
Cooperative ISAC for Localization and Velocity
Estimation Using OFDM Waveforms

in Cell-Free MIMO Systems
Zihuan Wang and Vincent W.S. Wong

Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
email: {zihuanwang, vincentw}@ece.ubc.ca

Abstract—In this paper, we present a cooperative integrated
sensing and communication (ISAC) framework in cell-free
multiple-input multiple-output (MIMO) systems, where multiple
access points (APs), under the control of a central processing
unit (CPU), collaboratively perform target sensing by using the
reflected echo signals. Most of the existing works first estimate the
sensing parameters (e.g., range, angle, relative velocity) observed
by each AP and then use these estimated parameters for sensing
tasks such as localization and velocity estimation. However, this
approach may suffer from performance degradation due to errors
in the estimated parameters. We propose a deep neural network
(DNN)-based scheme to jointly process the echo signals received
across the distributed APs and directly estimate the location
and velocity of the targets. The proposed scheme bypasses the
sensing parameter estimation stage and enhances the sensing
performance. Simulation results show that our proposed scheme
significantly reduces the localization and velocity estimation error
when compared with a state-of-the-art approach.

Index Terms—Cell-free MIMO, cooperative ISAC, localization
and velocity estimation.

I. INTRODUCTION

Future wireless networks are expected to support ubiquitous
communications and pervasive sensing. Integrated sensing and
communication (ISAC) has become a pivotal technology for
achieving this goal [1], [2]. By enabling the integration of both
functions using shared resources, ISAC has demonstrated great
potential in various applications, including Internet of Things
(IoT) and vehicular networks [3], [4]. Orthogonal frequency
division multiplexing (OFDM) is a widely used waveform in
ISAC systems, which can combat frequency-selective fading
and provide high data rates [5]. OFDM waveform also exhibits
Doppler tolerance and do not suffer from range-Doppler
coupling, which makes it suitable for radar sensing [6], [7].

Unlike the conventional OFDM radar systems, where the
transmitted signals do not carry useful information, OFDM
signals used in ISAC systems contain communication data
with specific modulations, which introduce different phase
shifts in the transmitted signals. The impact of communication
data should be taken into consideration when extracting sens-
ing parameters from the reflected echo signals [8], [9]. In [8],
an OFDM-ISAC system is proposed for range-velocity esti-
mation, in which the communication data within the received
echo signals is first compensated. A super-resolution method is
proposed for range and velocity estimation using the compen-
sated results. In [9], the sensing channel frequency response

is first estimated, with the communication information being
removed. A deep learning-based algorithm is applied to extract
the range and relative velocity from the estimated frequency
response. The studies in [8], [9] consider a single-input single-
output (SISO) scenario, whereas in practice, multiple-input
multiple-output (MIMO) architectures are widely employed at
the base station to enhance spectral efficiency through beam-
forming. MIMO architectures provide additional degrees-of-
freedom (DoFs) in the spatial domain, allowing the extraction
of angle-range-velocity parameters of targets from the reflected
echo signals [10], [11].

The aforementioned works consider a single base station
for mono-static sensing, which may result in limited sensing
performance due to restricted spatial diversity. To address
this issue, cooperative multi-static sensing is desired, where
multiple access points (APs) are deployed distributively in
a coverage area to jointly collect multi-view sensing ob-
servations. The APs are connected to a central processing
unit (CPU), which facilitates collaboration between the APs.
In [12], cooperative ISAC in cell-free MIMO systems are
considered. The sensing parameters (e.g., range, angle, rel-
ative velocity) observed by each AP are estimated using a
compressive sensing algorithm. After that, the location and
velocity of the target can be estimated based on the estimated
sensing parameters [13]. However, this approach estimates the
sensing parameters observed at each AP independently, with-
out exploiting the benefits of joint processing across different
APs. Moreover, this approach may suffer from performance
loss because the estimation error of sensing parameters can
degrade the accuracy of the subsequent sensing tasks.

In this paper, we propose a deep neural network (DNN)-
based scheme, which processes the received echo signals
across distributed APs jointly. The developed DNN-based
scheme directly estimates the location and velocity of the
target using the reflected echo signals and bypasses the in-
termediate step of sensing parameter estimation. Simulation
results demonstrate that the proposed DNN-based scheme
provides a better sensing performance when compared with
a state-of-the-art approach from [12].

II. COOPERATIVE ISAC IN CELL-FREE MIMO

Consider a cell-free MIMO system with N transmit APs
and M receive APs. All APs are connected to a CPU via



fronthaul links and they are fully synchronized. We consider
there are K single-antenna communication users and Q point-
like targets to be sensed in the area of interest. We consider
the transmit and receive APs are equipped with uniform planar
arrays (UPAs). For a half-wavelength-spaced UPA, the vertical
and horizontal steering vectors are respectively given by

uv(Av, θ) =
1√
Av

[
1 e−jπ cos θ · · · e−j(Av−1)π cos θ

]T
, (1)

uh(Ah, ϕ, θ)

=
1√
Ah

[
1 e−jπ sin θ cosϕ · · · e−j(Ah−1)π sin θ cosϕ

]T
, (2)

where ϕ and θ denote the azimuth and elevation angles, respec-
tively. Av and Ah are the number of vertical and horizontal
antennas of the UPA, respectively. The beam steering vector
of a UPA can be expressed as a(A, ϕ, θ) ∈ CA:

a(A, ϕ, θ) = uh(Ah, ϕ, θ)⊗ uv(Av, θ), (3)

where A = AvAh is the total number of antennas. ⊗ denotes
the Kronecker product operator. In this work, we consider each
transmit AP is equipped with Nt = NvNh antennas, where
Nv and Nh are the number of antennas in the vertical and
horizontal dimensions, respectively. Similarly, each receive AP
has Mv vertical antennas and Mh horizontal antennas, and the
total number of antennas Mr = MvMh.

Let fc denote the carrier frequency and λc = c/fc denote
the wavelength, where c is the speed of light. Let Ns denote
the number of subcarriers and B denote the total bandwidth.
The subcarrier interval is equal to ∆f = B/Ns. The OFDM
symbol duration is given by ∆T = 1/∆f+Tp where Tp is the
period of the cyclic prefix. Let si[t] = [si,1[t] · · · si,K [t]]T ∈
CK denote the t-th transmitted OFDM symbol for the K
users on the i-th subcarrier, where i = 0, . . . , Ns − 1, t =
1, . . . , Ts, and Ts denotes the number of symbols. We assume
each element in si[t] has unit power and the transmitted
symbols are statistically independent, i.e., E{si[t]si[t]H} =
IK . The transmitted OFDM symbols are then precoded by
Wn,i

∆
= [wn,i,1 · · ·wn,i,K ] ∈ CNt×K , where each column,

i.e., wn,i,k ∈ CNt , is the precoder assigned to the n-th transmit
AP for the transmission on the i-th subcarrier for the k-th
user, n = 1, . . . , N , i = 0, . . . , Ns − 1, k = 1, . . . ,K. Let
xn,i[t] ∈ CNt denote the transmitted signal assigned to the
n-th transmit AP on the i-th subcarrier during the t-th OFDM
symbol duration. It can be expressed as

xn,i[t] =

K∑
k=1

wn,i,ksi,k[t] = Wn,isi[t]. (4)

We define the transmit power of each transmit AP as P =∑Ns−1
i=0 ∥Wn,i∥2F . Conventional MIMO precoding techniques,

such as maximum ratio transmission (MRT), zero-forcing,
and minimum mean squared error (MMSE) precoders, can be
employed for the design of Wn,i. In this work, we assume the
MMSE precoder is employed which can effectively mitigate
the multi-user interference and guarantee a high achievable
sum-rate. The precoded signals in (4) are then transformed
into the time domain signals via inverse discrete Fourier
transform (IDFT) and a cyclic prefix of period Tp is inserted
to mitigate inter-symbol interference. The time domain signals
are assigned to the corresponding APs. After digital-to-analog
conversion and radio frequency (RF) conversion, the RF sig-
nals with carrier frequency fc are emitted through the transmit
AP antennas.

The transmitted signals will be reflected by the targets in the
area of interest and the reflected echo signals are received at
the receive APs. We assume a line-of-sight (LoS) path exists
between each AP and each target1 [10]–[12]. After sampling
and discrete Fourier transform (DFT) processing, the received
echo signal for the t-th OFDM symbol on the i-th subcarrier
at the m-th receive AP is given by (5) shown at the bottom of
this page, where t = 1, . . . , Ts, i = 0, . . . , Ns − 1, and m =
1, . . . ,M . In (5), βn,m,q is a Gaussian-distributed complex
coefficient, with zero mean and variance of χ2. It includes the
effects due to small-scale pathloss between the n-th transmit
AP and m-th receive AP, and radar cross section of the q-th
target. PL(dn,m,q) = α0(dn,m,q/d0)

−ζ is the large-scale LoS
pathloss coefficient between the n-th transmit AP and m-th
receive AP through the q-th target, where α0 is the pathloss
at the reference distance d0 and ζ is the pathloss exponent.
dn,m,q is the bi-static range measured from the transmit AP
n, via the q-th target, to the receive AP m. ϕn,q and θn,q
correspond to the angles of departure (AoDs) from the transmit
AP n to the q-th target. φm,q and ϑm,q denote the angles
of arrival (AoAs) of the q-th target observed from the m-th
receive AP, respectively. zi,m[t] ∈ CMr is the observed noise
at the receive AP m on the i-th subcarrier, which follows the
complex Gaussian distribution with zero mean and variance of
ξ2z IMr

. τn,m,q = dn,m,q/c and fD,n,m,q = fc/c(vn,q + vm,q)
are the bi-static delay and Doppler frequency shift associated
with the n-th transmit AP and m-th receive AP through the q-
th target, respectively. vn,q and vm,q are the relative velocities
of the q-th target with respect to the n-th transmit AP and the
m-th receive AP, respectively.

III. DNN FOR COOPERATIVE ISAC-ASSISTED
LOCALIZATION AND VELOCITY ESTIMATION

We note that the received echo signal (5) contains infor-
mation on angles, ranges (related to delays), and relative

1There may also exist multipath components. We assume the contribution
of the multipath components is small and can be ignored for simplicity.

yi,m[t] =

N∑
n=1

Q∑
q=1

βn,m,q

√
PL(dn,m,q)e

−j2π(iτn,m,q∆f−tfD,n,m,q∆T )a(Mr, φm,q, ϑm,q)a
H(Nt, ϕn,q, θn,q)xn,i[t]+ zi,m[t]. (5)



velocities (associated with Doppler frequency shifts). Consid-
ering a three-dimensional (3D) (x, y, z) coordinate system, the
location and velocity of the q-th target, q = 1, . . . , Q, can be
denoted as lq = (lxq , l

y
q , l

z
q) and vq = (vxq , v

y
q , v

z
q), respectively.

Our goal is to estimate the location and velocity of the target
by leveraging the echo signals received from multiple APs.
Unlike conventional approaches [10]–[12] which extract the
sensing parameters (e.g., angle, range, relative velocity) from
each receive AP before estimating the location lq and velocity
vq of the q-th target, we propose a DNN-based scheme to
enable joint processing of the echo signals received across
multiple APs and direct estimation of the location and velocity
of the targets. The proposed DNN-based scheme avoids the
estimation errors associated with sensing parameters.

In particular, each receive AP transmits the reflected echo
signals to the CPU via the fronthaul link. The CPU first
pre-processes the transmitted OFDM signals in (4) and the
received echo signals in (5) as follows. Given the reflected
echo signal in the t-th OFDM symbol duration on the i-
th subcarrier at the m-th receive AP, the concatenated echo
signals across all the receive APs can be expressed by yi[t] =
[(yi,1[t])

T · · · (yi,M [t])T]T ∈ CMMr . Then, the aggregated
echo signals on all the Ns subcarriers can be written as
Y[t] = [y0[t] · · · yNs−1[t]] ∈ CMMr×Ns . We further
aggregate the echo signals during all the Ts OFDM symbols
duration and denote it as a 3D tensor Y = [Y[1] · · · Y[Ts]] ∈
CMMr×Ns×Ts . We extract the real and imaginary parts of
Y, which are given by Re{Y} and Im{Y}, respectively.
Similarly, we construct a 3D tensor X ∈ CNNt×Ns×Ts , which
aggregates the transmitted OFDM signals from (4) across all
the N transmit APs on all the Ns subcarriers during all the
Ts OFDM symbols duration. The real and imaginary parts
of X are denoted as Re{X} and Im{X}, respectively. Then,
Re{X}, Im{X}, Re{Y}, and Im{Y} are normalized and are
used as the input to the developed DNN for target sensing.

The developed DNN extracts useful features from the pre-
processed signals and estimates the locations and velocities of
the targets within the area of interest. We note that the trans-
mitted signals and reflected echo signals contain independent
information across the spatial, frequency, and time domains,
which is critical for effective feature extraction. We employ 3D
convolutional neural networks (CNNs) to extract the spatial-
frequency-time domain features from the transmitted signals
X and the reflected echo signals Y. The real and imaginary
parts of the transmitted signal, i.e., Re{X} and Im{X}, are
regarded as two input channels for 3D convolution. We employ
a 3D convolutional filter with parameters ΦCNN

x to process the
input tensors Re{X} and Im{X}. The number of output chan-
nels is denoted by Hx. After 3D convolution, the processed
transmitted signal is given by X̄ ∈ RHx×D1

x×D2
x×D3

x , where
D1

x, D2
x, and D3

x are the dimensions after 3D convolution
operation. Similarly, we employ another 3D convolutional
filter with parameters ΦCNN

y to extract the features from the
real and imaginary parts of the reflected echo signal, i.e.,
Re{Y} and Im{Y}. Then, we obtain the processed echo
signal Ȳ ∈ RHy×D1

y×D2
y×D3

y , where Hy is the number of
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Fig. 1. The proposed DNN architecture for cooperative ISAC-assisted
localization and velocity estimation.

output channels of the convolutional filter. D1
y, D2

y, and D3
y are

the dimensions after the 3D convolution operation. We use the
rectified linear unit (ReLU) as the activation function for both
CNNs. After pooling and flattening, we obtain x̄ and ȳ, which
contain the encoded transmit and sensing information, respec-
tively. We then apply linear projectors with weight matrices
Wx̄ and Wȳ on the flattened vectors x̄ and ȳ, respectively, to
extract the combined and high-level features. The outputs are
concatenated and fed into a fully connected layer with weight
matrix WFC. Finally, we employ another fully connected layer
with weight matrix WOUT to generate the estimated locations
l̂ ∈ R3Q and velocities v̂ ∈ C3Q for all the targets. For the
q-th target, the estimated location and velocity are given by
l̂q = l̂[3(q − 1) + 1 : 3q] and v̂q = v̂[3(q − 1) + 1 : 3q],
respectively. We stack the CNN and fully connected layers
together. The overall architecture of the proposed DNN is
shown in Fig. 1. The set of network parameters is denoted
as Φ = {ΦCNN

x ,ΦCNN
y ,Wx̄,Wȳ,WFC,WOUT}.

During offline training, we construct a training dataset,
which contains the transmitted OFDM signals X and the
reflected echo signals Y as input, and the true location lq and
velocity vq of the q-th target as labels, where q = 1, . . . , Q.
The labels are normalized to be between zero and one by
using max-min normalization during the training stage. The
normalized values are denoted as l̄q and v̄q for the q-th target.
We use the mean square error (MSE) loss function for DNN
training, which is defined as follows:

L(Φ) =

Q∑
q=1

(
∥̄lq − l̂q∥2 + ∥v̄q − v̂q∥2

)
. (6)

The proposed DNN is trained in a supervised manner to
minimize the MSE loss between the normalized ground truth
and estimated results as in (6) using the Adam optimizer
[14]. After training, we can obtain the trained DNN with its
optimized parameters Φ⋆. During online execution, given the
transmitted OFDM signal in (4) and the reflected echo signal in
(5), we first pre-process the signals. The pre-processed signals
are then fed into the trained DNN model, which outputs the
normalized target locations and velocities within the area of
interest. Finally, these normalized results are rescaled to their
nominal values to provide estimations.
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Fig. 2. MSE of location and velocity estimation versus (a) the transmit power
P and (b) number of targets Q.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the sensing sensing of the pro-
posed DNN-based scheme through simulations. We consider a
cell-free MIMO system with N = 2 transmit APs and M = 2
receive APs within a coverage area of 100 × 100 m2. The
transmit APs are located at (0, 50, 20) and (100, 50, 20). The
receive APs are placed at (50, 0, 20) and (50, 100, 20) in 3D
coordinates. Each AP has 8 horizontal antennas and 2 vertical
antennas. The carrier frequency is 30 GHz and the subcarrier
spacing is 240 kHz. We consider the setting of Ns = 512
subcarriers and Ts = 256 OFDM symbols during downlink
transmission. There are K = 4 users and Q = 2 targets. The
users and targets are randomly located in the 3D environment,
with x and y coordinates ranging from 0 to 100, and the z
coordinate ranging from 0 to 30. The velocity of each target
is between −30 m/s and 30 m/s. For the sensing channel, we
set α0 = 0 dBm, d0 = 1 m, ζ = 2.6, and χ2 = 0.1. The AoDs
and AoAs of the targets are determined by their corresponding
locations. We generate 10, 000 data samples, where 8, 000 of
them are used for offline training and the remaining 2, 000
data samples are used for online testing.

In Fig. 2, we illustrate the MSE of location and velocity
estimation under different system settings. The results are
obtained during online testing, where the estimated results
are rescaled back to their normal values. We compare our
proposed scheme with a state-of-the-art approach from [12],
which uses compressive sensing (CS). The CS-based scheme
estimates the sensing parameters from each AP independently
followed by target sensing. Fig. 2(a) shows the MSE for
location and velocity estimation versus the transmit power
P at each AP. It can be observed from Fig. 2(a) that our
proposed scheme results in a significantly lower MSE for both
localization and velocity estimation compared with the CS-
based approach. This is mainly due to the fact that our pro-
posed DNN-based scheme can benefit from jointly extracting
features from the echo signals collected by the distributed APs.
Moreover, the proposed scheme performs the localization and
velocity estimation directly from the echo signals. Thus, it can
avoid any errors associated with the intermediate parameter
estimation. Fig. 2(b) illustrates the MSE of location and
velocity estimation versus the number of targets Q, where the
transmit power at each transmit AP is set to P = 30 dBm. The
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Fig. 3. Training loss versus the training epoches.

Fig. 4. Comparison between the ground truth and the estimated location and
velocity.

results indicate that the MSE increases as the number of targets
increases. This is because a higher number of targets makes it
more challenging to distinguish them in the spatial-frequency-
time domain, leading to higher estimation errors. In addition,
our proposed DNN-based scheme consistently achieves better
sensing performance than the CS-based scheme. In Fig. 3, we
evaluate the convergence performance of the proposed DNN-
based scheme, where the training loss function in (6) versus
the training epoches is illustrated. It can be observed from the
figure that the proposed DNN can converge quickly within 300
training epochs. Finally, in Fig. 4, we visualize the results
of target localization and velocity estimation and compare
the estimated values with the ground truth. The results in
Fig. 4 demonstrate that the proposed scheme achieves a high
localization accuracy, with the estimation errors to be within
1 m in the considered cell-free MIMO system. Similarly, the
estimated velocity of the target is also shown to be close to
the ground truth, as can be observed from the figure.

V. CONCLUSION

In this paper, we proposed a DNN-based scheme for co-
operative ISAC-assisted target localization and velocity esti-
mation. In our proposed scheme, the received echo signals
are jointly processed across geographically distributed APs.
Different from the conventional approaches which estimate
sensing parameters prior to target sensing, our proposed
scheme directly performs the sensing tasks using the reflected
echo signals. The proposed scheme bypasses the intermediate
sensing parameter estimation stage and improves the sensing
performance. Simulation results demonstrated that our pro-
posed scheme can provide more accurate localization and
velocity estimation when compared with a CS-based approach.
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