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Abstract—Electric vehicles (EVs) have the potential to provide
frequency regulation service to an independent system operator
(ISO) by changing their real-time charging or discharging power
according to an automatic generation control (AGC) signal.
Recently, the Federal Energy Regulatory Commission has issued
an order to ISOs to introduce a performance-based compensation
paradigm. In this new compensation scheme, the ISOs make pay-
ments to the EVs for providing the frequency regulation capacity
and the real-time dispatch when following the AGC signal. In
this paper, we propose a robust EV frequency regulation (REF)
algorithm to determine the hourly regulation capacity for each
EV considering the randomness of the AGC signal. The pro-
posed REF algorithm is based on a robust optimization problem
formulation. It enables EVs to follow the random AGC signal
reliably and to improve the EV frequency regulation revenue.
Simulation results show that the proposed REF algorithm obtains
a higher revenue compared with a benchmark algorithm from the
literature under a performance-based compensation paradigm.

I. INTRODUCTION

Electric vehicles (EVs) are among the potential candidates
to replace combustion engine vehicles for reducing the emis-
sion of CO

2

and other greenhouse gases. When EVs are
connected with the grid, they can be regarded as energy
storage systems and can be coordinated to provide frequency
regulation service to independent system operators (ISOs),
such as the California ISO (CAISO). Frequency regulation
service helps ISOs keep the utility frequency within an
acceptable range by maintaining the instantaneous balance
between generation and load. The pilot projects in [1], [2]
show that EVs are able to provide frequency regulation service
by following an automatic generation control (AGC) signal
issued by the ISO. Fast ramping resources such as EVs can
reduce the overall frequency regulation capacity requirement
for ISOs and lead to lower costs for ISOs and consumers [3].

The market-based EV frequency regulation service has
received significant attention [4]–[8]. The ISO purchases the
hourly frequency regulation capacity from EVs on the market
and the participating EVs are obliged to follow the AGC
signal and provide hourly regulation capacity. An aggregator
is typically used to serve as an agent between the ISO and the
fleet of EVs. The works in [4]–[6] propose algorithms for the
aggregator to distribute regulation tasks among EVs in real-
time. An EV frequency regulation algorithm is proposed in
[7] for the aggregator to determine the charging schedule of
each EV and the hourly regulation capacity. A unidirectional
frequency regulation algorithm is proposed in [8] for EVs to

provide frequency regulation service by varying the charging
power around a set point. The works in [7], [8] consider
capacity-based frequency regulation compensation, where the
revenue only depends on the frequency regulation capacity.

The Federal Energy regulatory Commission (FERC) issued
Order 755 [9] in Oct. 2011, which requires ISOs to introduce
performance-based compensation for the frequency regulation
service. The ISOs are required to make payments for frequency
regulation capacity and frequency regulation performance.
Performance is evaluated based on the real-time dispatch (i.e.,
changing charging or discharging power around a baseline)
when EVs follow the AGC signal. Performance-based fre-
quency regulation compensation has been implemented by
some ISOs, e.g., the Pennsylvania Jersey Maryland Intercon-
nection (PJM). Considering the trend towards performance-
based compensation, it is desirable that the EVs follow the
random AGC signal reliably to improve their revenue.

Each EV has limited battery capacity. An EV cannot follow
the AGC signal to charge if it is fully charged and it cannot
discharge if its battery is depleted. The challenge of using EVs
to provide reliable frequency regulation service has caught
the attention in both the academia [10], [11] and ISOs [2].
The works in [2], [10], [11] focus on designing a special
AGC signal for which the regulation up and regulation down
components are almost identical for each hour. As stated in
[11], the AGC signal approach is only applicable for ISOs
which request EVs to have the same amount for regulation
up and regulation down capacity, such as PJM. However, this
approach is difficult to apply for ISOs which have separate
regulation up and regulation down markets, such as CAISO
and Electric Reliability Council of Texas (ERCOT). In those
markets, the EVs may have different regulation up and reg-
ulation down capacity and the AGC signal approach cannot
be applied. On the other hand, it is desirable to provide
reliable EV frequency regulation service in order to improve
the performance-based frequency regulation revenue.

In this paper, we tackle the above issue and propose a robust
design of the EV frequency regulation service by taking into
account the randomness of the AGC signal. The contributions
of this paper are as follows:

• We propose a robust EV frequency regulation (REF) algo-
rithm to improve the revenue of EVs for performance-
based compensation.

• We use robust optimization approach to formulate an EV



frequency regulation problem. We transform the formu-
lated combinatorial optimization problem into a linear
program based on duality.

• We evaluate the performance of the proposed REF algo-
rithm with a historical AGC signal from PJM. A com-
parison with the benchmark OptMaxReg algorithm in [8]
shows that the proposed REF algorithm improves the
performance-based frequency regulation revenue.

This paper is organized as follows. We introduce the system
model in Section II. We present the problem formulation
and the REF algorithm in Section III. Numerical results are
presented in Section IV. Conclusions are given in Section V.

II. SYSTEM MODEL

The considered EV frequency regulation scheme is illus-
trated in Fig. 1. A two-way communication system is im-
plemented to enable information exchange between the ISO,
aggregator, and EVs. The aggregator coordinates the EVs to
provide frequency regulation service to the ISO. First, the
aggregator aggregates the hourly frequency regulation capacity
of the EVs. The ISO purchases the hourly capacity and the
aggregator enters into a contract with the ISO to provide
frequency regulation service. During operation, the aggregator
retrieves the AGC signal from the ISO every few seconds
(e.g., 2-6 seconds, depending on the ISO’s requirement) and
broadcasts the AGC signal to EVs. The EVs are obliged to
provide frequency regulation service by changing their real-
time charging or discharging power based on the AGC signal.

We denote the operation hours by H = {1, . . . , H}. The set
of EVs is denoted by N = {1, . . . , N}. Each EV i 2 N has a
baseline charging power xi(h), regulation up capacity vui (h),
and regulation down capacity vdi (h) for each hour h 2 H. The
aggregator determines the values of xi(h), vui (h), and vdi (h)
to maximize the frequency regulation revenue.

The AGC signal is generated by the ISO according to the
real-time unbalance between generation and load in the grid.
The AGC signal is updated in short intervals. We divide one
hour into multiple time slots. Each time slot corresponds to
the duration of one interval of the AGC signal, e.g., one time
slot lasts 4 seconds for PJM. Let T = {1, . . . , T} denote the
set of time slots in one hour, i.e., the duration of one time slot
of the AGC signal is 1

T . The AGC signal in time slot t 2 T
of hour h 2 H is denoted by q(h, t) 2 [−1, 1].

The AGC signal indicates the amount by which EV i 2 N
should increase or decrease its charging power, compared to
the baseline charging power xi(h). A negative AGC signal
(i.e., q(h, t) < 0) indicates the power generation in the grid is
lower than the load. EV i provides regulation up by multiply-
ing the AGC signal with its regulation up capacity vui (h) and
decreasing the charging power accordingly. A positive AGC
signal (i.e., q(h, t) > 0) indicates the generation is higher
than the load in the grid. EV i provides regulation down by
multiplying the AGC signal with its regulation down capacity
vdi (h) and increasing the charging power accordingly. Note
that for chargers that comply with the Society of Automotive
Engineers (SAE) J1772 standard [12], EVs are able to change
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Fig. 1. The block diagram for EVs to provide frequency regulation service
by following an AGC signal from the ISO. The AGC signal is generated by
the ISO in real-time and is random.

their charging power by adjusting the pilot signal duty cycle
[4]. We analyze the AGC signal on an hourly basis as ISOs
typically purchase the hourly capacity. We denote the hourly
regulation up component and the hourly regulation down
component of the AGC signal within hour h by fu

(h) and
fd

(h), respectively. We have

fu
(h) =

1

T

X

t2T
[−q(h, t)]

+

, (1)

fd
(h) =

1

T

X

t2T
[q(h, t)]

+

, (2)

where [x]
+

= max{x, 0}. Let ei(h) denote the charged energy
for EV i within hour h. Then, for EV i 2 N , hour h 2 H,
ei(h) can be represented as

ei(h) =
1

T

X

t2T

�
xi(h)−vui (h) [−q(h, t)]

+

+vdi (h) [q(h, t)]
+

�

= xi(h)− vui (h)f
u
(h) + vdi (h)f

d
(h). (3)

The terms vdi (h)f
d
(h) and vui (h)f

u
(h) represent the charged

and discharged energy due to following AGC signal during
hour h, respectively. Note that we assume EV i needs to follow
the AGC signal in every time slot because EV is a fast ramping
resource and it has a zero lost opportunity cost [10], [13].

The performance-based compensation paradigm comprises
payments of two parts. The first part of payment is the
reward for providing the regulation up and regulation down
capacity. The ISO pays pu(h) to each EV for providing
regulation up capacity and price pd(h) for providing regulation
down capacity at hour h. The second part of payment is
performance related. The performance is typically evaluated
based on the real-time dispatch when EVs follow the AGC
signal. We denote the performance price (e.g., the regulation
market performance clearing price (RMPCP) in PJM) at hour
h as pp(h). Let mu

(h) and md
(h) denote the summation of

absolute changes of the regulation up and regulation down
components of the AGC signal, respectively. We have

mu
(h) =

X

t2T

��� [−q(h, t)]
+ − [−q(h, t− 1)]

+

���, h 2 H, (4)

md
(h) =

X

t2T

��� [q(h, t)]+ − [q(h, t− 1)]

+

���, h 2 H, (5)

where |x| denotes the absolute value of x. The payment for the
performance at hour h is based on the performance price and



the summation of absolute changes of the real time charging or
discharging power [13]. We assume the communication links
between the ISO, aggregator, and EVs are reliable. If EV i
follows the AGC signal at hour h, it receives a payment based
on the performance as follows

pp(h)
X

t2T

���
�
xi(h)− vui (h) [−q(h, t)]

+

+ vdi (h) [q(h, t)]
+

�

−
⇣
xi(h)− vui (h) [−q(h, t− 1)]

+

+ vdi (h) [q(h, t− 1)]

+

⌘ ���

= pp(h)
X

t2T

⇣
vui (h)

��� [−q(h, t)]
+ − [−q(h, t− 1)]

+

���

+ vdi (h)
��� [q(h, t)]+ − [q(h, t− 1)]

+

���
⌘

= pp(h)
�
vui (h)m

u
(h) + vdi (h)m

d
(h)

�
. (6)

EVs have to pay for charging energy from the grid. We
denote the price for energy charging at hour h by pe(h). Note
that ISOs typically calculate revenue on an hourly basis. Let
ri(v

u
i (h), v

d
i (h), xi(h)) represent the revenue for EV i at hour

h. It can be written as

ri(v
u
i (h), v

d
i (h), xi(h)) = pu(h)vui (h) + pd(h)vdi (h)

+ pp(h)
�
vui (h)m

u
(h) + vdi (h)m

d
(h)

�
1i,h

− pe(h)
�
xi(h)− vui (h)f

u
(h) + vdi (h)f

d
(h)

�
. (7)

The first term on the right hand side of (7) is the payment
for capacity, whereas the second term is the payment for
performance, and the third term is the cost for charging energy.
1i,h is an indicator function which is equal to 1 when EV i
follows the AGC signal in hour h, and is equal to 0 otherwise.

The limited battery capacity is a challenge for EVs to follow
the AGC signal reliably. EVs cannot follow the AGC signal
to charge when it is fully charged and it cannot discharge
when its battery is depleted. EVs may fail to follow the AGC
signal occasionally because the randomness of the AGC signal
regulation up and regulation down components (fu

(h) and
fd

(h)) can lead to an uncertain charged or discharged energy,
see (3). We studied the statistical joint distribution of fu

(h)
and fd

(h), i.e., P(fu
(h), fd

(h)), by analyzing the AGC signal
data from PJM [14], for the period from January 1, 2012 to
March 31, 2012. The results in Fig. 2 show that fu

(h) and
fd

(h) may deviate significantly from their expected values. In
the next section, we use robust optimization to determine the
hourly regulation capacity which enables EVs to follow the
AGC signal reliably (i.e., 1i,h = 1).

III. ROBUST EV FREQUENCY REGULATION

In this section, a robust EV frequency regulation algorithm
is proposed. The algorithm aims to obtain a reliable solution
of vui (h), v

d
i (h), and xi(h) to enable EVs to follow the AGC

signal reliably. In particular, we use the robust optimization
approach [15], [16] to analyze the cases when the unknown
parameters fu

(h) and fd
(h) change adversely (i.e., take

values such that EVs tend to miss the AGC signal) within
0  fu

(h)  ⇣u, 0  fd
(h)  ⇣d. Constants ⇣u, ⇣d 2 [0, 1]

represent the maximum value of the AGC signal regulation up
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Fig. 2. Joint distribution of the hourly regulation up component and the
hourly regulation down component of an AGC signal. The distribution is
obtained by analyzing the AGC signal data for 2,160 hours from [14]. There
are two types of AGC signals in [14] and this figure is obtained by analyzing
the RegA signal. The figure shows the randomness of the regulation up
component and regulation down component. Note the distribution can be
different for other AGC signals. Our approach is applicable to any distribution.

component and regulation down component, respectively. ⇣u

and ⇣d can be selected based on the historical AGC data.
An integer parameter ⌘ 2 {0, 1, . . . , H} is introduced to

adjust the level of robustness. We aim to find a solution
which enables EVs to follow AGC signal reliably when the
unknown parameters fu

(h) and fd
(h) change adversely in

at most ⌘ hours and take expected values in other hours.
Note that the worst case of the unknown parameters (e.g.,
fu

(h) = ⇣u, fd
(h) = 0) does happen for certain hours and

our approach has no compromise on the range in which the
unknown parameters change. However, it is unlikely that the
AGC signal will have the worst case consecutively in all
operation hours. If we set ⌘ = H , we are considering the
case where the AGC signal changes adversely in all operation
hours, which may lead to a conservative solution. On the other
hand, if we set ⌘ = 0, the randomness of the AGC signal is
ignored and the solution is unreliable. Therefore, parameter ⌘
is introduced to enable EVs follow the AGC signal reliably
without making the solution conservative.

Let ⌧ represent an arbitrary hour in set {1, . . . , h}. We use S
to denote the set for the hours when the unknown parameters
fu

(⌧) and fd
(⌧) change adversely. The cardinality of set S

is denoted by |S|. The expected value of fu
(⌧) and fd

(⌧) are
denoted by µu and µd, respectively. We consider two cases for
the uncertain parameters fu

(⌧) and fd
(⌧). In the first case,

fu
(⌧) and fd

(⌧) change adversely (fu
(⌧) = 0, fd

(⌧) = ⇣d)
to increase the state of charge (SOC) of EVs at the end of hour
h. Let si(0) denote the initial SOC of EV i at the beginning
of operation hours. We denote the battery capacity of EV i as
Bi. We assume the charging efficiency for both charger and
battery is close to one. We have the following constraint

si(0) + max
n

S✓{1,...,h}
�� |S|⌘

o

1

Bi

X

⌧2S

�
xi(⌧)−vui (⌧)0+vdi (⌧)⇣

d
�

+

1

Bi

X

⌧2{1,...,h}\S

�
xi(⌧)− vui (⌧)µ

u
+ vdi (⌧)µ

d
�  1, (8)

where {1, . . . , h} \S represents the relative complement of
set S with respect to set {1, . . . , h}, i.e., the hours when
the unknown parameters fu

(⌧) and fd
(⌧) take expected

values. The operator max
{S✓{1,...,h}| |S|⌘}

will select at most ⌘



hours from set {1, . . . , h}. In the selected hours ⌧ 2 S, the
unknown parameters fu

(⌧) and fd
(⌧) change adversely (i.e.,

fu
(⌧) = 0, fd

(⌧) = ⇣d) to increase the SOC of EV i, see
the first term following the max in (8). In other hours (i.e.,
⌧ 2 {1, . . . , h}\S), the unknown parameters fu

(⌧) and fd
(⌧)

take the expected values, see the last term on the left hand side
of (8). Constraint (8) can be equivalently written as

si(0) +
1

Bi

hX

⌧=1

⇣
xi(⌧)− vui (⌧)µ

u
+ vdi (⌧)µ

d
⌘

− 1

Bi
min�

S✓{1,...,h}
�� |S|⌘

 
X

⌧2S

⇣
− vui (⌧)µ

u

+ vdi (⌧)(µ
d − ⇣d)

⌘
 1, i 2 N , h 2 H.

(9)

Eq. (9) is obtained by adding component
1

Bi

P
⌧2S

�
xi(⌧)− vui (⌧)µ

u
+ vdi (⌧)µ

d
�

on the last term of
left hand side in (8) and removing the same component on
the first term after max.

In the second case, the unknown parameters change ad-
versely (i.e., fu

(⌧)=⇣u, fd
(⌧)=0) to reduce the SOC of EV.

The following constraint to keeps the SOC to be above zero

si(0) +
1

Bi

hX

⌧=1

⇣
xi(⌧)− vui (⌧)µ

u
+ vdi (⌧)µ

d
⌘

+

1

Bi
min�

S✓{1,...,h}
�� |S|⌘

 
X

⌧2S

⇣
vui (⌧)(µ

u − ⇣u)

− vdi (⌧)µ
d
⌘
≥ 0, i 2 N , h 2 H.

(10)

Constraints (9) and (10) confine the SOC of EV i to be within
[0, 1] at the end of hour h. Note the SOC within hour h is
bounded by the SOC at the end of hour in the considered cases
when the unknown parameters change adversely. Hence, in this
paper, we use constraints (9) and (10) to enable EVs follow
AGC signal reliably (i.e., 1i,h = 1). We denote the expected
value of mu

(⌧) and md
(⌧) as λu and λd, respectively. We

formulate a robust EV frequency regulation problem as follows

maximize
vu
i (h), v

d
i (h), xi(h),

i 2 N , h 2 H

X

h2H

X

i2N

⇣
E(pu(h))vui (h) + E(pd(h))vdi (h)

+ E(pp(h))(vui (h)λu
+ vdi (h)λ

d
)

− E(pe(h))
�
xi(h)− vui (h)µ

u
+ vdi (h)µ

d
� ⌘

(11a)
subject to xi(h) + vdi (h)  Emax

i , i 2 N , h 2 H, (11b)
xi(h)− vui (h) ≥ Emin

i , i 2 N , h 2 H, (11c)
vui (h), v

d
i (h) ≥ 0, i 2 N , h 2 H, (11d)

si(0) +
1

Bi

di−1X

⌧=1

⇣
xi(⌧)− vui (⌧)µ

u
+ vdi (⌧)µ

d
⌘

≥ sdi , i 2 N , (11e)
Constraints (9) and (10). (11f)

The objective function (11a) represents an upper bound of
the expected aggregate revenue of EVs. An upper bound is
considered because using (7) as the objective function leads
to an untractable problem. Note the upper bound is close
to the expected revenue as we use constraints (9) and (10)
to ensure 1i,h = 1 in most cases. The gap between the

upper bound and the expected revenue can be rewritten as
(1 − P(1i,h))E(pp(h))(vui (h)λu

+ vdi (h)λ
d
), where P(1i,h)

represents the probability for 1i,h = 1. Our simulation results
show the gap is a small value when we choose ⌘ > 0 to
improve robustness (e.g., the gap is less than 3% of the
optimal value when ⌘ = 1). The gap decreases when we
choose ⌘ to be a larger value. We consider the case when the
aggregator aims to maximize the aggregate revenue of EVs in
the objective function (11a) and keeps a percentage (e.g., 10%)
of the aggregate revenue. E(pu(h)), E(pd(h)), E(pp(h)), and
E(pe(h)) in (11a) represent the expected price for regulation
up capacity, regulation down capacity, regulation performance,
and charged energy at hour h. We consider the expected
values in the objective function because the uncertainty in the
revenue does not affect whether EVs follow the AGC signal
reliably or not. Constraints (11b) and (11c) guarantee that the
real-time charging power of EV i in hour h is within the
maximum and minimum charging power of EV i. Emax

i and
Emin

i represent the maximum and minimum charging power of
EV i, respectively. Constraint (11d) guarantees the frequency
regulation capacities are non-negative values. Constraint (11e)
depicts the charging demand of EV i. di and sdi represent the
expected departure hour and the expected SOC for EV i upon
departure, respectively. We assume EV i is connected to the
grid from the beginning of operation hours until di. The values
of sdi and di are set by EV owners.

Problem (11) is a non-convex combinatorial optimiza-
tion problem because constraints (9), (10) have non-
convex components. We first analyze constraint (9). The
optimal value of the non-convex component of (9)

min�
S✓{1,...,h}

�� |S|⌘
 
P

⌧2S
�−vui (⌧)µ

u
+ vdi (⌧)(µ

d − ⇣d)
�

is

equivalent to the optimal value of the following problem [16]

minimize
w⌧ , ⌧ 2 {1, . . . , h}

X

⌧2H
w⌧

⇣
− vui (⌧)µ

u
+ vdi (⌧)

�
µd − ⇣d

� ⌘

(12a)
subject to 0  w⌧  1, ⌧ 2 {1, . . . , h}, (12b)X

⌧2H
w⌧  ⌘, (12c)

where w⌧ 2 [0, 1] for ⌧ 2 {1, . . . , h} are variables in problem
(12). vui (⌧) and vdi (⌧) take arbitrary finite values. Problem
(12) is a linear program which is both feasible (e.g., w⌧ =

0, ⌧ 2 H) and bounded (e.g.,
P

⌧2{1,...,h} min{−vui (⌧)µ
u
+

vdi (⌧)(µ
d−⇣d), 0} is a lower bound of the objective function).

From strong duality, the optimal values of problem (12) and
its dual problem are the same. The dual problem of (12) can
be written as

maximize
y⌧ , ⌧ 2 {1, . . . , h}, z

−z⌘ −
X

⌧2{1,...,h}
y⌧ (13a)

subject to y⌧ + z ≥ vui (⌧)µ
u − vdi (⌧)

�
µd − ⇣d

�
,

⌧ 2 {1, . . . , h}, (13b)
y⌧ , z ≥ 0, ⌧ 2 {1, . . . , h}, (13c)

where y⌧ and z are dual variables for constraints (12b) and



(12c), respectively. Now we replace the non-convex compo-
nents in constraint (9) with the objective function in problem
(13) and add all constraints in (13) to problem (11). We
use a similar approach to convert the non-convex component
in constraint (10) in three steps. First, we convert the non-
convex components in constraint (10) into a linear program by
substituting

�−vui (⌧)µ
u
+ vdi (⌧)(µ

d − ⇣d)
�

in problem (12)
with vui (⌧)(µ

u − ⇣u)− vdi (⌧)µ
d. Then, we convert the linear

program obtained in the first step into its dual problem by
substituting

�−vui (⌧)µ
u
+ vdi (⌧)(µ

d − ⇣d)
�

in problem (13)
(the substitution is the same as in the first step). Finally, we
substitute the non-convex component in constraint (10) with
the objective function of the dual problem obtained in the
second step and add the constraints of the dual problem to
problem (11). We have the following problem

maximize
vu
i (h), v

d
i (h), xi(h),

z1
i,h, z

2
i,h,

y1
i,h(⌧), y

2
i,h(⌧)

i 2 N , (h, ⌧) 2 {(h, ⌧)
| h 2 H, ⌧ 2 {1, . . . , h}}

X

h2H

X

i2N
vui (h)

�
pu(h)+pp(h)λu

+pe(h)µu
�

+ vdi (h)
�
pd(h)+pp(h)λd−pe(h)µd

�

− xi(h)p
e
(h)

(14a)

subject to si(0) +
1

Bi

hX

⌧=1

⇣
xi(⌧)− vui (⌧)µ

u
+ vdi (⌧)µ

d
⌘

+

1

Bi

⇣
z1i,h⌘ +

hX

⌧=1

y1i,h(⌧)
⌘
 1, i 2 N , h 2 H,

(14b)

z1i,h + y1i,h(⌧) ≥
⇣
vui (⌧)µ

u − vdi (⌧)(µ
d − ⇣d)

⌘
,

i 2 N , (h, ⌧) 2 {(h, ⌧) | h 2 H, ⌧ 2 {1, . . . , h}},
(14c)

si(0) +
1

Bi

hX

⌧=1

⇣
xi(⌧)− vui (⌧)µ

u
+ vdi (⌧)µ

d
⌘

− 1

Bi

⇣
z2i,h⌘ +

hX

⌧=1

y2i,h(⌧)
⌘
≥ 0, i 2 N , h 2 H,

(14d)

z2i,h + y2i,h(⌧) ≥
⇣
vui (⌧)(⇣

u − µu
) + vdi (⌧)µ

d
⌘
,

i 2 N , (h, ⌧) 2 {(h, ⌧) | h 2 H, ⌧ 2 {1, . . . , h}},
(14e)

z1i,h, z
2

i,h, y
1

i,h(⌧), y
2

i,h(⌧) ≥ 0, i 2 N ,

(h, ⌧) 2 {(h, ⌧) | h 2 H, ⌧ 2 {1, . . . , h}}, (14f)
Constraints (11b)-(11e), (14g)

where (z1i,h, y
1

i,h(⌧)) and (z2i,h, y
2

i,h(⌧)) are dual variables
corresponding to the non-convex components in constraints
(9) and (10), respectively. Linear constraints (14b) and (14d)
replace the non-convex constraints (9) and (10) by substituting
the combinatorial optimization components with the corre-
sponding linear dual problems. Constraints (14c) and (14e) are
obtained from the constraints in the dual problems. Problem
(14) is a linear program and can be solved efficiently.

The robust EV frequency regulation (REF) algorithm is
presented in Algorithm 1. In the algorithm, the aggregator first

initializes the parameters and then solves problem (14). The
results are sent to each EV and the aggregate results are sent
to the ISO.

Algorithm 1 REF algorithm executed by the aggregator at the
beginning of operation hours

1: Initialize ⌘,N ,H, p

e(h), pu(h), and p

d(h), h 2 H
2: Collect sdi , di, si(0), E

max

i , E

min

i , and Bi from each EV i 2 N
3: Solve problem (14) to obtain v

u
i (h), v

d
i (h), and xi(h), h 2 H

for each EV i 2 N
4: Send v

u
i (h), v

d
i (h), and xi(h) to each EV i 2 N and reportP

i2N v

u
i (h),

P
i2N v

d
i (h), and

P
i2N xi(h), h 2 H to the ISO

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
REF algorithm under the historical record of the AGC signal
from PJM. We conducted a statistical analysis of the historical
AGC signal data record [14] and obtained the parameters
⇣u=0.473, ⇣d=0.483, µu

=0.116, µd
=0.113, λu

=13.852,
and λd

= 13.805. We compare our proposed REF algorithm
with the OptMaxReg algorithm from [8]. The OptMaxReg
algorithm assumes parameters fu

(h) and fd
(h) take expected

values and neglects their uncertainty. The performance-based
frequency regulation prices are obtained from [14], [17].
The average price over the operation period for the hourly
energy consumption pe(h), regulation up capacity pu(h),
regulation down capacity pd(h), and the performance pp(h)
are $42.4/megawatt per hour (MWh), $4.9/MWh, $7.2/MWh,
and $3.2/MWh, respectively.

We consider a fleet of 100 EVs. Each EV is connected with
a bidirectional level-2 charger. The maximum charging power
is 3.3 kW. EVs are able to discharge power to the grid. Note
that the battery capacity of EV may vary from several kWh
(e.g., 4.4 kWh for a Toyota Prius) to tens of kWh (e.g., 20 kWh
for a Honda Fit). We assume the battery capacity is 12 kWh
for simulation purposes. We consider an overnight charging
case where EVs charges in the night and is used for driving
on the next day. EV’s charging deadline di is generated based
on the 2009 national household travel survey [18].

For performance metrics, we determine the revenue and
reliability of EV frequency regulation service by testing the
algorithm outputs (i.e., xi(h), v

u
i (h), v

d
i (h)) with the historical

AGC signal. The EVs receive the payment for their perfor-
mance if they follow the AGC signal in hour h. If an EV i fails
to follow the AGC signal in hour h, its frequency regulation
capacity in hour h is regarded as forced derated [19] (i.e., the
capacity from EV i is discarded by the aggregator in hour
h). We denote Di as the set of hours when the frequency
regulation capacity from EV i is forced derated. The reliability
of EV frequency regulation service is evaluated by 1− EFDH

H
[11], [20], where the equivalent forced derated hours (EFDH)
is [19]

EFDH =

P
i2N

P
h2Di

(vui (h) + vdi (h))
1

H

P
i2N

P
h2H(vui (h) + vdi (h))

.
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Fig. 3. The reliability and revenue with respect to parameter ⌘. We choose
⌘ = 1 for our proposed algorithm and ⌘ = 2 for the benchmark algorithm.
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Fig. 4. Comparison of the proposed REF algorithm with OptMaxReg
algorithm [8] under performance-based compensation.

Fig. 3 shows the revenue and reliability for the pro-
posed REF algorithm. We compare with a benchmark ro-
bust algorithm, which considers the case when fu

(h) and
fd

(h) change adversely in
⇥
µu− ⌘

Hµu, µu
+

⌘
H (⇣u−µu

)

⇤
,⇥

µd− ⌘
Hµd, µd

+

⌘
H (⇣d − µd

)

⇤
for all hours. As shown in the

figure, both the revenue and reliability improve as ⌘ increases
at the beginning because EVs earn more revenue for the
performance (i.e., 1i,h = 1 for more hours). When ⌘ further
increases, the revenue decreases as the obtained solution is
more conservative which leads to lower revenue for the capac-
ity. Our proposed REF algorithm outperforms the benchmark
robust algorithm. Our proposed REF algorithm selects ⌘= 1

to have 97% reliability and $224 frequency regulation revenue
for each day. The benchmark robust algorithm selects ⌘=2 to
achieve $192 revenue with 94% reliability. Note the revenue
is obtained from (7). For the proposed REF algorithm, the gap
between the revenue (7) and the considered objective function
(11a) is $2.13 when ⌘=1.

We compare the proposed REF algorithm with the bench-
mark robust algorithm, and the OptMaxReg algorithm [8] in
Fig. 4. The figure reveals that the proposed REF algorithm
outperforms the OptMaxReg algorithm [8] with a higher rev-
enue under performance-based compensation. This is because
the proposed algorithm enables EVs to follow the AGC signal
reliably and to earn more revenue for performance.

V. CONCLUSION

In this paper, we proposed a robust EV frequency regu-
lation algorithm to improve revenue under performance-based
compensation. A robust optimization problem is formulated to
enable EVs to follow the AGC signal reliably. We transformed

the formulated combinatorial optimization problem into a
linear program based on the duality. We performed numerical
experiments on the historical record of the AGC signal from
PJM. Simulation results show that our proposed algorithm
achieves a higher revenue compared with a benchmark algo-
rithm from the literature. For future work, an interesting topic
is the extension of the proposed algorithm to the case when
the mobility behavior of EV is unknown.
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