple backscatter devices can be multiplexed on the same
frequency resource block by tunning the reflection coefficient
of each device to a different value [4]. Thus, signals from
multiple backscatter devices can be separated in the power
domain. The reader can decode the signal of each device by
exploiting the power difference of the signals.

Backscatter system with NOMA as a multiple access
technique has been considered in some recent works. In [4], a
hybrid of power-domain NOMA and time division multiple
access (TDMA) approach is proposed for a backscatter
communication system. In each time slot, signals from
multiple backscatter devices located in different spatial regions
are multiplexed using NOMA. Simulation results show that
backscatter system with NOMA can provide a higher number
of successfully decoded bits when compared with a backscatter
system using TDMA. In [5], a downlink ambient backscatter
NOMA system is proposed. In this system, the backscatter
device receives the ambient signal from the base station. Then,
it modulates and reflects this signal to the cellular users.
The closed form expressions of the outage probabilities are
derived in [5]. In [6], an unmanned aerial vehicle (UAV)
assisted backscatter system using power-domain NOMA is
considered and the throughput of the network is maximized by
determining the optimal altitude of the UAV. In [7], a resource
allocation problem is formulated for a backscatter system
with NOMA and dynamic TDMA. In [8], a cognitive-enabled
backscatter network using NOMA is studied and the sum-rate
of the backscatter devices is maximized under the multi-slot
energy causality constraint. In our previous work [9], we
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consider a backscatter system with multicarrier (MC) NOMA.
The aggregate data rate of the system is maximized by jointly
optimizing the reflection coefficients and subcarrier allocation
to the backscatter devices.

Most of the existing works on resource allocation for
NOMA backscatter systems focus on improving the aggregate
data rate of the system. However, for those backscatter
systems supporting IoT applications with low data rate and
relaxed latency requirements, optimizing the energy efficiency
is crucial. Moreover, the carrier emitter in a backscatter system
can be a battery-powered mobile device. In this case, it
is beneficial to take the power consumption into account
since it can prolong the life cycle of the backscatter NOMA
systems. In addition, the energy efficiency depends on both the
aggregate data rate and the average power consumption. By
maximizing the energy efficiency of the considered system,
we can study the tradeoff between optimizing the aggregate
throughput and the power consumption.

There are some existing studies on improving the energy
efficiency of backscatter systems. An energy-efficient resource
allocation scheme is proposed in [10] to determine the optimal
time allocation, reflection coefficient, and the transmit power
of the carrier emitter in a wireless-powered bistatic backscatter
communication system. In [11], the energy efficiency
maximization problem is formulated in a UAV-assisted
backscatter communication system by optimizing the location
of the UAV. In [12], a max-min energy efficiency resource
allocation problem is formulated for a wireless powered
backscatter network. An iterative algorithm is proposed based
on Lagrange dual decomposition. In [13], the energy efficiency
of RF powered backscatter networks with harvest-then-transfer
protocol is studied. The aforementioned works focus on
the energy efficiency of backscatter systems with orthogonal
multiple access (OMA) and do not consider NOMA.

The energy efficiency maximization problem for NOMA
and energy harvesting networks has been studied in [14]–[17].
In [14], the energy efficiency of a NOMA-enabled backscatter
system is maximized by jointly optimizing the allocated
power to the NOMA users and the reflection coefficient of
the backscatter device. However, the authors in [14] only
considered a system with two users, while the device pairing
problem in a NOMA backscatter system with multiple users
has not been investigated. In addition, the minimum power
required for the circuit of the device has not been considered in
[14]. The minimum power requirement is crucial to batteryless
backscatter devices since they operate solely based on the
power of the incident signal.

In [15], the energy efficiency of energy harvesting enabled
multi-cell networks with NOMA is studied. The authors
formulated an energy efficiency maximization problem, which
is nonconvex, and proposed path-following algorithms to solve
the problem. In [16], the energy efficiency is maximized
in a simultaneous wireless information and power transfer
(SWIPT)-based heterogeneous network with NOMA by jointly
optimizing the subchannel and transmit power allocation.
The device pairing and subchannel allocation problems were
solved using heuristic algorithms, i.e., random pairing in [15]
and greedy matching in [16]. However, the aforementioned

heuristic algorithms cannot jointly optimize the device pairing
with the other control variables, such as transmit power
and reflection coefficient in the NOMA backscatter systems,
in an alternating optimization process. This is because the
aforementioned heuristic algorithms do not offer a theoretical
guarantee that the objective can be improved monotonically by
the algorithm after each iteration, which may affect the overall
convergence of the alternating optimization based algorithm.

Apart from the aforementioned heuristic algorithms, the
authors in [17] addressed the joint optimization of subchannel
allocation and power control in NOMA systems using a
search-based approach. The authors in [17] transformed
the joint problem using the Lagrangian dual decomposition
method. The subchannel allocation problem is solved by
allocating each of the subchannels to the small cell that
results in the maximum utility. Compared with the heuristic
algorithms used in [15] and [16], the algorithm proposed
in [17] can jointly optimize the subchannel allocation and
transmit power. However, using the search-based method
proposed in [17] to determine the device pairing in the NOMA
backscatter systems will incur a quadratic time complexity
in each iteration. This computational complexity can become
higher after we take the necessary matrix operations for
determining the utility for each device pairing into account.

In this paper, we study the average energy efficiency
optimization of a backscatter system using NOMA as a
multiple access technique. In particular, we consider a
backscatter system with NOMA, where signals from at most
two backscatter devices are multiplexed on the same frequency
subcarrier using NOMA in each time slot. We develop an
algorithm to maximize the average energy efficiency of the
system subject to the minimum circuit power and the minimum
data rate requirements of the backscatter devices, and the
transmit power constraint of the reader. The main contributions
of our work are as follows:

• We formulate the average energy efficiency maximization
problem for a backscatter system with NOMA by jointly
optimizing the transmit power of the reader, reflection
coefficients, and backscatter device pairing coefficients
which are binary variables. We guarantee that both the
minimum circuit power and data rate requirements of the
backscatter devices are satisfied.

• Since the formulated problem is a nonconvex problem
with ratio form, we propose an algorithm based on
alternating optimization technique to obtain a suboptimal
solution for the average energy efficiency maximization
problem. We decompose the problem into two different
subproblems with objective function in ratio form.
We use concave-convex fractional programming and
Dinkelbach’s algorithm to solve the first subproblem.
To solve the second subproblem, we use successive
convex approximation (SCA) and difference of convex
programming in each iteration of the Dinkelbach’s
algorithm. The optimization variables are updated
iteratively and alternatively until a suboptimal solution
is obtained.

• Simulation results show that our proposed algorithm
converges in less than 10 iterations to a suboptimal
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solution. Our proposed scheme achieves an average
energy efficiency that is within 84% of the optimal
value. Runtime comparison shows that the runtime of
our proposed scheme is less than that of the optimal
scheme. The proposed scheme also increases the average
energy efficiency of the backscatter system by 7%, 19%,
30%, 93%, and 98% when compared with the genetic
algorithm, fixed device pairing scheme, conventional
device pairing scheme, maximum transmit power
allocation scheme, and random reflection coefficient
selection scheme, respectively.

• We also study the problem of maximizing the spectral
efficiency of NOMA backscatter system subject to the
single-slot and multi-slot energy causality constraints.
Simulation results show that NOMA backscatter system
achieves a spectral efficiency which is 65% higher than
that of backscatter system with OMA scheme. It is
also shown that multi-slot energy causality increases
the spectral efficiency by 21% when compared with
single-slot energy causality.

The rest of this paper is organized as follows. In Section II,
we describe the system model and present the average energy
efficiency maximization problem. In Section III, we propose
an algorithm to solve the formulated problem. The spectral
efficiency problem is presented at the end of this section.
Performance evaluation and comparisons are presented in
Section IV. Conclusion is given in Section V.

In this paper, we use boldface lower case letters to denote
vectors. aT is used to denote the transpose of vector a; R+

denotes the set of non-negative real numbers; RN denotes the
set of all N dimensional vectors with real entries; RN

+ denotes
the non-negative subset of RN ; a ≼ b indicates that vector
a is component-wise smaller than or equal to vector b. We
denote the circularly symmetric complex Gaussian distribution
with mean γ and variance σ2 by CN (γ, σ2); ∼ stands for
“distributed as”; |.| denotes the absolute value of a complex
number; O(.) is used to show the order of complexity of the
proposed algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we focus on a backscatter communication
system with NOMA. As shown in Fig. 1, the system consists of
a reader and K single-antenna backscatter devices or passive
tags. The reader is equipped with successive interference
cancellation (SIC) receiver. Without loss of generality, we
consider the allocation of one frequency resource block. For
medium access control, we consider a superframe structure.
Each superframe is divided into T consecutive time slots.
Signals from at most two backscatter devices are multiplexed
on the same frequency resource block using NOMA in
each time slot. While increasing the number of devices to
share the same resource block may improve the spectral
efficiency, this also increases the co-channel interference and
complexity of decoding the received signal at the reader
[18], [19]. In addition, the SIC decoder may suffer from
the error propagation and residual cancellation error issues
[20, Chap. 6]. When letting more devices share the same
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Fig. 1. A backscatter system using NOMA. Signals from two backscatter
devices k and l, where k, l ∈ K, are multiplexed on the same frequency
resource block using NOMA in each time slot t ∈ T . The reader is equipped
with an SIC receiver.
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Fig. 2. Structure of two consecutive superframes. Each superframe contains
T time slots for energy harvesting and backscattering. Multiple mini-slots are
used for channel estimation by the reader. Each time slot also includes one
mini-slot for downlink signaling between the reader and backscatter devices.

resource block, the signals that are decoded later in the SIC
process may have a lower signal-to-interference-plus-noise
ratio (SINR) and hence may not be decoded correctly. This can
deteriorate both the energy efficiency and spectral efficiency of
the system. Thus, due to the aforementioned implementation
issues at the SIC decoder, we assume that only two backscatter
devices can share the same resource block.

Let K = {1, . . . ,K} denote the set of backscatter devices.
Let T = {1, . . . , T} denote the set of time slots in a
superframe. In each time slot t ∈ T , the reader transmits a
continuous wave signal as the carrier signal. The backscatter
device k ∈ K tunes its antenna impedance to switch to a
reflection coefficient. Then, the backscatter device harvests
energy from the carrier signal to supply the circuit power,
and also communicates with the reader by modulating and
reflecting the incident carrier signal [21], [22]. The reader
decodes the signal of each backscatter device using SIC. We
assume that all backscatter devices have data to transmit. The
backscatter devices perform delay-tolerant tasks with relaxed
latency requirements.

Fig. 2 shows the structure of two consecutive superframes.
In the beginning of each superframe, several mini-slots are
used for channel estimation by the reader to obtain the channel
state information for all the links. The reader needs to send
pilot symbols to the backscatter devices and then estimates
the channel gain by using least square and linear minimum
mean square error techniques [23], [24]. We consider that
each superframe contains T time slots for energy harvesting
and backscattering. In each time slot, the reader invokes
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Fig. 3. The architecture of a backscatter transmitter in a passive tag. It consists
of an energy harvester and a modulation block. When the backscatter device
is modulating and backscattering the incident signal, the energy required for
the circuit of the device is obtained from the harvested energy.

an optimization algorithm to determine the control variables
including the transmit power, reflection coefficients, and
backscatter device pairing. The reader informs the devices
about the decisions by downlink signaling in the beginning of
each time slot as shown in Fig. 2. After energy harvesting, the
incident signal is modulated and reflected back to the reader by
the backscatter devices. Each backscatter device transmits its
information in one time slot in each superframe. We note that,
the system model that we considered in this paper is different
from the conventional radio-frequency identification (RFID)
systems. In the conventional RFID systems, the RFID tags use
random access protocols, such as slotted ALOHA, to perform
data transmission. Due to the lack of centralized scheduling,
the RFID reader might need to perform bit-level correlation
continuously for preamble detection since the reader does
not know when the device is transmitting its data. In the
considered NOMA backscatter system, a backscatter device
can transmit in a particular time slot only if it is scheduled
by the centralized controller to do so. Hence, the reader is not
required to perform bit-level correlation continuously in the
considered system [1].

We consider a flat fading channel model in our system. Let
hk denote the channel gain between the reader and backscatter
device k ∈ K. The channel gain is characterized by both path
loss and small-scale fading. We have hk =

√
r−α
k dk, where rk

is the distance between the reader and backscatter device k, α
is the path loss exponent, and dk ∼ CN (0, 1) is the small-scale
fading factor. By estimating the channel at the beginning of
each superframe, the global channel state information for all
links in the system is available in the reader.

The architecture of a backscatter transmitter is shown in Fig.
3. The backscatter transmitter consists of an energy harvester
and a modulation block. The energy harvester harvests a
portion of the energy of the incident carrier signal. Similar
to [7] and [12], we assume that backscatter devices are not
equipped with dedicated power source or battery. Single-slot
energy causality is considered for the backscatter devices
such that the energy harvested in each time slot can only be
used in the current time slot. When the backscatter device
is modulating and reflecting the incident carrier signal, the
energy required for the circuit of the device is obtained from
the harvested energy. The energy harvesting for the circuit

operation of the device and the reflection of the incident signal
are performed at the same time. Let P (t) denote the power of
the carrier signal emitted from the reader in time slot t ∈ T .
Thus, the power of the incident signal at device k in time
slot t, which is denoted by P I

k(t), is equal to P (t)|hk|2, for
k ∈ K, t ∈ T .

We denote the magnitude of the reflection coefficient of
device k in time slot t as ηk(t), where 0 ≤ ηk(t) ≤ 1. A
portion of P I

k(t) will be harvested by the energy harvester
and will provide the circuit power of device k in time slot t.
This portion of power is given by [25]:

PH
k (t) = ρ(1− ηk(t))P

I
k(t)

= ρ(1− ηk(t))P (t)|hk|2, k ∈ K, t ∈ T , (1)

where ρ denotes the energy harvester efficiency and is between
zero and one [26], [27]. This portion of power is utilized by the
backscatter device to modulate and reflect the incident carrier
signal. The remaining portion of the incident signal power,
which is denoted as P x

k (t), is used for signal transmission of
device k in time slot t. We have

P x
k (t) = ηk(t)P

I
k(t)

= ηk(t)P (t)|hk|2, k ∈ K, t ∈ T . (2)

Let ξk(t) denote the information symbol of backscatter device
k in time slot t with unit average power. Let xk(t) denote the
reflected signal from backscatter device k in time slot t. We
have

xk(t) =
√

ηk(t)P (t)hkξk(t), k ∈ K, t ∈ T . (3)

Consider that two backscatter devices k and l, where k, l ∈ K,
are paired using NOMA in time slot t ∈ T . The baseband form
of received signal in time slot t is as follows:

y(t) = hkxk(t) + hlxl(t) + n(t)

=
√
ηk(t)P (t)(hk)

2ξk(t) +
√
ηl(t)P (t)(hl)

2ξl(t)

+ n(t), (4)

where n(t) ∼ CN (0, σ2) denotes the circularly symmetric
complex Gaussian noise in time slot t in the reader. For
backscatter devices k and l operating in time slot t, consider
that backscatter device k experiences a better channel gain
than backscatter device l, i.e., |hk| > |hl|. Thus, the reader first
decodes the signal of backscatter device k, removes the signal
by SIC, and then decodes the signal of backscatter device l.
Let binary variable sk,l(t) ∈ {0, 1} denote the backscatter
device pairing coefficient for backscatter devices k and l in
time slot t. The binary variable sk,l(t) is equal to 1 when
(a) the backscatter devices k and l are selected to perform
NOMA in time slot t, and (b) backscatter device k has a better
channel condition and its signal is decoded first in the reader.
Otherwise, sk,l(t) is equal to 0. The total power consumption
in time slot t consists of the power consumed by the circuit of
the backscatter devices in backscatter mode [13]. The power
required for the circuit operation is supplied by the harvested
power from the carrier signal.

From (1) we can obtain the power consumption of
backscatter devices k and l in time slot t by the sum of the
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harvested powers as follows:

Pk,l(t) = PH
k (t) + PH

l (t)

= ρ(1− ηk(t))P (t)|hk|2 + ρ(1− ηl(t))P (t)|hl|2

= ρP (t)
(
(1− ηk(t))|hk|2 + (1− ηl(t))|hl|2

)
. (5)

We note that at most two backscatter devices are paired in
each time slot. Thus, the total power consumption in time slot
t is as follows:

P c(t) = ρP (t)
∑
k∈K

∑
l∈K\{k}

sk,l(t)
(
(1− ηk(t))|hk|2

+ (1− ηl(t))|hl|2
)
. (6)

The aggregate data rate of backscatter devices k and l in time
slot t is given by

Rk,l(t) = log2

(
1 +

ηk(t)P (t)|hk|4

ηl(t)P (t)|hl|4 + σ2

)
+ log2

(
1 +

ηl(t)P (t)|hl|4

σ2

)
. (7)

We define gk = |hk|4
σ2 and rewrite (7) as follows:

Rk,l(t) = log2

(
1 +

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)
+ log2 (1 + ηl(t)P (t)gl) . (8)

By considering the backscatter device pairing coefficients,
the aggregate data rate in time slot t is as follows:

R(t) =
∑
k∈K

∑
l∈K\{k}

sk,l(t)

(
log2

(
1 +

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)

+ log2 (1 + ηl(t)P (t)gl)

)
. (9)

The energy efficiency in each time slot is defined as the
ratio of the aggregate data rate to the amount of consumed
power in bits per Hertz per Joule (bits/Hz/J). From (6) and

(9), we have

EE(t) =
R(t)

P c(t)

=

K∑
k=1

K∑
l=1
l ̸=k

sk,l(t)
(
log2

(
1+ ηk(t)P (t)gk

1+ηl(t)P (t)gl

)
+log2(1+ηl(t)P (t)gl)

)
ρP (t)

∑
k∈K

∑
l∈K\{k}

sk,l(t)((1−ηk(t))|hk|2+(1−ηl(t))|hl|2)
.

(10)

Our goal is to maximize the average energy efficiency of
the system within a superframe. The average energy efficiency
maximization problem in the backscatter system with NOMA
is as problem (11) which is shown at the bottom of this
page. Constraint (11b) ensures that the transmit power of
the reader in time slot t cannot exceed Pmax, which is the
maximum power that the reader can transmit. Constraint (11c)
ensures that the magnitude of the reflection coefficients is
between zero and one. Constraint (11e) ensures that signals
from at most two backscatter devices are multiplexed on
the frequency resource block in each time slot. Constraint
(11f) ensures that each backscatter device is scheduled for
transmission in at most one time slot in each superframe.
Constraints (11g) and (11h) guarantee that the power harvested
in backscatter devices k and l in time slot t is greater than
the minimum power required for the circuit of the backscatter
devices, which is denoted as pmin. The last two constraints
guarantee that the data rate of multiplexing backscatter devices
is greater than the minimum data rate requirement, denoted as
Rmin. The formulated joint optimization problem consists of
both binary variables (i.e., the device pairing variables) and
continuous variables (i.e., the transmit power and reflection
coefficients). It is challenging to jointly optimize the binary
device pairing with the reflection coefficients and power
control. In fact, the device pairing subproblem is an integer
programming program. While the exhaustive search can find
the optimal device pairing, the computational complexity of

maximize
P (t), ηk(t),

sk,l(t), k,l∈K, t∈T

1

T

T∑
t=1

∑
k∈K

∑
l∈K\{k} sk,l(t)

(
log2

(
1 + ηk(t)P (t)gk

1+ηl(t)P (t)gl

)
+ log2 (1 + ηl(t)P (t)gl)

)
ρP (t)

∑
k∈K

∑
l∈K\{k} sk,l(t) ((1− ηk(t))|hk|2 + (1− ηl(t))|hl|2)

(11a)

subject to 0 ≤ P (t) ≤ Pmax, t ∈ T (11b)
0 ≤ ηk(t) ≤ 1, k ∈ K, t ∈ T (11c)
sk,l(t) ∈ {0, 1}, k, l ∈ K, t ∈ T (11d)∑
k∈K

∑
l∈K\{k}

sk,l(t) ≤ 1, t ∈ T (11e)

∑
t∈T

∑
l∈K\{k}

sk,l(t) +
∑
t′∈T

∑
l′∈K\{k}

sl′,k(t
′) ≤ 1, k ∈ K (11f)

ρ(1− ηk(t))P (t)|hk|2 ≥ sk,l(t)pmin, k, l ∈ K, t ∈ T (11g)

ρ(1− ηl(t))P (t)|hl|2 ≥ sk,l(t)pmin, k, l ∈ K, t ∈ T (11h)

log2

(
1 +

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)
≥ sk,l(t)Rmin, k, l ∈ K, t ∈ T (11i)

log2 (1 + ηl(t)P (t)gl) ≥ sk,l(t)Rmin, k, l ∈ K, t ∈ T . (11j)
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this approach is prohibitively high as we need to solve the
joint reflection coefficients and power control subproblem
for each of the possible device pairing option. Heuristic
device pairing algorithms (e.g., random pairing, distance-based
pairing) cannot be used as a part of the alternating optimization
based algorithm to jointly optimize the device pairing with the
reflection coefficients and power control. This is because the
heuristic algorithms do not guarantee the convergence to a
stationary point of the subproblem, and therefore may affect
the convergence of the alternating optimization process. In the
next section, we propose an algorithm to solve problem (11) by
relaxing the binary device pairing variables into the continuous
variables. We also introduce additional constraints such that
the solutions obtained from solving the relaxed device pairing
subproblem are always in the binary form.

III. PROPOSED SOLUTION APPROACH

Problem (11) is a nonconvex optimization problem with
an objective function which is in the ratio form. Since all
optimization variables and constraints excluding constraint
(11f) are independent from one time slot to another time
slot, we propose to solve the energy efficiency maximization
problem in each time slot separately by optimizing the
reflection coefficients, backscatter device pairing, and transmit
power of the reader. In other words, we have T separated
optimization problems with the objective function in ratio
form. In each time slot, the reader optimizes the energy
efficiency in the current time slot. To satisfy constraint (11f),
we remove the backscatter devices that have been paired in
the previous time slots within the superframe. We define the
set of backscatter devices in time slot t as follows:

K(t)=K−{k, l | sk,l(t′)=1, k, l ∈ K, t′<t}, t ∈ {2, . . . , T},
(12)

and set K(1) = K contains all the backscatter devices in
the first time slot. We define vector η(t) by concatenating
all of the variables ηk(t), and also vector s(t) ∈ R|K(t)|2

+ by
concatenating all of the variables sk,l(t), where |K(t)| is the
cardinality of the set K(t). In time slot t ∈ T , we solve the
following problem:

maximize
P (t), η(t), s(t)

Ut(P (t),η(t), s(t))
Ft(P (t),η(t), s(t))

(13a)

subject to 0 < P (t) ≤ Pmax (13b)
0 ≤ ηk(t) ≤ 1, k ∈ K(t) (13c)
sk,l(t) ∈ {0, 1}, k, l ∈ K(t) (13d)∑
k∈K(t)

∑
l∈K(t),l ̸=k

sk,l(t) ≤ 1 (13e)

ρ(1−ηk(t))P (t)|hk|2≥sk,l(t)pmin, k, l∈K(t)
(13f)

ρ(1−ηl(t))P (t)|hl|2≥sk,l(t)pmin, k, l∈K(t)
(13g)

log2

(
1+

ηk(t)P (t)gk
1+ηl(t)P (t)gl

)
≥sk,l(t)Rmin,

k, l∈K(t) (13h)
log2(1+ηl(t)P (t)gl)≥sk,l(t)Rmin, k, l∈K(t),

(13i)

where Ut(P (t),η(t), s(t)) and Ft(P (t),η(t), s(t)) are defined
in (14) and (15), as shown at the bottom of this page,
respectively. An approach to solve problem (13) is to
use alternating optimization technique [28]. We solve the
problem separately for P (t) given sk,l(t), k, l ∈ K(t) and
ηk(t), k ∈ K(t), and vice versa. First, we optimize the
energy efficiency in time slot t with respect to P (t) given
the reflection coefficients and backscatter device pairing
coefficients. Then, we solve the optimization problem with
respect to the reflection coefficients and backscatter device
pairing coefficients given the transmit power of the reader. By
repeating the above in an iterative manner, we can determine
a suboptimal solution in time slot t.

A. Energy Efficiency Maximization with Respect to the
Transmit Power of the Reader

Given the reflection coefficients and backscatter device
pairing in time slot t, we have the following optimization
subproblem:

maximize
P (t)

Ut(P (t),η(t), s(t))
Ft(P (t),η(t), s(t))

(16a)

subject to P (t) ≥ sk,l(t)pmin

ρ(1− ηk(t))|hk|2
, k, l ∈ K(t) (16b)

P (t) ≥ sk,l(t)pmin

ρ(1− ηl(t))|hl|2
, k, l ∈ K(t) (16c)

P (t) ≥ sk,l(t)γ

ηk(t)gk − γηl(t)gl
, k, l ∈ K(t) (16d)

P (t) ≥ sk,l(t)γ

ηl(t)gl
, k, l ∈ K(t) (16e)

constraint (13b),

where γ = 2Rmin − 1 is the SINR threshold. Appendix A
shows the derivation of constraints (16d) and (16e). We define
function f(P (t)) and constant C0 as follows:

f(P (t))=
∑

k∈K(t)

∑
l∈K(t),
l ̸=k

sk,l(t)(log2(1+P (t)(ηk(t)gk+ηl(t)gl))),

(17)

Ut(P (t),η(t), s(t)) =
∑

k∈K(t)

∑
l∈K(t),l ̸=k

sk,l(t)

(
log2

(
1 +

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)
+ log2 (1 + ηl(t)P (t)gl)

)
(14)

Ft(P (t),η(t), s(t)) = ρP (t)
∑

k∈K(t)

∑
l∈K(t),l ̸=k

sk,l(t)
(
(1− ηk(t))|hk|2 + (1− ηl(t))|hl|2

)
(15)



7

Algorithm 1: Dinkelbach’s Algorithm for the First
Subproblem: Problem (19)

1 Initialize λ
(1)
1 := 0.

2 Set iteration index n := 1 and δ1 ≪ 1.
3 repeat
4 Given λ

(n)
1 , solve problem (21) to obtain P (n)(t).

5 λ
(n+1)
1 :=

f(P (n)(t))
C0P

(n)(t)
.

6 n := n+ 1.
7 until f

(
P (n−1)(t)

)
− λ

(n)
1 C0P

(n−1)(t) ≤ δ1;

C0=ρ
∑

k∈K(t)

∑
l∈K(t),
l ̸=k

sk,l(t)
(
(1−ηk(t))|hk|2+(1−ηl(t))|hl|2

)
.

(18)

Thus, we can represent problem (16) in the following form:

maximize
P (t)

f(P (t))

C0P (t)
(19a)

subject to Pmin(t) ≤ P (t) ≤ Pmax, (19b)

where Pmin(t) is the lower bound of P (t) and is obtained from
constraints (16b)−(16e). Pmin(t) is defined as follows:

Pmin(t) = max
k,l∈K(t)

{
sk,l(t)pmin

ρ(1− ηk(t))|hk|2
,

sk,l(t)pmin

ρ(1− ηl(t))|hl|2
,

sk,l(t)γ

ηk(t)gk − γηl(t)gl
,
sk,l(t)γ

ηl(t)gl

}
.

(20)

We note that in the objective function (16a), only one term in
the summations in the numerator and denominator is nonzero.
Thus, problem (16) (or the equivalent problem (19)) has
the form of single-ratio fractional programming [29]–[32].
Specifically, function f(P (t)) is in logarithmic form and is
concave with respect to P (t). The denominator of the objective
function in (19) is an affine function of P (t). The feasible
set is also convex. Thus, problem (19) is a concave-convex
fractional programming problem. We can use techniques such
as Dinkelbach’s algorithm to solve this subproblem [33]. By
using Dinkelbach’s algorithm, problem (19) is equivalent to:

maximize
P (t), λ1

Q(P (t), λ1) (21a)

subject to λ1 ≥ 0, (21b)
constraint (19b),

where Q(P (t), λ1) = f(P (t)) − λ1C0P (t) is the objective
function and λ1 is an auxiliary variable. Problem (21) can be
solved in an iterative manner. Given λ1, problem (21) is a
convex optimization problem. It can be solved by standard
optimization tools such as CVX [34]. The algorithm for
solving this problem is summarized in Algorithm 1. In this
algorithm, we first set λ1 to zero. In each iteration of the
algorithm, we solve problem (21) to find the optimal transmit
power of the reader in time slot t. Then, we update the value
of λ1. We repeat the process until the value of the objective
function (21a) is less than a threshold, denoted as δ1.

B. Energy Efficiency Maximization with Respect to the
Reflection Coefficients and Backscatter Device Pairing
Coefficients

For the second subproblem, given the transmit power of the
reader P (t), we have the following optimization problem:

maximize
η(t), s(t)

Ut(P (t),η(t), s(t))
Ft(P (t),η(t), s(t))

(22)

subject to constraints (13c)−(13i).

The objective function of problem (22) is in ratio
form. Since only one term of the summations in the
numerator and denominator is nonzero, this problem
is a single-ratio fractional programming problem. Using
Dinkelbach’s algorithm for this subproblem, we decouple the
numerator and denominator of the objective function. The
equivalent form of problem (22) is as follows:

maximize
λ2,η(t), s(t)

∑
k∈K(t)

∑
l∈K(t),
l ̸=k

sk,l(t)(log2(1+P (t)(ηk(t)gk+ηl(t)gl)))

− λ2ρP (t)
∑

k∈K(t)

∑
l∈K(t),
l ̸=k

sk,l(t)
(
(1−ηk(t))|hk|2+(1−ηl(t))|hl|2

)
(23a)

subject to λ2 ≥ 0, (23b)
constraints (13c)−(13i).

Appendix B shows how we obtain the first term of (23a).
The objective function in (23a) is nonconvex due to the
multiplication between the reflection coefficients ηk(t) and
backscatter device pairing coefficients sk,l(t). To tackle this
problem, we define variables η̃k,l,k(t) = sk,l(t)ηk(t) and
η̃k,l,l(t) = sk,l(t)ηl(t). We define vector η̃(t) ∈ R2|K(t)|2

+

by concatenating all of the variables η̃k,l,k(t) and η̃k,l,l(t).
Furthermore, we note that constraint (13d) is nonconvex. We
can rewrite this constraint as follows:

0 ≤ sk,l(t) ≤ 1, k, l ∈ K(t) (24a)

sk,l(t)− (sk,l(t))
2 ≤ 0, k, l ∈ K(t). (24b)

Constraint (24b) is nonconvex. This constraint is considered as
difference of convex functions [18]. Since function (sk,l(t))

2 is
differentiable, we can use the first-order condition for convex
functions to approximate (sk,l(t))

2 by an affine function.
Consider i as an iteration index starting from one. For any
given s

(i)
k,l(t), we have

(sk,l(t))
2 ≥ (s

(i)
k,l(t))

2+2s
(i)
k,l(t)(sk,l(t)−s

(i)
k,l(t)), k, l ∈ K(t).

(25)
Thus, given s

(i)
k,l(t), constraint (24b) can be written as follows:

sk,l(t)−(s
(i)
k,l(t))

2−2s
(i)
k,l(t)(sk,l(t)−s

(i)
k,l(t)) ≤ 0, k, l ∈ K(t).

(26)
Note that the variable η̃k,l,k(t) = sk,l(t)ηk(t) is the product of
two variables. To decompose the product terms, we introduce
the following additional constraints to our problem [18]:

η̃k,l,k(t) ≤ sk,l(t), k, l ∈ K(t) (27a)
η̃k,l,k(t) ≤ ηk(t), k, l ∈ K(t) (27b)
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η̃k,l,k(t) ≥ ηk(t)− (1− sk,l(t)), k, l ∈ K(t) (27c)
η̃k,l,k(t) ≥ 0, k, l ∈ K(t). (27d)

Since sk,l(t) is a binary variable, i.e., sk,l(t) ∈ {0, 1}, we can
rewrite constraint (13h) as follows:

log2

(
1 +

sk,l(t)ηk(t)P (t)gk
1 + sk,l(t)ηl(t)P (t)gl

)
≥sk,l(t)Rmin, k, l ∈ K(t),

log2

(
1 + sk,l(t)ηk(t)P (t)gk + sk,l(t)ηl(t)P (t)gl

1 + sk,l(t)ηl(t)P (t)gl

)
≥ sk,l(t)Rmin, k, l ∈ K(t). (28)

Using auxiliary variables η̃k,l,k(t) and η̃k,l,l(t), we have

log2

(
1 + P (t)(η̃k,l,k(t)gk + η̃k,l,l(t)gl)

1 + η̃k,l,l(t)P (t)gl

)
≥ sk,l(t)Rmin, k, l ∈ K(t),

log2 (1 + P (t)(η̃k,l,k(t)gk + η̃k,l,l(t)gl))

− log2 (1 + η̃k,l,l(t)P (t)gl)≥sk,l(t)Rmin, k, l∈K(t). (29)

Constraint (29) is the difference of two concave functions
and is a nonconvex constraint. Note that the function
log2 (1 + η̃k,l,l(t)P (t)gl) is a differentiable concave function.
Thus, we can use the first-order condition for concave
functions and approximate it by an affine function [35].
Consider i as an iteration index starting from one. For any
given η̃

(i)
k,l,l(t), we have

log2 (1 + η̃k,l,l(t)P (t)gl) ≤ log2

(
1 + η̃

(i)
k,l,l(t)P (t)gl

)
+

P (t)gl(η̃k,l,l(t)− η̃
(i)
k,l,l(t))

1 + η̃
(i)
k,l,l(t)P (t)gl

, k, l ∈ K(t). (30)

According to inequality (30), we have the following inequality:

log2 (1 + P (t)(η̃k,l,k(t)gk + η̃k,l,l(t)gl))

− log2 (1 + η̃k,l,l(t)P (t)gl)

≥ log2 (1 + P (t)(η̃k,l,k(t)gk + η̃k,l,l(t)gl))

− log2

(
1 + η̃

(i)
k,l,l(t)P (t)gl

)
−

P (t)gl(η̃k,l,l(t)− η̃
(i)
k,l,l(t))

1 + η̃
(i)
k,l,l(t)P (t)gl

,

k, l ∈ K(t). (31)

Thus, we can replace function log2 (1 + η̃k,l,l(t)P (t)gl) in the
left hand side of (29) by the right hand side of (30) and rewrite
constraint (29) as follows:

log2 (1 + P (t)(η̃k,l,k(t)gk + η̃k,l,l(t)gl))

− log2

(
1 + η̃

(i)
k,l,l(t)P (t)gl

)
−
P (t)gl(η̃k,l,l(t)−η̃

(i)
k,l,l(t))

1+η̃
(i)
k,l,l(t)P (t)gl

≥sk,l(t)Rmin, k, l ∈ K(t). (32)

We can guarantee that the solutions that satisfy constraint (32)
are feasible solutions to the original problem. This is because
according to (31), if constraint (32) is satisfied, constraint (29)
is also satisfied. We also rewrite constraint (13i) as follows:

log2 (1 + η̃k,l,l(t)P (t)gl) ≥ sk,l(t)Rmin, k, l ∈ K(t). (33)

Since sk,l(t) is a binary variable, i.e., sk,l(t) ∈ {0, 1}, we

can rewrite the first term of (23a) as follows:∑
k∈K(t)

∑
l∈K(t)
l ̸=k

log2 (1+sk,l(t)P (t)(ηk(t)gk+ηl(t)gl))

=
∑

k∈K(t)

∑
l∈K(t)
l ̸=k

log2 (1+P (t)(sk,l(t)ηk(t)gk+sk,l(t)ηl(t)gl))

=
∑

k∈K(t)

∑
l∈K(t)
l ̸=k

log2 (1+P (t)(η̃k,l,k(t)gk + η̃k,l,l(t)gl)) . (34)

By including the auxiliary variables and the new constraints,
we have the following problem:

maximize
λ2, η̃(t), s(t)

∑
k∈K(t)

∑
l∈K(t),
l ̸=k

log2(1+P (t)(η̃k,l,k(t)gk+η̃k,l,l(t)gl))

−λ2ρP (t)
∑

k∈K(t)

∑
l∈K(t),
l ̸=k

(sk,l(t)−η̃k,l,k(t))|hk|2

−λ2ρP (t)
∑

k∈K(t)

∑
l∈K(t),
l ̸=k

(sk,l(t)−η̃k,l,l(t))|hl|2(35a)

subject to 0 ≤ η̃k,l,k(t) ≤ 1, k, l ∈ K(t) (35b)
0 ≤ η̃k,l,l(t) ≤ 1, k, l ∈ K(t) (35c)

ρ(1−η̃k,l,k(t))P (t)|hk|2≥sk,l(t)pmin, k, l ∈ K(t)
(35d)

ρ(1−η̃k,l,l(t))P (t)|hl|2≥sk,l(t)pmin, k, l ∈ K(t)
(35e)

constraints (13e), (23b), (24a), (26), (27a)−(27c),
(32), (33).

We further define functions A(s(t), η̃(t)) and B(s(t), η̃(t)) as
follows:

A(s(t), η̃(t))=
∑

k∈K(t)

∑
l∈K(t),
l ̸=k

log2(1+P (t)(η̃k,l,k(t)gk+η̃k,l,l(t)gl)),

(36a)

B(s(t), η̃(t))= ρP (t)
∑

k∈K(t)

∑
l∈K(t),l ̸=k

(sk,l(t)− η̃k,l,k(t))|hk|2

+ ρP (t)
∑

k∈K(t)

∑
l∈K(t),l ̸=k

(sk,l(t)− η̃k,l,l(t))|hl|2.

(36b)

Problem (35) can be solved in an iterative manner. Given λ2,
this problem is a convex optimization problem. It can be solved
using standard optimization tools such as CVX.

The proposed algorithm for solving problem (22) is
summarized in Algorithm 2. In each iteration of Dinkelbach’s
algorithm, given λ2, we solve problem (35) using SCA
to obtain the reflection coefficients and backscatter device
pairing coefficients. Then, we update λ2, and repeat the
Dinkelbach’s algorithm until the objective function (35a)
achieves a value less than a threshold, denoted as δ2.
To improve the performance of SCA method, we repeat
the algorithm for multiple number of initializations, i.e.,
we run SCA for different initial points to obtain a local
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Algorithm 2: Iterative Algorithm for the Second
Subproblem: Problem (22)

1 Set δ2 ≪ 1, maximum number of initializations Jmax, and
maximum number of iterations Imax.

2 Set initialization index j := 1.
3 while j ≤ Jmax do
4 Initialize λ

(1,j)
2 := 0 and set iteration index n := 1.

5 repeat
6 Set iteration index i := 1 and set initial points

s(n,j,1)(t) and η̃(n,j,1)(t).
7 while i ≤ Imax do
8 Solve problem (35) for given λ

(n,j)
2 , s(n,j,i)(t)

and η̃(n,j,i)(t) and store the resulting variables
as ssucc(t) and η̃succ(t).

9 Set i := i+ 1, s(n,j,i)(t) := ssucc(t) and
η̃(n,j,i)(t) := η̃succ(t).

10 end
11 Set s(n,j)

temp (t) := s(n,j,i)(t) and
η̃
(n,j)
temp (t) := η̃(n,j,i)(t).

12 λ
(n+1,j)
2 :=

A(s(n,j)
temp (t),η̃

(n,j)
temp (t))

B(s(n,j)
temp (t),η̃

(n,j)
temp (t))

.

13 n := n+ 1.
14 until A

(
s(n−1,j)

temp (t), η̃
(n−1,j)
temp (t)

)
−

λ
(n,j)
2 B

(
s(n−1,j)

temp (t), η̃
(n−1,j)
temp (t)

)
≤ δ2;

15 Set s(j)saved(t) := s(n−1,j)
temp (t) and η̃

(j)
saved(t) := η̃

(n−1,j)
temp (t).

16 Set j := j + 1.
17 end

18 (s(t), η̃(t)) := argmax
s(j)saved(t),η̃

(j)
saved(t),j∈{1,...,Jmax}

A(s(j)saved(t),η̃
(j)
saved(t))

B(s(j)saved(t),η̃
(j)
saved(t))

.

19 Obtain η(t) from η̃(t).

Energy efficiency 

maximization in 

time slot 𝑡  

Given 𝑠𝑘 ,𝑙 𝑡  and 𝜂𝑘(𝑡), 

update 𝑃(𝑡) by solving 

problem (19) 

Given 𝑃(𝑡), update 

𝑠𝑘 ,𝑙 𝑡  and 𝜂𝑘(𝑡) by 

solving problem (22) 

 𝑃(𝑡) 𝑠𝑘 ,𝑙 𝑡 , 𝜂𝑘(𝑡)  EE(𝑡) 

Fig. 4. Alternating optimization algorithm for energy efficiency maximization
problem in time slot t.

optimal solution for the reflection coefficients and backscatter
device pairing coefficients. Finally, we choose the reflection
coefficients and backscatter device pairing coefficients that
maximize the energy efficiency. Since we have η̃k,l,k(t) =
sk,l(t)ηk(t) and η̃k,l,l(t) = sk,l(t)ηl(t), we can obtain η(t)
from vector η̃(t).

To obtain a suboptimal solution for energy efficiency
maximization in time slot t ∈ T , we repeat the algorithms
proposed for solving the two separated subproblems. The
optimization variables are updated iteratively and alternatively
until the difference between the value of energy efficiency
in two consecutive iterations is less than a threshold. Fig. 4
shows the alternating optimization algorithm for solving the
energy efficiency maximization problem in time slot t. This
algorithm is also summarized in Algorithm 3. In each time
slot, we update the set of backscatter devices according to (12).

Algorithm 3: Alternating Optimization Algorithm for
Energy Efficiency Maximization in Time Slot t ∈ T

1 Initialize P (t), s(t) and η(t) and calculate the initial value
of energy efficiency in time slot t, EE(1)(t).

2 Set iteration index m := 1 and ϵ ≪ 1.
3 repeat
4 Given s(t) and η(t), update P (t) using Algorithm 1
5 Given P (t), update s(t) and η(t) using Algorithm 2.
6 Calculate EE(m+1)(t).
7 m := m+ 1.
8 until |EE(m)(t)−EE(m−1)(t)| ≤ ϵ;

Then, we use Algorithm 3 to optimize the energy efficiency in
the corresponding time slot. By repeating this process for the
number of time slots within a superframe, a suboptimal value
for the objective function in problem (11) can be obtained.

The value of the objective function of problem (11)
cannot increase infinitely due to the constraints on the
optimization variables. When Algorithm 3 is invoked, the
value of the energy efficiency increases in each iteration m
until achieving convergence. The solution achieved by the
proposed alternating optimization algorithm may not provide
a global optimal solution. This is because problem (11) is
not convex with respect to the optimization variables. In
addition, solving the second subproblem using SCA gives
us a suboptimal solution for the reflection coefficients and
backscatter device pairing.

C. Computational Complexity

The computational complexity of alternating optimization
algorithm depends on the number of iterations required in
Algorithm 3 and the computational complexity of solving
each subproblem. In this subsection, we evaluate the
worst case complexity of alternating optimization algorithm.
Let I3 denote the number of iterations in Algorithm 3.
The optimization of transmit power of the reader, given
the reflection coefficients and backscatter device pairing,
needs to solve a convex problem in each Dinkelbach’s
iteration. Suppose Isub1 iterations are required. Solving a
convex problem has a polynomial time complexity in the
number of optimization variables [36]. Considering that
the first subproblem has only one variable, the asymptotic
computational complexity of this subproblem is as O(Isub1).
For optimization of reflection coefficients and backscatter
device pairing, we solve a convex problem with 3K2

variables using SCA in each Dinkelbach’s iteration. We
repeat this algorithm for multiple number of initializations
denoted as Jmax. Thus, the asymptotic complexity of the
second subproblem is as O

(
JmaxIsub2Imax(3K

2)z
)
, where

1 ≤ z ≤ 4 [36]. Parameters Isub2 and Imax are the
number of iterations required for Dinkelbach’s algorithm
and SCA, respectively. Overall, the asymptotic computational
complexity of running Algorithm 3 in one time slot is given by
O
(
I3JmaxIsub2ImaxK

2z + I3Isub1
)
. If we consider that Isub1 ≈

Isub2, the computational complexity can be approximated
by O

(
I3JmaxIsubImaxK

2z
)
, where Isub is the number of

Dinkelbach’s iterations required for both subproblems.
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D. Spectral Efficiency in the Backscatter System with NOMA
In this subsection, we study the spectral efficiency of the

backscatter system with NOMA. Our goal is to maximize
the spectral efficiency of the system subject to the minimum
circuit power requirements and minimum data rate constraints
of the backscatter devices. We consider two different scenarios.
In the first scenario, single-slot energy causality constraint is
considered for the batteryless backscatter devices such that
the energy harvested in each time slot can be used only in
the current time slot. In the second scenario, we assume that
backscatter devices have battery for energy storage, and the
energy harvested in each time slot can be stored for later use
[8], [13].

The spectral efficiency of the backscatter system with
NOMA over a superframe in bits per second per Hertz
(bits/s/Hz) is defined as follows [28]:

SE =
∑
t∈T

∑
k∈K

∑
l∈K\{k}

Rk,l(t)

=
∑
t∈T

∑
k∈K

∑
l∈K\{k}

sk,l(t) log2

(
1 +

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)
+
∑
t∈T

∑
k∈K

∑
l∈K\{k}

sk,l(t) log2 (1 + ηl(t)P (t)gl) . (37)

Considering the single-slot energy causality, we can
formulate the spectral efficiency maximization problem by
jointly optimizing the reflection coefficients, backscatter
device pairing, and transmit power of the reader as follows:

maximize
P (t), ηk(t),

sk,l(t), k,l∈K,t∈T

T∑
t=1

K∑
k=1

K∑
l=1
l ̸=k

sk,l(t)log2

(
1+

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)

+

T∑
t=1

K∑
k=1

K∑
l=1
l ̸=k

sk,l(t)log2(1+ηl(t)P (t)gl) (38)

subject to constraints (11b)−(11j).

To solve problem (38), Proposition 1 is provided to obtain the
optimal transmit power of the reader in each time slot.

Proposition 1: To maximize the spectral efficiency of
NOMA backscatter system, the optimal transmit power of the
reader in each time slot is Pmax.

Proof : Given the reflection coefficients and backscatter
device pairing in each time slot, the objective function (38)
increases with the increase of P (t), t ∈ T . Thus, optimal
P ∗(t) is determined by the upper bound of P (t). We note that
the combination of constraints (11g), (11h), (11i), and (11j)
gives the lower bound of P (t). The upper bound of P (t) is
Pmax. Thus, we have P ∗(t) = Pmax.

We maximize the spectral efficiency in each time slot
separately. Using the variables that we have already defined
and considering single-slot energy causality, we can formulate
the spectral efficiency maximization problem in time slot t as
follows:

maximize
η̃(t), s(t)

∑
k∈K(t)

∑
l∈K(t),
l ̸=k

log2(1+Pmax(η̃k,l,k(t)gk + η̃k,l,l(t)gl))

(39a)

Algorithm 4: SCA Algorithm for Spectral Efficiency
Maximization in Time Slot t ∈ T

1 Initialize maximum number of iterations Nmax, iteration
index i := 1 and starting points s(1)(t) and η̃(1)(t).

2 while i ≤ Nmax do
3 Solve problem (39) for given s(i)(t) and η̃(i)(t) and

store the backscatter device pairing and reflection
coeffients as s(t) and η̃(t).

4 Set i := i+ 1, s(i)(t) := s(t) and η̃(i)(t) := η̃(t).
5 end
6 s∗(t) := s(i)(t) and η̃∗(t) := η̃(i)(t).

subject to ρ(1− η̃k,l,k(t))Pmax|hk|2≥sk,l(t)pmin, k, l ∈ K(t)
(39b)

ρ(1− η̃k,l,l(t))Pmax|hl|2≥sk,l(t)pmin, k, l ∈ K(t)
(39c)

log2 (1 + Pmax(η̃k,l,k(t)gk + η̃k,l,l(t)gl))

− log2

(
1 + η̃

(i)
k,l,l(t)Pmaxgl

)
−
Pmaxgl(η̃k,l,l(t)−η̃

(i)
k,l,l(t))

1+η̃
(i)
k,l,l(t)Pmaxgl

≥sk,l(t)Rmin, k, l ∈K(t)

(39d)
log2 (1 + η̃k,l,lPmaxgl) ≥ sk,l(t)Rmin, k, l ∈ K(t).

(39e)
constraints (13e), (24a), (26), (27a)−(27c), (35b), (35c).

Problem (39) is a convex problem. We use SCA in an
iterative algorithm to solve this problem. The algorithm for
solving this problem is summarized in Algorithm 4. In
the case that multi-slot energy causality is considered, the
constraints related to the minimum circuit power requirements
of backscatter devices are not changed when t = 1. For other
time slots, the constraints are as follows:

ρ|hk|2
(
(1− η̃k,l,k)Pmax +

t−1∑
t′=1

Pmax

)
≥ sk,l(t)pmin,

k, l ∈ K(t), 2 ≤ t ≤ T, (40)

ρ|hl|2
(
(1− η̃k,l,l)Pmax +

t−1∑
t′=1

Pmax

)
≥ sk,l(t)pmin,

k, l ∈ K(t), 2 ≤ t ≤ T. (41)

These constraints ensure that the energy harvested in the
previous time slots can be used for circuit operation of
the backscatter devices in the current time slot. Similar to
problem (39), the spectral efficiency in time slot t considering
multi-slot energy causality constraints can be maximized using
an iterative algorithm.

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed scheme is
evaluated through simulations. The coverage area of the reader
is considered as a cell with two ring-shaped boundary. The
radii of inner and outer boundary are set to 10 m and 60 m,
respectively. The backscatter devices are distributed randomly
and uniformly in the coverage area of the reader. The path
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loss exponent α is equal to 2.5. The variance of the noise σ2

is set to −100 dBm. The efficiency of the energy harvester
ρ is set to 0.8 according to [26]. The results are obtained by
averaging over different channel and path loss realizations.

We compare the performance of our proposed algorithm
with the optimal scheme and five other schemes. In the optimal
scheme, we obtain the global optimal transmit power of the
reader using the Dinkelbach’s algorithm. In each time slot, we
use exhaustive search to find the backscatter device pairing
that maximizes the energy efficiency. The optimal value of
the reflection coefficients can be obtained from equations (52)
and (56) in Appendix C. In the first scheme for comparison,
we use genetic algorithm to solve the first subproblem. Given
the reflection coefficients and backscatter device pairing, we
maximize the average energy efficiency with respect to the
transmit power of the reader using genetic algorithm. We
use MATLAB genetic algorithm toolbox [37]. The second
subproblem is solved using Dinkelbach’s algorithm and SCA.
The second scheme for comparison is the fixed device pairing
scheme, we do not optimize backscatter device pairing. For
device pairing, in each time slot, backscatter devices are sorted
from the device with the strongest channel gain to the device
with the weakest channel gain. Then, the first two backscatter
devices are paired in the corresponding time slot. Furthermore,
as inspired from [38], we consider the conventional device
pairing scheme in which the backscatter device with the
strongest channel gain is paired with the backscatter device
with the weakest channel gain in each time slot. For the
maximum transmit power allocation scheme, in each time
slot, we set the transmit power of the reader to be equal to
Pmax. In the random reflection coefficient selection scheme,
the reflection coefficients of backscatter devices are chosen
randomly. In this scheme, we only optimize the transmit power
of the reader and backscatter device pairing. We note that in
Figs. 5 to 9, the channel threshold for decoding the signal of
backscatter devices γ is set to 0.

Fig. 5 shows the average energy efficiency over a
superframe versus the number of iterations in Algorithm 3
for six settings: a) K = 6, T = 3, b) K = 8, T = 4, c)
K = 10, T = 5, d) K = 12, T = 6 e) K = 14, T = 7,
and f) K = 16, T = 8. The maximum transmit power of
the reader Pmax and the minimum circuit power requirement
pmin are set to 35 dBm and −40 dB, respectively. As Fig. 5
shows, the alternating optimization algorithm converges very
fast to a suboptimal solution of the average energy efficiency
maximization problem. As it can be seen, the average energy
efficiency converges after seven iterations. It is also shown
that the average energy efficiency of backscatter system with
NOMA increases with the number of backscatter devices in the
system. This is because there are more degrees of freedom in
backscatter device pairing and reflection coefficient selection
when we increase the number of backscatter devices.

Fig. 6 shows the average energy efficiency versus the
maximum transmit power of the reader Pmax. The number of
backscatter devices K and minimum circuit power requirement
pmin are set to 8 devices and −40 dB, respectively. As can be
observed, the average energy efficiency of backscatter system
with NOMA increases with the maximum transmit power
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Fig. 5. Average energy efficiency over a superframe versus the number of
iterations for different number of backscatter devices.
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Fig. 6. Average energy efficiency versus the maximum transmit power of the
reader.

of the reader and converges to the horizontal asymptote of
its curve. For low values of Pmax, a large portion of power
of incident carrier signal from the reader is harvested by
the backscatter devices and a small portion of the power
is reflected back to the reader. As a result, the data rate
of backscatter devices decreases. Consequently, the average
energy efficiency, which is the ratio of aggregate data rate
to the amount of consumed power, decreases. When Pmax
increases, the aggregate data rate of backscatter devices
improves and the average energy efficiency increases. The
proposed scheme achieves an average energy efficiency that
is within 84% of the optimal value. The gap between the
average energy efficiency of the proposed scheme and optimal
scheme is due to the fact that we used SCA to solve
problem (22) in the alternating optimization algorithm. Thus,
the proposed scheme provides a suboptimal solution for the
average energy efficiency maximization problem. The average
energy efficiency of five other schemes are also shown for
comparison. As Fig. 6 shows, our proposed scheme achieves
a 7% higher average energy efficiency than the scheme
using the genetic algorithm. This is because the Dinkelbach’s
algorithm finds the global optimal solution for the transmit
power of the reader while the genetic algorithm finds a local
optimal solution for that. Our proposed scheme achieves a
19% higher average energy efficiency than the fixed device
pairing scheme. Pairing the devices with the strongest channel
gains improve the aggregate data rate. On the other hand,
the amount of harvested energy increases. Thus, the average
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Fig. 7. Average energy efficiency versus the minimum power required for
the circuit of backscatter devices pmin.

energy efficiency degrades when compared with our scheme.
Fig. 6 also shows that our proposed scheme increases the
average energy efficiency by 30% when compared with the
conventional device pairing scheme. Our proposed scheme has
an average energy efficiency that is 93% higher than that of
the maximum power allocation scheme. This is because the
maximum power allocation increases the amount of harvested
energy by the backscatter devices. As a result, the average
energy efficiency of the system decreases. We also note that the
average energy efficiency of the maximum power allocation
scheme first increases with Pmax, and then decreases. This
is because both the aggregate data rate and consumed power
increase with the maximum transmit power of the reader. But
the increase in consumed power is much higher than that in
the aggregate data rate. Thus, the energy efficiency degrades.
Fig. 6 also shows the effect of optimizing the reflection
coefficients on the average energy efficiency of the system.
Results show that our proposed scheme increases the average
energy efficiency by 98% when compared with the random
reflection coefficient scheme.

Fig. 7 shows the effect of minimum power required for the
circuit of backscatter devices on the average energy efficiency
of the backscatter system. The number of backscatter devices
K and Pmax are set to 8 devices and 35 dBm, respectively.
Results in Fig. 7 show that the average energy efficiency of
backscatter system with NOMA decreases when we increase
pmin. By increasing pmin, the amount of consumed power by
backscatter devices increases. In addition, backscatter devices
have to choose a lower value for the reflection coefficients
to satisfy the minimum circuit power requirement for the
backscatter devices. Consequently, the data rate of backscatter
devices decreases and the average energy efficiency degrades.
When the value of pmin is too high, the optimization problem
is infeasible for most of the channel and path loss realizations
with resulting average energy efficiency equal to zero. Fig.
7 also shows that our proposed scheme has a higher average
energy efficiency than the baseline schemes. This is because
of the global optimality of transmit power of the reader
and optimizing pairing of backscatter devices as well as
the transmit power of the reader and reflection coefficients,
respectively.

Fig. 8 shows the average energy efficiency of the backscatter
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Fig. 8. Average energy efficiency versus the number of backscatter devices.
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Fig. 9. Convergence of proposed algorithm and genetic algorithm.

system with NOMA versus the number of backscatter devices.
Pmax and pmin are set to 35 dBm and −40 dB, respectively.
The average energy efficiency increases with the number of
backscatter devices. This is because the degrees of freedom
for device pairing and reflection coefficient selection increase
when there are more backscatter devices in Fig. 8 also shows
that our proposed scheme achieves a higher average energy
efficiency when compared with the baseline schemes.

Fig. 9 illustrates the convergence of proposed algorithms
and genetic algorithm. The number of backscatter devices
K and minimum circuit power requirement pmin are set to
8 devices and −40 dB, respectively. As it is shown in Fig.
9, the algorithms in both schemes converge to a suboptimal
value for the average energy efficiency of the system. The
rate of the convergence is similar for both schemes. The
algorithms converge to a suboptimal solution in less than
10 iterations on average. We note that the computational
complexity of Dinkelbach’s algorithm which is used in our
scheme, and the genetic algorithm is different. The complexity
of solving the first subproblem using Dinkelbach’s algorithm
depends on the number of iterations in Dinkelbach’s algorithm.
The complexity of the genetic algorithm is in the order of
multiplication of number of generations, population size, and
the size of individuals in the algorithm. Our simulations by
Intel Core i7-3770K 3.5 GHz CPU show that it takes 1 second
on average to solve the first subproblem with Dinkelbach’s
algorithm while solving the first subproblem using the genetic
algorithm requires 0.1 second on average.

Table I shows the average runtime of the proposed scheme
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Fig. 10. Average energy efficiency versus the maximum transmit power of
the reader for γ = 5 dB.

TABLE I
RUNTIME OF THE ALGORITHMS (IN MINUTES)

Algorithm K = 4 K = 6 K = 8 K = 10 K = 12
Proposed
scheme 2.27 3.58 5.51 7.95 12.44

Optimal
scheme 12.71 23.44 56.18 93.85 153.65

and the optimal scheme in minutes versus the number of
backscatter devices for Pmax = 35 dBm. As shown in Table
I, the runtime of the proposed scheme increases with the
number of backscatter devices. In particular, when the number
of backscatter devices changes from 10 to 12, the average
runtime of the proposed scheme increases by 60%. The results
also show that the runtime of the proposed scheme is less than
that of the optimal scheme. In particular, when the number of
backscatter devices is equal to 12, the runtime of the proposed
scheme is 92% less than that of the optimal scheme.

Fig. 10 shows the average energy efficiency of the system
versus the maximum transmit power of the reader for our
proposed scheme and genetic algorithm, while the channel
threshold for decoding the signal of backscatter devices γ
is set to 5 dB. We consider that the device pairing is fixed.
After sorting the backscatter devices according to their channel
gains, backscatter devices with the strongest channel gains are
paired in each time slot. We optimize the transmit power of
the reader and reflection coefficients of backscatter devices
using alternating optimization algorithm. As it is shown in Fig.
10, our proposed scheme achieves a higher average energy
efficiency when compared with the scheme using genetic
algorithm. By comparing Figs. 6 and 10, we note that the
value of average energy efficiency of backscatter system with
NOMA degrades when we increase γ from 0 dB to 5 dB. This
is because the constraints on the SINR of backscatter devices
limit the value of the reflection coefficients of multiplexing
backscatter devices in each time slot. As a result, the harvested
and consumed energy by the backscatter devices increase and
the average energy efficiency of the system decreases.

Fig. 11 shows the spectral efficiency of NOMA backscatter
system for K = 8 backscatter devices over a superframe. The
minimum circuit power requirement is set to −40 dB. The
spectral efficiency increases monotonically with the transmit
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Fig. 11. Spectral efficiency versus the maximum transmit power of the reader.

power of the reader. This is because the SINR of the
backscatter devices is improved when the maximum transmit
power of the reader increases. Fig. 11 also shows the effect
of multi-slot energy causality. Multi-slot energy causality
increases the spectral efficiency of the system by 21% when
compared with single slot energy causality. This is because
a larger portion of carrier signal power is reflected back
to the reader due to previously harvested power use. Fig.
11 also shows the spectral efficiency of backscatter system
using OMA where at most one backsactter device operates on
the subcarrier in each time slot. NOMA backscatter system
achieves a spectral efficiency which is 65% higher than that
of backscatter system with OMA. This is due to the orthogonal
scheduling of the OMA scheme.

V. CONCLUSION

In this paper, we investigated a NOMA backscatter system,
where signals from at most two backscatter devices are
multiplexed on the frequency resource block using NOMA in
each time slot. We formulated an average energy efficiency
maximization problem by jointly optimizing the reflection
coefficients, backscatter device pairing, and transmit power of
the reader while taking the minimum circuit power and data
rate requirements of the backscatter devices and the transmit
power constraint of the reader into account. The formulated
problem is nonconvex due to the nonconvexity of the objective
function and the constraints. Using alternating optimization
technique, we developed an algorithm to find a suboptimal
solution. We decomposed the problem into two different
subproblems with objective function in ratio form. The first
subproblem is solved using concave-convex programming and
Dinkelbach’s algorithm. We used SCA and difference of
convex programming to solve the second subproblem. By
alternating optimization technique, the optimization variables
are updated iteratively and alternatively until the average
energy efficiency of the system converged to a suboptimal
value. Simulation results showed that our proposed algorithm
converged quickly to a suboptimal solution. Furthermore, our
proposed algorithm achieves an average energy efficiency
that is within 84% of the optimum. Runtime comparison
showed that the runtime of the proposed scheme is less than
that of the optimal scheme. Our scheme also increases the
average energy efficiency of the system by 7%, 19%, 30%,
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93%, and 98% when compared with the genetic algorithm,
fixed device pairing scheme, conventional device pairing
scheme, maximum transmit power allocation scheme, and
random reflection coefficient selection scheme, respectively.
In addition to the average energy efficiency, we studied the
spectral efficiency of NOMA backscatter system subject to
the single-slot and multi-slot energy causality constraints.
Multi-slot energy causality increases the spectral efficiency of
the system by 21% when compared with single-slot energy
causality. We also showed that NOMA backscatter system
achieves 65% higher spectral efficiency when compared with
the OMA scheme. A potential extension for future work is
to consider the average energy efficiency maximization in a
backscatter system with MC-NOMA, where there are multiple
subcarriers instead of one, and the signals from two backscatter
devices are multiplexed on each subcarrier in one time slot.

APPENDIX

A. Derivation of Constraints (16d) and (16e)

From constraint (11i), we have

log2

(
1 +

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)
≥ sk,l(t)Rmin. (42)

For the case that sk,l(t) = 0, we must have P (t) ≥ 0. For the
case that sk,l(t) = 1, we have

log2

(
1 +

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)
≥ Rmin,

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

≥ 2Rmin − 1. (43)

We define γ = 2Rmin − 1. From (43), we have

ηk(t)P (t)gk ≥ γ + γηl(t)P (t)gl,

P (t)(ηk(t)gk − γηl(t)gl) ≥ γ,

P (t) ≥ γ

ηk(t)gk − γηl(t)gl
. (44)

By considering sk,l(t), we obtain

P (t) ≥ sk,l(t)γ

ηk(t)gk − γηl(t)gl
. (45)

From constraint (11j), we also have

log2 (1 + ηl(t)P (t)gl) ≥ sk,l(t)Rmin. (46)

When sk,l(t) = 0, we can conclude P (t) ≥ 0. When
sk,l(t) = 1, we have

log2 (1 + ηl(t)P (t)gl) ≥ Rmin,

P (t) ≥ 2Rmin − 1

ηl(t)gl
,

P (t) ≥ γ

ηl(t)gl
. (47)

By considering sk,l(t), we have

P (t) ≥ sk,l(t)γ

ηl(t)gl
. (48)

B. Derivation of the First Term of (23a)

We note that the first term in the objective function of (23)
is another representation of (14). Here, we show how to obtain
the first term of (23a). We have

Ut(P (t),η(t), s(t))

=
∑

k∈K(t)

∑
l∈K(t)
l ̸=k

sk,l(t)

(
log2

(
1 +

ηk(t)P (t)gk
1 + ηl(t)P (t)gl

)

+ log2 (1 + ηl(t)P (t)gl)

)
=

∑
k∈K(t)

∑
l∈K(t)
l ̸=k

sk,l(t)

(
log2

(
1+P (t)(ηk(t)gk+ηl(t)gl)

1+ηl(t)P (t)gl

)

+ log2 (1+ηl(t)P (t)gl)

)
=

∑
k∈K(t)

∑
l∈K(t)
l ̸=k

sk,l(t)

(
log2

(
1+P (t)(ηk(t)gk+ηl(t)gl)

1+ηl(t)P (t)gl

×(1+ηl(t)P (t)gl)

))
=
∑

k∈K(t)

∑
l∈K(t)
l ̸=k

sk,l(t) (log2 (1+P (t)(ηk(t)gk+ηl(t)gl))) .(49)

C. Derivation of the Optimal Reflection Coefficients

From (10), we note that increasing the reflection coefficients
of paired devices increases the energy efficiency in the
corresponding time slot. According to constraints (13f) and
(13g), the upper bound of the value of the reflection
coefficients are as follows:

ηk(t) ≤ 1− sk,l(t)pmin

ρP (t)|hk|2
, k, l ∈ K(t), (50)

ηl(t) ≤ 1− sk,l(t)pmin

ρP (t)|hl|2
, k, l ∈ K(t). (51)

Furthermore, from (13h), we note that increasing the value of
ηk(t) increase the data rate of backscatter device k. Thus, for
backscatter devices k and l that are paired in time slot t, i.e.,
sk,l(t) = 1, the optimal value of the reflection coefficient of
device k in the optimal scheme can be obtained as follows:

η∗k(t) = max

{
0, 1− pmin

ρP (t)|hk|2

}
. (52)

For ηl(t), from constraint (13i), we have

log2 (1 + ηl(t)P (t)gl) ≥ Rmin,

ηl(t) ≥
2Rmin − 1

P (t)gl
,

ηl(t) ≥
γ

P (t)gl
. (53)

Furthermore, from (13h), we have

log2

(
1 +

η∗k(t)P (t)gk
1 + ηl(t)P (t)gl

)
≥ Rmin,
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η∗k(t)P (t)gk
1 + ηl(t)P (t)gl

≥ 2Rmin − 1,

η∗k(t)P (t)gk ≥ γ + γηl(t)P (t)gl,

η∗k(t)P (t)gk − γ ≥ γηl(t)P (t)gl,

η∗k(t)P (t)gk − γ

γP (t)gl
≥ ηl(t). (54)

From (53) and (54), we can obtain the following inequality
for the reflection coefficient of backscatter device l:

γ

P (t)gl
≤ ηl(t) ≤

η∗k(t)P (t)gk − γ

γP (t)gl
. (55)

Thus, the optimal value of the reflection coefficient of
backscatter device l in the optimal scheme can be obtained
as follows:

η∗l (t) = max

{
0,min

{
1− pmin

ρP (t)|hl|2
,
η∗k(t)P (t)gk − γ

γP (t)gl

}}
.

(56)
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