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Abstract—Electric vehicles (EVs) can be coordinated by an
aggregator to participate in the electricity day-ahead market
(DAM) and provide frequency regulation service. In the DAM, a
short-term forward contract is made between the aggregator and
an independent system operator (ISO). The contract specifies the
contract size, which is the amount of regulation capacity provided
by the aggregator for each hour of the next day. However, since
the capacity of the aggregator is provided by many EVs instead
of a single source, the challenge is how to efficiently aggregate
the small and uncertain individual capacity and determine the
optimal size of the forward contract. We consider two cases for
the contract between the aggregator and the ISO. In the first
case, the aggregator needs to ensure that the capacity provided
by the EVs on the next day will meet the amount specified in
the contract. In contrast, in the second case, the ISO allows an
update of the contract size. A stochastic program is formulated
to determine the contract size for both cases. Our problem
formulation incorporates risk management using the conditional
value at risk (CVaR). Chance constraints are embedded when
the contract size is fixed. We tackle the chance constraints using
the Markov inequality and propose an efficient algorithm. The
EV charging data collected in the province of British Columbia,
Canada, is used to evaluate the performance of the proposed
algorithm. Simulation results show that the proposed algorithm
improves the revenue of the aggregator compared to an existing
algorithm from the literature.

I. INTRODUCTION

In recent years, there has been a growing interest in utilizing
the idle battery systems of parked electric vehicles (EVs) to
provide frequency regulation service. The power grid needs
this service to compensate the mismatch between generation
and load, and to maintain the utility frequency around a nomi-
nal value (e.g., 60 Hertz). EVs can provide efficient frequency
regulation service by changing their real-time charging and
discharging power rapidly. The economic analyses in [1], [2]
show that EVs have the potential to provide revenue to their
owners by selling regulation capacity to an independent system
operator (ISO), such as the New York ISO (NYISO).

EVs are intrinsically dispersed and each EV has limited reg-
ulation capacity. An aggregator is typically used to coordinate
a large fleet of EVs in order to satisfy the minimum capacity
required to enter the wholesale market of an ISO [3]–[10].
As the hourly regulation capacity is the commodity traded in
the market, it is necessary to schedule the hourly capacity
for each EV in order to improve the revenue. To this end,
a dynamic algorithm for scheduling of the hourly regulation
capacity of EVs is proposed in [3]. In [4], a framework
for the EV frequency regulation service with unidirectional

chargers is provided. An algorithm which takes into account
the uncertainty of the regulation signal is reported in [5]. In
[6], an algorithm for allocating regulation tasks among EVs
is proposed. A multi-level architecture for the aggregator is
considered in [7]. In [8], the potential of EVs to provide fre-
quency regulation and voltage support services in microgrids is
investigated. In [9], [10], algorithms are proposed to schedule
the hourly EV frequency regulation capacities. The works in
[3]–[10] focus on an aggregator optimizing the operation of the
EVs. On the other hand, an aggregator also needs to participate
in the market to sell the regulation capacity.

The forward contract and the day-ahead market (DAM)
are widely used for electricity-related trades. In the United
States, the ISOs purchase the regulation capacity using forward
contracts in the DAM [11]. The contracts help the ISOs to
reduce their financial risk and their exposure to the volatility
of the prices [12]. In a forward contract, a service provider
(typically a power generator in the current power systems) and
an ISO reach an agreement that the generator will provide a
certain amount of regulation capacity (i.e., the contract size)
at a specified future time. In the current DAM, a power
generator first reports its available regulation capacity to the
ISO. The capacity is then used to determine the size of the
forward contract. In the emerging smart grid, EV aggregators
are expected to be new participants in the DAM. In this paper,
we are in particular interested in the following question: How
does an EV aggregator decide its contract size in the DAM?

The optimal contract size of an aggregator depends on two
factors. The first factor is the available regulation capacity of
the EVs. In [13], a stochastic model for EVs’ regulation ca-
pacity based on the hourly probability that an EV is connected
with the power grid is proposed. On the other hand, the second
factor is the revenue of the aggregator. The monetary revenue
can be characterized by its expected value and the financial
risk [14]–[16]. The risk is the uncertainty that the revenue is
lower than the expected value or even becomes negative. For
an aggregator, the risk may arise from the possible mismatch
between the contract size and the instantaneous capacity
available from the EVs. The financial risk can be measured
using the conditional value at risk (CVaR) [14], which is
the expected revenue in the low rewarding cases (i.e., when
the revenue is not more than a certain quantile). The CVaR
has been widely used to study the financial risk of market
participation of different entities, such as power generators
[15] and microgrids [16].
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(a) Profile of EV 1.
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(b) Profile of EV 2.
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(c) Profile of EV 3.

Fig. 1. Sample profiles of EVs’ connection with the power grid. The data
was collected in the province of British Columbia, Canada in Jan. 2015 [17].

The capacity of an aggregator is made up of the scattered,
uncertain, and small-scale regulation capacity of many EVs,
which makes the aggregator different from other market par-
ticipants (e.g., power generators). Hence, the EV aggregator
requires novel algorithms for optimization of its forward
contract size in order to improve its revenue. To be specific,
Fig. 1 shows sample profiles of the EV connection periods
with the power grid. As shown in Fig. 1, the EV charging
sessions are stochastic and different EVs tend to have different
charging periods. Thus, it is necessary to account for the
uncertainty of the available capacity of EVs in the forward
contract. Moreover, the effect of the financial risk on the
forward contract size of an EV aggregator has yet to be
explored. The main contributions of this paper are summarized
as follows:
• We analytically model an aggregator which participates

in the DAM to obtain a forward contract for providing
frequency regulation service. We study two cases. In the
first case, the contract size is fixed and the aggregator has
to ensure that the capacity of the EVs will be sufficient
to satisfy the contract. In the second case, an update of
the contract size is allowed by the ISO.

• For both cases, we formulate a stochastic optimization
problem to determine the size of the forward contract.
Risk management is incorporated into the problem formu-
lation using the CVaR. Chance constraints are embedded
when the contract size is fixed. The Markov inequality
is used to tackle the chance constraints and an efficient
algorithm is proposed.

• We evaluate the performance of the proposed algorithm
based on real EV charging data, collected in the province
of British Columbia, Canada. Simulation results show
that the proposed algorithm improves the revenue com-
pared to an existing algorithm from the literature.

The rest of the paper is organized as follows. The system
model is introduced in Section II. In Section III, we present the
problem formulation and develop a forward contract algorithm.
Simulation results are presented in Section IV. Conclusion is
given in Section V.

II. SYSTEM MODEL

We consider an EV aggregator which provides frequency
regulation service. Fig. 2 shows a framework for an aggregator
which aggregates the regulation capacity of many EVs and
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Fig. 2. The aggregator coordinates the EVs to participate in the DAM
and provides frequency regulation service to the ISO. In the DAM, there is
uncertainty regarding the available regulation capacity on the next day. This
is because the EV owners use EVs for driving and may plug in and unplug
EV chargers at different time of the day, c.f., Fig. 1.

sells the capacity to an ISO. The aggregator participates in
the DAM and obtains a forward contract from the ISO. The
contract allows the aggregator to provide frequency regulation
service on the next day and ensures that the aggregator will
be reimbursed for the service. On the next day, the aggregator
coordinates the EVs to provide frequency regulation service
by changing the EVs’ real-time charging rate according to a
regulation signal issued by the ISO.

The concept of a forward contract is widely used in the trad-
ing of electricity-related commodities (e.g. energy, frequency
regulation service). This is because these commodities are
physically difficult to store as inventory. The ISO uses the
forward contract to ensure that sufficient supply of regulation
capacity is available to satisfy its demand on the next day.
According to the contract, the aggregator is responsible for
providing a certain amount of hourly regulation capacity in
each hour of the next day. In particular, the regulation up
capacity and regulation down capacity are the amount by
which the EVs’ real-time charging power can be decreased
and increased, respectively. We use H = {1, . . . ,H} to denote
the set of operation hours on the next day, where H = 24
as we consider the DAM. Let vufc(h) and vdfc(h) denote the
amount of regulation up capacity and regulation down capacity
specified in the forward contract for hour h ∈ H, respectively.

The available capacity of the EVs is uncertain while the
aggregator is obliged to provide a certain amount of capacity
according to the forward contract. Let M = {1, . . . ,M}
denote the set of EVs. We denote the regulation up capacity
and regulation down capacity of EV i ∈ M at hour h ∈ H
by vui (h) and vdi (h), respectively. The values of vui (h) and
vdi (h) are uncertain in the DAM because the periods when the
chargers of individual EVs will be plugged-in and unplugged
on the next day are unknown. Hence, the available capacity of
the EVs is stochastic and can be either higher or lower than
the amount specified in the forward contract.

The ISOs have different rules regarding the mismatch
between the size of the forward contract and the available
capacity. We study two cases for the forward contract and use
a binary parameter θ ∈ {0, 1} to distinguish between them.
In the first case, the contract size is fixed and the aggregator
needs to ensure that sufficient capacity is provided by the EVs.
In this case, we set θ = 0 and have the following constraints



P
(
vufc(h) ≤

∑
i∈M

vui (h)
)
≥ γu(1− θ), h ∈ H, (1)

P
(
vdfc(h) ≤

∑
i∈M

vdi (h)
)
≥ γd(1− θ), h ∈ H, (2)

where P(A) denotes the probability of the event A. Parameters
γu, γd ∈ (0, 1) are the required confidence level with which
the capacity from EVs is sufficient compared to the contract
size. They take values close to 1 (e.g., γu = γd = 0.95). We
use constraints (1) and (2) to ensure the aggregator makes a
forward contract which it is able to fulfill with high probability.
Otherwise, if an aggregator fails to provide sufficient capacity
and violates its contract repeatedly, the ISO may forbid the
aggregator to participate in the market. Note that we have
(1 − θ) on the right hand side of (1) and (2) since we need
the chance constraints to take effect only when θ = 0.

In the second case, we consider an ISO which allows an
update on the size of the forward contract. In particular, spot
markets are used by the ISOs to ensure that the supply satisfies
the demand for the regulation service in real-time. The spot
market is a place where the participants trade and deliver
frequency regulation capacity in real-time. It is different from
the DAM where the capacity is delivered on the next day.
Some ISOs may allow the aggregator to update its contract
size according to its available capacity in the spot markets.
We set θ = 1 in this case. When θ = 1, constraints (1) and
(2) are always satisfied because their right hand side become 0.
The NYISO is an example for an ISO which allows an update
of the contract size [11]. Note that the update of the contract
size may incur a charge for the aggregator, which needs to be
considered to calculate the revenue of the aggregator.

The revenue of the aggregator has three components. First,
the ISO pays for the forward contract according to the prices
specified in the contract. The prices in the forward contract are
denoted by pufc(h) and pdfc(h) for the regulation up capacity
and regulation down capacity at hour h ∈ H, respectively.
Second, the ISO may charge the aggregator if the aggregator
updates its contract size in the spot markets. This charge is
referred to as the capacity balancing charge by NYISO [11].
Note that this charge can be either positive or negative. If the
aggregator reduces the size of the forward contract, it needs
to pay a positive charge to the ISO. On the other hand, if the
aggregator increases the size of the forward contract, the ISO
provides an additional payment to the aggregator according to
the prices in the spot markets. Let pust(h) and pdst(h) denote
the prices in the spot markets at hour h for the regulation up
capacity and the regulation down capacity, respectively. Third,
the aggregator may make payments to the EVs to reimburse
their regulation capacity. We use puev(h) and pdev(h) to denote
the prices with which the aggregator pays for the regulation
up capacity and regulation down capacity of an EV at hour h,
respectively. The values of puev(h) and pdev(h) depend on the
agreement between the aggregator and the EVs. In this paper,
we consider a case when the aggregator and EVs share the
revenue from the frequency regulation service. Let r denote
the revenue of the aggregator, which is given by

r =
∑
h∈H

(
pufc(h)v

u
fc(h) + pdfc(h)v

d
fc(h)

− θ
(
pust(h)(v

u
fc(h)−

∑
i∈M

vui (h))

+ pdst(h)(v
d
fc(h)−

∑
i∈M

vdi (h))
)

−
(
puev(h)

∑
i∈M

vui (h) + pdev(h)
∑
i∈M

vdi (h)
))

. (3)

The second and third lines in (3) denote the charge for
updating the contract size. The charge occurs when an update
of the contract size is allowed, i.e., θ = 1 in the second case.
The capacities vufc(h) and vdfc(h) are control variables for the
aggregator. The prices (pufc(h), p

d
fc(h)) and (pust(h), p

d
st(h))

are announced by the ISO in the DAM and spot markets,
respectively. Hence, pufc(h), p

d
fc(h), p

u
st(h), and pdst(h) are

uncertain input parameters for the aggregator. We model the
aggregator as a price-taker, i.e., the capacity of the aggregator
is relatively small compared to the total capacity traded in the
markets and the aggregator cannot affect the prices.

In the DAM, the aggregator determines the size of its
forward contract for a certain optimality criterion regarding
its revenue. In this paper, we consider two metrics for the
revenue, namely the expected revenue and the financial risk,
where the risk is measured by the CVaR. In economics, risk
aversion is used to model the attitude of market participants
who are reluctant to an uncertain revenue with financial risk
rather than a steady payoff. Risk aversion is accounted for in
our problem formulation.

III. PROBLEM FORMULATION AND ALGORITHM

In this section, we formulate an optimization problem that
allows the aggregator to determine the size of the day-ahead
forward contract. Our formulation takes into account the
uncertainty regarding the available capacity of the EVs and the
prices. The CVaR is incorporated into the problem formulation
to account for risk management. We consider an aggregator
which may have risk aversion. Both the expected revenue and
the CVaR are included in the objective function. Let α ∈ (0, 1)
denote an arbitrary confidence level. The value at risk (VaRα)
is the quantile for which the probability that the revenue in
(3) is larger than or equal to the quantile (i.e., r ≥ VaRα)
is α (i.e., P(r ≥ VaRα) = α). The VaRα is a metric for the
financial risk but the CVaRα is usually preferred because it
accounts for the revenue beyond the confidence level α [14].
In particular, the CVaRα is defined based on the VaRα as the
expected revenue for the cases when the revenue is not more
than VaRα. That is,

CVaRα = E
r≤VaRα

(r), (4)

where E denotes the expectation with respect to the random
variables pufc(h), p

d
fc(h), p

u
st(h), p

d
st(h),

∑
i∈M vui (h), and∑

i∈M vdi (h), h ∈ H. In the DAM, the forward contract is
made daily and the contract size is determined for the 24 hours



of the next day. The problem to determine the contract size of
an aggregator is formulated as follows

maximize
vufc(h), v

d
fc(h), h ∈ H

(
(1− β) E(r) + β CVaRα

)
(5a)

subject to vufc(h), v
d
fc(h) ≥ 0, h ∈ H, (5b)

constraints (1) and (2), (5c)

where β ∈ [0, 1] is a tunable parameter which adjusts the
weight of the expected revenue E(r) and CVaRα. Increasing
β puts more weight on CVaRα, makes the aggregator more
conservative, and improves the revenue in the low rewarding
cases. Decreasing β puts more weight on the expected revenue
and less weight on the CVaRα. For β = 0, the aggregator aims
to maximize the expected revenue and neglects the financial
risk. This is a special case which can be used to model a
risk-neutral aggregator. Without loss of generality, we use β
to model risk-averse and risk-neutral aggregators.

Problem (5) has CVaRα in its objective function. The
CVaRα is typically calculated in a scenario-based manner
[14]–[16]. A scenario is a possible realization of random
variables pufc(h), p

d
fc(h), p

u
st(h), p

d
st(h),

∑
i∈M vui (h), and∑

i∈M vdi (h). As we consider the DAM, the historical prices
in the past days from the ISO [18] can be used to generate
the values of the prices pufc(h), p

d
fc(h), p

u
st(h), and pdst(h)

in different scenarios. On the other hand, we assume that
the EVs report possible values of their available capacity to
the aggregator based on historical records of EVs’ charging
sessions. Algorithms for an EV to determine its available
capacity under a given charging session can be found in [3]–
[5], [9], [10]. Let K denote the set of scenarios and |K| as its
cardinality. We use ωk, k ∈ K, to denote an arbitrary scenario.
r(ωk) is the revenue under scenario ωk. We introduce an
auxiliary variable η and rewrite problem (5) as follows [14]

maximize
η, vufc(h),

vdfc(h), h ∈ H

(
(1− β) 1

|K|
∑
k∈K

r(ωk)

+β
(
η − 1

|K|(1− α)
∑
k∈K

(η − r(ωk))+
)) (6a)

subject to constraints (1), (2), and (5b), (6b)

where (x)+ =max(x, 0). Auxiliary variable η represents the
value of VaRα. Hence, the term (η − r(ωk))

+ is the gap
between VaRα and the revenue under scenario ωk, when the
revenue is lower than VaRα. Note that the probability for
the revenue to be lower than VaRα is (1 − α), according to
the definition of VaRα. The expected number of scenarios
with a revenue lower than VaRα is |K|(1 − α). Thus, the
expression 1

|K|(1−α)
∑
k∈K(η−r(ωk))+ is the expected value

of the gap between VaRα and the revenue, when the revenue is
lower than VaRα. Now recall the definition of CVaRα in (4),
i.e., the expected revenue when revenue is lower than VaRα.
Therefore, the term 1

|K|(1−α)
∑
k∈K(η−r(ωk))+ is indeed the

gap between VaRα and CVaRα, i.e., (VaRα−CVaRα). Hence,
η− 1
|K|(1−α)

∑
k∈K(η−r(ωk))+ can be used to replace CVaRα

in (5a).
We introduce auxiliary variables φ(ωk) to represent the

value of (η − r(ωk))+. Problem (6) can be rewritten as

maximize
η, φ(ωk), k ∈ K,
vufc(h), v

d
fc(h),

h ∈ H

(
(1− β) 1

|K|
∑
k∈K

r(ωk)

+β
(
η − 1

|K|(1− α)
∑
k∈K

φ(ωk)
)) (7a)

subject to φ(ωk) ≥ η − r(ωk), k ∈ K, (7b)
φ(ωk) ≥ 0, k ∈ K, (7c)
constraints (1), (2), and (5b). (7d)

Constraints (7b) and (7c) ensure that φ(ωk) ≥ (η− r(ωk))+.
As the objective function (7a) is decreasing with respect to
φ(ωk), the optimal solution of problem (7) is obtained only if
either φ(ωk) = η − r(ωk) or φ(ωk) = 0. Hence, constraints
(7b) and (7c) can be used to ensure φ(ωk) = (η−r(ωk))+ in
problem (7). We study two cases for problem (7) and its chance
constraints (1) and (2). First, when θ = 1, then the right hand
side of constraints (1) and (2) become 0 and the constraints
are always satisfied. However, when θ = 0, i.e., the contract
size is fixed, chance constraints (1) and (2) make problem (7)
difficult to solve. The probabilities in constraints (1) and (2)
are not amenable to an efficient solution and would require an
exhaustive search, and as a result, incur a high computational
complexity. In order to reduce the computational complexity,
we use the Markov inequality and convex approximation
[19] to replace the chance constraints. In particular, a chance
constraint is replaced by a convex constraint such that if the
convex constraint is satisfied, then the chance constraint is also
satisfied. We introduce auxiliary positive variables ζu(h) and
ζd(h), h ∈ H. Then, we obtain the following problem:

maximize
η, φ(ωk), k ∈ K,
vufc(h), v

d
fc(h),

h ∈ H

(
(1− β) 1

|K|
∑
k∈K

r(ωk)

+β
(
η − 1

|K|(1− α)
∑
k∈K

φ(ωk)
)) (8a)

subject to inf
ζu(h)>0

(
E
[(
ζu(h)+vufc(h)−

∑
i∈M

vui (h)
)+]

−
(
1− γu(1− θ)

)
ζu(h)

)
≤ 0, h ∈ H, (8b)

inf
ζd(h)>0

(
E
[(
ζd(h)+vdfc(h)−

∑
i∈M

vdi (h)
)+]

−
(
1− γd(1− θ)

)
ζd(h)

)
≤ 0, h ∈ H, (8c)

constraints (5b), (7b), and (7c). (8d)

In problem (8), constraints (8b) and (8c) are introduced to
replace the chance constraints (1) and (2), respectively.

Proposition 1: If an aggregator selects vufc(h) and vdfc(h)
for hour h ∈ H such that constraints (8b) and (8c) are satisfied,
then chance constraints (1) and (2) are also satisfied.

Proof: Given constraint (8b) is satisfied, we have the
following inequality

P
(
vufc(h)≤

∑
i∈M

vui (h)
)



= 1− P
(
ζu(h) + vufc(h)−

∑
i∈M

vui (h) > ζu(h)
)

≥ 1− P
((
ζu(h) + vufc(h)−

∑
i∈M

vui (h)
)+

> ζu(h)
)

(a)
≥ 1−

E
[(
ζu(h) + vufc(h)−

∑
i∈M vui (h)

)+]
ζu(h)

(b)
≥ 1− (1− γu(1− θ)) = γu(1− θ), (9)

where inequality (a) is due to the Markov inequality. Inequality
(b) is obtained from constraint (8b). From (9), if constraint
(8b) is satisfied, then constraint (1) is satisfied. Similarly, by
replacing vufc(h), v

u
i (h), and γu with vdfc(h), v

d
i (h), and γd in

(9) and repeating the above steps, we can show that constraint
(2) is satisfied when (8c) is satisfied.

As shown in Proposition 1, the solution obtained by solving
problem (8) is in the feasible set of problem (7). In other
words, the objective value of problem (8) is a lower bound
for the optimal value of problem (7). The gap between the
lower bound and the optimal value is studied via simulations.
We found that the gap is less than 4% of the revenue in our
simulation results. Regarding problem (8), tackling constraints
(8b) and (8c) directly may be challenging. Hence, we introduce
auxiliary variables ψu(h,ωk) and ψd(h,ωk), h ∈ H, k ∈ K,
and rewrite problem (8) as

maximize
ζu(h), ζd(h)
η, ψu(h,ωk),

ψd(h,ωk), φ(ωk),

vufc(h), v
d
fc(h),

k ∈ K, h ∈ H

(
(1− β) 1

|K|
∑
k∈K

r(ωk)

+β
(
η − 1

|K|(1− α)
∑
k∈K

φ(ωk)
)) (10a)

subject to
1

|K|
∑
k∈K

ψu(h,ωk)−(1−γu(1− θ))ζu(h) ≤ 0,

h ∈ H, (10b)
1

|K|
∑
k∈K

ψd(h,ωk)−(1−γd(1− θ))ζd(h) ≤ 0,

h ∈ H, (10c)

ψu(h,ωk) ≥ ζu(h) + vufc(h)−
∑
i∈M

vui (h,ωk),

h ∈ H, k ∈ K, (10d)

ψd(h,ωk) ≥ ζd(h) + vdfc(h)−
∑
i∈M

vdi (h,ωk),

h ∈ H, k ∈ K, (10e)

ψu(h,ωk), ψ
d(h,ωk) ≥ 0, h ∈ H, k ∈ K,

(10f)

ζu(h), ζd(h) > 0, h ∈ H, (10g)
constraints (5b), (7b), and (7c), (10h)

where
∑
i∈M vui (h,ωk) and

∑
i∈M vdi (h,ωk) are the aggre-

gate regulation up capacity and regulation down capacity in
hour h under scenario ωk, respectively. Problem (10) is a
linear program which can be solved efficiently. The algorithm
executed by the aggregator to determine the contract size in
the DAM is presented in Algorithm 1.

Algorithm 1 Forward contract algorithm executed by the
aggregator to participate in the DAM

1: Initialize θ, γu, γd, α, β, H, M, K
2: Construct scenarios ωk, k ∈ K, based on historical prices

and EV charging data
3: if θ = 1 then
4: Solve problem (7) to obtain vufc(h) and vdfc(h), h ∈ H
5: else
6: Solve problem (10) to obtain vufc(h) and vdfc(h), h ∈ H
7: end if
8: Submit vufc(h) and vdfc(h) to the ISO in the DAM

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithm with
data collected in the province of British Columbia, Canada
[17]. The data was collected by smart chargers installed in the
province which are capable to send the records of EV charging
sessions to a database via the cellular network. There were
2026 records available for our study. Each record contains
several tags including the EV charger time of plug in, time of
unplug, and the amount of charged energy. These records are
used in our simulation study to mimic the charging sessions
of the EVs. We consider a fleet of 1000 EVs. Each EV has
a battery capacity of 24 kWh [20]. The maximum charging
rate is assumed to be 6.2 kW, which is the typical charging
rate of the smart chargers in the province of British Columbia.
We use the historical prices in Jan. 2015 from NYISO [18].
100 scenarios are generated for our simulation. In this case,
problem (10) has 5097 variables and 7496 constraints and is
solved in 10.35 seconds with a desktop computer which has
a quad-core CPU and 16 GB memory.

We compare with a benchmark algorithm from [13], which
is referred to as the CPC (contract power capacity) algorithm.
We compare with the CPC algorithm because both our pro-
posed algorithm and the CPC algorithm aim to determine the
contract size. The CPC algorithm calculates the contract size
based on the hourly probabilities that EVs are connected with
the power grid. Unless stated otherwise, we set α = 0.8,
β = 0.2, and γu = γd = 0.95 for the proposed algorithm.
We study both cases when θ = 0 and θ = 1. The CPC
algorithm obtains a contract size using a cumulative density
function when θ = 0. We extend the CPC algorithm to
the case when θ= 1 and assume it obtains a contract size
with the expected capacity. Fig. 3 shows the revenue as a
function of the maximum charging rate for the proposed
algorithm and the CPC algorithm. As shown in Fig. 3, our
proposed algorithm achieves a higher revenue compared to the
benchmark CPC algorithm. In particular, when EV chargers
have 6 kW maximum charging rate and θ = 1, the expected
daily revenue r is increased from $141 to $179. Note that
the revenue is calculated according to (3) and we assume
puev(h) = 0.8E(pufc(h)) and pdev(h) = 0.8E(pdfc(h)). The
proposed algorithm outperforms the CPC algorithm for two
reasons. First, the proposed algorithm takes into account the
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Fig. 4. The tradeoff between the expected revenue and the CVaR tuned by
parameter β.

market rules of the forward contract, especially the update
of the contract size in the spot market. Second, the charging
demand and historical charging data are used to model the
capacity of the EVs in the proposed algorithm. In contrast,
the CPC algorithm only considers the hourly probability that
EVs are connected with the power grid.

We also analyze the impact of parameter β on the perfor-
mance of the proposed algorithm. β is an important design
parameter tuned by the aggregator. If the aggregator is risk
neutral, it can set β = 0 to improve its expected revenue. On
the other hand, if the aggregator has risk aversion and intends
to reduce its financial risk, β can be increased. Fig. 4 shows
the expected revenue and the CVaR versus parameter β for
θ = 1. As β increases, the expected revenue decreases while
the CVaR increases, i.e., the financial risk is reduced. In Fig.
4(b), the CVaR decreases as α increases because the CVaR is
the expected revenue in the (1− α) lowest rewarding cases.

V. CONCLUSION

In this paper, we studied the day-ahead forward contract for
the frequency regulation service between an aggregator and
an ISO. The market rules of the ISOs were considered and
two cases were analyzed, namely the case when the contract
size was fixed in the DAM, and the case when an update on
the contract size in the spot market was allowed by the ISO.
We formulated a stochastic optimization problem to determine
the optimal contract size. Risk management was taken into
account via the CVaR. Chance constraints were embedded in

the problem formulation when the contract size was fixed. We
tackled the chance constraints using the Markov inequality
and an efficient algorithm was proposed. Simulation results
showed that the proposed algorithm enables the aggregator to
achieve a higher revenue compared to an existing algorithm
from the literature. For future work, an interesting extension
is to jointly consider the financial forward contract and the
physical constraints of the EVs aggregate charging power.
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