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Abstract—Predictive analysis on cellular traffic is important
for the control and monitoring of wireless networks. Cellular
traffic prediction is a challenging problem due to the non-
stationarity and dynamic spatial-temporal correlation of the
traffic. In this paper, we address the problem of accurate
traffic prediction in a base station by proposing a deep neural
network called RAConv. Its structure includes residual network,
attention mechanism, and deep convolutional network. In the
proposed architecture, a deep 3D residual convolutional network
(ResConv3D) with three residual blocks are employed to learn the
local spatial-temporal features. An attention-aided convolutional
long short-term memory network (AConvLSTM) is then used
to capture the long-term spatial-temporal dependencies. The use
of the attention modules enable the network to focus on the
most important spatial-temporal information. We evaluate the
performance of the proposed RAConv network using a dataset
provided by a Canadian wireless service provider. We consider
the traffic prediction on two time scales (i.e., hourly and daily),
which exhibit different spatial-temporal dependency patterns.
Experimental results show that the proposed RAConv network
can achieve accurate prediction under both time scales. Results
also show that our proposed network provides a lower root-mean-
square error (RMSE) than the conventional ConvLSTM baseline
scheme.

I. INTRODUCTION

The fifth generation (5G) wireless systems support different
use cases with diverse quality of service (QoS) requirement.
It is important for the wireless service providers to allocate
and utilize the network resources efficiently. Both resource
allocation and energy management in wireless communication
systems require accurate traffic analysis and prediction. By
proactively estimating the future traffic load, wireless service
providers can dynamically allocate network resources and
improve the spectral and energy efficiencies.

It is challenging to predict cellular traffic at fine granularity
due to the time-varying and load-dependent traffic dynamics
[1]. In particular, the traffic demand depends on many factors
such as time of the day (e.g., rush hour vs. off-peak hour,
weekday vs. weekend), special events, and public holidays.
The cellular traffic load is also location dependent. The load at
different base stations can vary significantly due to user behav-
ior and QoS requirement from different use cases. Moreover,
user mobility introduces spatial dependencies in the traffic data
between neighboring base stations. The aforementioned factors
have collective effect among base stations and complicate the
spatial-temporal dependency of cellular traffic.

Various types of data-driven based traffic prediction ap-
proaches have recently been proposed in the literature. The
works in [2] and [3] use long short-term memory (LSTM)
networks for traffic load prediction, where LSTM is able
to capture the long-term temporal dependency. The con-
volutional neural networks (CNNs) are proposed in [4] to
analyze the spatial-temporal features for traffic prediction.
A hybrid deep learning model is proposed in [5], which
includes a stacked autoencoder structure for spatial feature
extraction and an LSTM for temporal feature modeling. The
convolutional LSTM (ConvLSTM) network has been proposed
in [6] to capture spatial and temporal relationships. In [7],
a spatial-temporal neural network is proposed for mobile
traffic forecasting. The proposed architecture consists of a
ConvLSTM and a 3D convolutional (Conv3D) neural network
to encode the spatial-temporal features, followed by fully-
connected layers to predict future cellular traffic. In [8],
generative adversarial network (GAN) is utilized for traffic
prediction, where CNN and LSTM are embedded into the
GAN to analyze the spatial-temporal correlations. In [9], a
transformer network is proposed where two transformer blocks
are constructed for spatial and temporal features extraction.
In [10] and [11], the cross-domain data, e.g., information
from point of interests distribution, are utilized to improve the
prediction accuracy. In [12] and [13], side information, such
as weather condition, is adopted to enhance traffic prediction
performance.

Most of the aforementioned works study the grid-based
traffic data, where the coverage area is divided into multiple
grids. Although the grid-based approach can simplify the
analysis, it may not accurately capture the spatial dependen-
cies of the traffic across all the base stations. In order to
predict the dynamic traffic pattern in a base station, it is
crucial to capture both the local short-term and long-term
spatial-temporal characteristics. In this paper, we propose a
Residual network and Attention mechanism embedded deep
Convolutional (RAConv) network to efficiently learn the local
and long-term spatial-temporal dependencies. The main con-
tributions of this paper are summarized as follows:
• By using a dataset collected from a wireless service

provider in Canada, we analyze the spatial-temporal
dependency under different time scales (i.e., on hourly
and daily basis). To capture the spatial pattern similarity



of cellular traffic in different areas, a spectral clustering
algorithm is proposed to assign the base stations into
different groups.

• We propose an RAConv network for accurate traffic
prediction. The first part of the RAConv network is a
deep 3D residual convolutional (ResConv3D) network
with three residual blocks to learn the local spatial-
temporal features. Then, an attention mechanism [14]
aided ConvLSTM network (AConvLSTM) is proposed to
learn the long-term spatial-temporal dependencies of the
traffic demands. The use of the attention modules enable
the network to focus on the most important spatial-
temporal information.

• We evaluate the proposed traffic prediction algorithm.
Hourly and daily traffic predictions are considered. Ex-
perimental results illustrate that the proposed RAConv
network can achieve accurate predictions under both time
scales. Moreover, results show that the proposed RAConv
network has a lower root-mean-square error (RMSE)
than the ConvLSTM baseline scheme.

The rest of this paper is organized as follows. Section II
describes the dataset and presents an analysis on its spatial
and temporal dependencies. Section III presents the proposed
RAConv network for accurate traffic prediction. Section IV
presents the performance comparison between the proposed
network and a baseline scheme. Conclusions are drawn in
Section V.

II. DATASET DESCRIPTION AND ANALYSIS

In this section, we introduce the cellular traffic dataset con-
sidered for evaluation in this work. The spatial and temporal
dependencies of the traffic demands under different time scales
are illustrated.

A. Traffic Dataset Description

The cellular traffic data analyzed in this paper was collected
by a wireless service provider in Canada, Rogers Commu-
nications Inc., from January 1 to June 6, 2020. The traffic
data was collected at each base station every 15 minutes.
The data was collected from 4, 096 base stations in major
cities (e.g., Mississauga, Toronto, Ottawa, Montreal, Quebec
City) located in the provinces of Ontario and Quebec in
Canada, approximately covering an area of 12, 000 km2, with
an average coverage area of 3 km2 of each base station.
To describe the spatial correlation among base stations, we
use a 2D tuple to identify each base station. With a total
of 4, 096 base stations, they can be presented by 64 × 64
2D tuples. Locations of the base stations are shown in the
map given by Fig. 1. In this paper, we consider the traffic
prediction time scale to be either on an hourly or daily basis.
The collected data was aggregated either in each hour or each
day accordingly.

Given a prediction time scale s, where s ∈ {hourly, daily},
the traffic data matrix at the t-th time interval in an area with

Fig. 1. Some of the locations of the base stations in the provinces of Ontario
and Quebec in Canada.

M ×N base stations (where M = N = 64 in our study) can
be expressed as D̂s,t ∈ RM×N :

D̂s,t =


d̂
(1,1)
s,t d̂

(1,2)
s,t · · · d̂(1,N)

s,t
...

...
...

d̂
(M,1)
s,t d̂

(M,2)
s,t · · · d̂(M,N)

s,t

 ,

where d̂
(m,n)
s,t , m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, denotes the

traffic of base station (m,n) at the t-th time interval under
the prediction time scale s. Note that the current wireless
cellular networks do not have a regular grid-based topology,
the tuples (m,n), m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, are
not the coordinates of the base stations. They only reflect the
spatial relationship among base stations (e.g., base stations
(1, 1), (1, 2), (2, 1), and (2, 2) are neighboring base stations
in practical systems, but the physical topology may not form
a grid). The traffic data can be described as a spatial-temporal
sequence D̂s = {D̂s,t | t = 1, 2, . . . , Ts}, where Ts is the total
number of time intervals (e.g., hours or days) under time scale
s. For each base station (m,n), we normalize the traffic data to
be within the range of [0, 1] by using max-min normalization:

d(m,n)
s =

d̂
(m,n)
s −min(d̂

(m,n)
s )

max(d̂
(m,n)
s )−min(d̂

(m,n)
s )

, (1)

where d̂
(m,n)
s = [d̂

(m,n)
s,1 · · · d̂(m,n)

s,Ts
], d

(m,n)
s =

[d
(m,n)
s,1 · · · d(m,n)

s,Ts
], s ∈ {hourly, daily}.

B. Data Analysis

In this subsection, we explore the traffic data dependencies
in both temporal and spatial domains. Our analysis is based
on the number of user requests at each base station. Both the
hourly and daily traffic patterns are evaluated.

1) Temporal dependency analysis: The sample autocorre-
lation function [15], as a function of time lag l, is widely
used for temporal dependency evaluation. The autocorrelation
function for a sequence of data d

(m,n)
s,t , t = 1, . . . , Ts, at base

station (m,n) under time scale s is given by:

r(m,n)
s (l) =

∑Ts−l
t=1 (d
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(m,n)
s )(d
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s )2

,

0 ≤ l < Ts, (2)



(a) Hourly traffic

(b) Daily traffic

Fig. 2. Temporal autocorrelation of (a) hourly traffic and (b) daily traffic.

where d̄
(m,n)
s represents the mean value of the traffic data at

base station (m,n) under time scale s. The autocorrelation
value is between −1 and 1.

As an example, we select a base station located in the city
of Montreal, Canada, to show the temporal dependency. Fig. 2
illustrates the temporal autocorrelation of the hourly and daily
traffic. For hourly traffic in Fig. 2(a), we can observe that the
number of user requests has non-zero autocorrelation in the
temporal domain. The peak points appear regularly when the
time lag is equal to an integer multiple of 24 hours. For daily
traffic in Fig. 2(b), it also exhibits non-zero autocorrelation,
but with peak points appeared when the time lag is an integer
multiple of 7 days. It can be observed that future traffic
can be predicted based on previous observations. In order to
understand the traffic under different time scales, it is critical
to capture the autocorrelation patterns.

2) Spatial Dependency Analysis: Given a pair of base
stations (m,n) and (m′, n′), we use the Pearson correlation
coefficient [16] to model the spatial dependency of the traffic
data. The Pearson correlation coefficient for the traffic data
under time scale s is defined as

ρs =
cov(d

(m,n)
s ,d

(m′,n′)
s )

σ
d

(m,n)
s

σ
d

(m′,n′)
s

, (3)

where cov(·) represents the covariance operation, and σ is the
standard deviation. Note that the Pearson correlation coeffi-
cient is within the range of [−1, 1]. Table I shows the spatial
correlation of the number of user requests among a cluster of
8 neighboring base stations in Montreal, Canada. The upper
triangular part shows the spatial correlation of daily traffic
and the lower triangular part shows the spatial correlation of
hourly traffic. Results in Table I show that there exist non-zero
correlations in a cluster of neighboring base stations. We can
also observe the differences of the spatial correlation pattern
between hourly and daily traffic.

TABLE I
SPATIAL CORRELATION OF A RANDOMLY SELECTED CLUSTER OF 8 BASE

STATIONS. (UPPER TRIANGULAR PART: DAILY TRAFFIC; LOWER
TRIANGULAR PART: HOURLY TRAFFIC)

1 2 3 4 5 6 7 8
1 1.0 0.53 0.55 0.63 0.64 0.48 0.54 0.36
2 0.51 1.0 0.47 0.41 0.46 0.39 0.59 0.42
3 0.49 0.54 1.0 0.49 0.55 0.48 0.64 0.5
4 0.47 0.46 0.46 1.0 0.65 0.46 0.59 0.5
5 0.49 0.53 0.52 0.46 1.0 0.47 0.59 0.52
6 0.44 0.49 0.5 0.39 0.54 1.0 0.48 0.44
7 0.49 0.54 0.52 0.43 0.54 0.57 1.0 0.49
8 0.56 0.52 0.5 0.52 0.44 0.49 0.5 1.0

Results in Fig. 2 and Table I show that the traffic de-
mands are highly spatial-temporal correlated. Moreover, the
correlation varies significantly under different time scales. In
the next section, we present a deep convolutional network
called RAConv. The proposed RAConv network can accurately
capture the local short-term and long-term spatial-temporal
dependencies of the traffic demands.

III. RACONV NETWORK FOR TRAFFIC PREDICTION

Consider a sequence of traffic data over a spatial region
with M ×N base stations. Given a time scale s, the goal of
a traffic forecasting task is to predict the most likely Q-step
sequence of data based on the previous P observations which
include the current interval:

D⋆
s,t+1, . . . ,D

⋆
s,t+Q

= argmax
Ds,t+1,...,Ds,t+Q

p
(
Ds,t+1, . . . ,Ds,t+Q |

Ds,t−P+1, . . . ,Ds,t

)
, (4)

where p(A | B) denotes the conditional probability of A given
B. The sequence of observations Ds,t−P+1, . . . ,Ds,t can be
modeled as a video-like data which has P frames. Similar to
an output sequence, a frame can be modeled as an image,
which represents a traffic snapshot at one time interval (e.g.,
one hour or one day).

A. Base Station Clustering

Since the cellular traffic pattern in different areas may differ
significantly, we propose to group the base stations by using a
spectral clustering algorithm to capture the pattern similarity
of different areas. Given time scale s, we aggregate the traffic
data over all time intervals at base station (m,n):

d(m,n)
s =

Ts∑
t=1

d
(m,n)
s,t , (5)

and we have

Ds =


d
(1,1)
s d

(1,2)
s · · · d(1,N)

...
...

...
...

d
(M,1)
s d

(M,2)
s · · · d

(M,N)
s

 .

Then, we convert the matrix Ds into an adjacency matrix
Gs ∈ RMN×MN , where the weight of an edge corresponds



to the value of the gradient. The Laplacian matrix can be
determined as

Ls = Q
− 1

2
s GsQ

− 1
2

s , (6)

where Qs is a diagonal matrix with the (i, i)-th element equal
to the sum of the i-row of matrix Gs. Next, the K largest
eigenvectors of Ls, i.e., us,1, . . . ,us,K , can be calculated. We
use Us = [us,1 · · ·us,K ] ∈ RMN×K to denote the matrix
containing the eigenvectors as columns. The rows of Us can
be treated as features of the base stations, which are input into
the K-means clustering algorithm to form K clusters. Finally,
the cluster label of each base station can be obtained. After
grouping, the total M × N base stations are clustered into
K groups. The spectral clustering algorithm for base stations
grouping is presented in Algorithm 1.

Algorithm 1 Spectral Clustering Algorithm
1: Input: Aggregate traffic dataset Ds ∈ RM×N under time

scale s, number of clusters K.
2: Construct an adjacency matrix Gs ∈ RMN×MN . The

weights of Gs are the gradients of Ds.
3: Compute the Laplacian matrix Ls based on (6).
4: Compute the first K eigenvectors of Ls, i.e., us,1, us,2,

. . ., us,K . Let Us = [us,1 · · ·us,K ] ∈ RMN×K .
5: For i = 1, . . . ,MN , let rs,i ∈ RK be the i-th row

vector of matrix Us. Cluster the points {rs,i}MN
i=1 based on

K-means clustering algorithm, and construct K clusters
C1

s , . . . , C
K
s .

6: Output: Clusters D1
s, · · · ,DK

s with Dj
s = {rs,i ∈

Cj
s , ∀i = 1, . . . ,MN}, j ∈ {1, . . . ,K}.

B. Proposed RAConv Network

1) ResConv3D Module: 3D convolutions can extract features
of the traffic data in the spatial and temporal domains by using
a 3D kernel. The Conv3D network has been shown to perform
well in capturing local spatial and temporal dependencies [7].
For the plain network shown in Fig. 3(a), there is only one
connection between adjacent layers. The output of a Conv3D
layer is sent to an activation function layer, i.e., the rectified
linear unit (ReLU). As the number of layers increases, training
a network becomes more difficult due to the gradient diffusion
problems. To ease this issue, we use a residual network and
integrate it with the Conv3D network to form a ResConv3D
module. A residual network is illustrated in Fig. 3(b), in which
there is a shortcut connection that can skip one or more
layers. In Fig. 4, we propose and construct a residual block
(ResBlock) by stacking five Conv3D layers. We consider an
identity mapping for the shortcut connection. The kernel size
of each Conv3D layer is 3×3×3 with stride 1×1×1. Batch
normalization is utilized to optimize the networks. The input
and output are 3D tensors with dimension being the length
of the traffic data sequence, the height and width of a base
station cluster.

2) AConvLSTM Module: The structure of an AConvLSTM
cell is illustrated in Fig. 5. We use an AConvLSTM module
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Input x

Input x

x
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mapping ReLU

ReLU
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Output +x y

Conv3D

ReLU

ReLU
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Fig. 3. Illustration of (a) a plain network and (b) a residual network.
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Fig. 4. Structure of the proposed ResBlock with five Conv3D layers.

to extract long-term spatial-temporal features. Conventional
ConvLSTM networks replace the inner dense connections in
LSTM with convolution operations, which can extract both
the long-term temporal and spatial information. Given a T -
sequence of 3D input data X = {X1,X2, . . . ,XT }, the
ConvLSTM operations can be expressed as

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ⊙Ct−1 + bi),

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ⊙Ct−1 + bf),

Ct = ft ⊙Ct−1 + it ⊙ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc),

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ⊙Ct + bo),

Ht = ot ⊙ tanh(Ct),

where ∗ and ⊙ denote the 2D convolution operator and
Hadamard product, respectively. σ(·) is the sigmoid function.
it, ft, Ct, ot, and Ht denote the input gate, forget gate, cell
output, output gate, and hidden state, respectively. They are all
3D tensors. Wxi, Whi, Wci, and bi are the weights and bias
for the input gate, which need to be learned through model
training. Similarly, Wxf, Whf, Wcf, and bf are the weights and
bias associated with the forget gate. Wxc, Whc, and bc are the
weights and bias related to the cell. Wxo, Who, Wco, and bo
are the weights and bias for the output gate. In addition, tanh(·)
is the hyperbolic tangent function. The input-to-state, cell-to-
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Fig. 5. The structure of an AConvLSTM cell.

state, and cell-to-cell transitions are element-wise controlled
by each gate it, ft, and ot, which allow the model to keep
the important information and learn to forget in the spatial-
temporal dimension. This property significantly improves the
models ability to capture the spatial-temporal trends.

To further improve the ability of capturing important spatial-
temporal dependencies, we propose to use an attention mech-
anism [14] and reconstruct the input and output gates. In
particular, we can express the input gate as follows:

Zt = Wi ∗ tanh (Wxi ∗Xt +Whi ∗Ht−1 + bi) , (7)

Aij
t (h) =

exp(Zij
t (h))

max
î,ĵ

exp(Zîĵ
t (h))

, (8)

it = {Aij
t (h) | (h, i, j) ∈ RH×M×N}, (9)

where Wi is a 2D convolutional kernel. The number of
channels is equal to H . At(h) = {Aij

t (h) | (i, j) ∈ RM×N}
denotes a 2D score map for the corresponding channel h,
where h = 1, . . . , H . The term maxî,ĵ exp(Z

îĵ
t (h)) corre-

sponds to the maximum element chosen within the channel
h of Zt. The division by the maximum value ensures that
the attention scores are distributed in the range between zero
and one. The output gate of the ConvLSTM cell can be
reconstructed in a similar manner as the input gate shown in
(7)−(9). By embedding the attention modules into the input
and output gates of ConvLSTM, the network can focus on the
most important spatial-temporal features of the traffic data.

3) RAConv network: By stacking the ResConv3D layers and
AConvLSTM layers, the final RAConv network architecture
is shown in Fig. 6. The proposed network preserves the
advantages of Conv3D as well as ConvLSTM, and can well
extract the local and long-term spatial-temporal dependencies.
Thus, the proposed RAConv network is suitable for dynamic
traffic predictions in wireless cellular systems. During the
training process, the inputs are given by the training samples
which consist of traffic data sequences. The data sequences
will subsequently be processed by a Conv3D layer, three
ResConv3D layers, and two AConvLSTM layers. The output
of the last layer is the final predicted results. The proposed
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BatchNorm

Conv3D

# of channels = 64

ReLU

Fig. 6. Structure of the proposed RAConv network.

network is trained to minimize the loss, which is the error
between the predictions and the ground truth.

IV. PERFORMANCE EVALUATION

In this section, we present experimental results to evaluate
the performance of the proposed RAConv network for traffic
prediction. The evaluation is based on the number of user
requests collected from a Canadian wireless service provider,
Rogers Communications Inc. There are 4, 096 base stations,
which are clustered into 16 groups using Algorithm 1. Each
group consists of 16× 16 spatially correlated base stations1.

We compare the performance of our proposed RAConv
network with the ConvLSTM [6] as a baseline scheme. Fig.
7 compares the predicted traffic demands of RAConv and
ConvLSTM networks with the ground truth at a randomly
selected base station. We consider the number of observations
P to be equal to 8. It needs to make Q = 4 predictions for
future time intervals. The hourly and daily traffic predictions
are presented. It can be observed that the proposed RAConv
network can predict the cellular traffic more accurately than
ConvLSTM network on both hourly and daily basis. Moreover,
results show that even when the traffic dynamics change
rapidly either every hour or every day, the predicted results
from our proposed RAConv network are very close to the
ground truth.

In Fig. 8, we present an image comparison at one time
interval (i.e., one hour or one day) between the ground truth
and predicted results. The results are from a randomly chosen
cluster of base stations. The brightness of a pixel indicates the
traffic load of the corresponding base station. Results from Fig.
8 show that the proposed RAConv network can make more
accurate traffic predictions than the ConvLSTM network.

The root-mean-square error (RMSE) performance is shown
in Fig. 9. The number of prediction steps Q is set to 4. Results
show that when the number of observations P increases, both
RAConv and ConvLSTM networks can utilize the additional
historical information and make better prediction. Thus, the
values of RMSE in both networks decrease. We also observe

1Note that a larger group may contain more spatial information but will
result in higher computational complexity. Considering this trade-off, we
choose the size of each group to be 16× 16.



(a) Hourly traffic prediction (b) Daily traffic prediction

Fig. 7. Comparison of (a) hourly and (b) daily predicted results of RAConv
and ConvLSTM versus the ground truth at a randomly selected base station.

(a) Hourly traffic prediction

(b) Daily traffic prediction

Fig. 8. Performance comparison of the normalized (a) hourly and (b) daily
number of user requests on a randomly selected cluster of 16 × 16 base
stations and a frame.

that the proposed RAConv network outperforms the ConvL-
STM network under different number of observations.

V. CONCLUSION

In this paper, we studied the problem of cellular traf-
fic prediction in wireless cellular networks. We proposed a
RAConv network, which consists of ResConv3D and ACon-
vLSTM modules, to learn the local short-term and long-
term spatial-temporal features. We evaluated the proposed
RAConv network based on a dataset provided by a Canadian
wireless service provider. Experimental results showed that our
proposed RAConv network provided more accurate prediction
when compared with the ConvLSTM network, and achieved
a lower RMSE, on both hourly and daily time scales. In
our current work, the hourly and daily traffic predictions are
determined by separately training multiple networks, where the
knowledge of hourly traffic can actually be utilized for daily
traffic forecasting. For future work, traffic similarity between
different time scales will be employed to further improve the
prediction accuracy.
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(a) Hourly traffic prediction (b) Daily traffic prediction

Fig. 9. RMSE performance comparison of (a) hourly and (b) daily traffic
prediction under different number of observations P . The number of predic-
tion steps Q is equal to 4.
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