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Abstract— Energy detection (ED) is a popular spectrum sens-

ing technique for cognitive radios. The study of ED which

takes into account the dynamic of traffic patterns of primary

users, in the form of random signal arrival and departure, is of

both theoretical and practical importance. Some of the existing

works, however, resort to certain approximation techniques to

characterize the detection performance. In this paper, given a

pair of arrival and departure time instants, we first derive an

exact expression for the conditional detection probability. The

exact mean detection probability is then obtained via an average

operation over the random arrival and departure times. To

improve the robustness of the detection performance against

random signal arrival and departure, we further propose a

Bayesian-based ED scheme. We present simulation results to

validate our analytic study, and show the performance gain of

our proposed Bayesian approach.

I. INTRODUCTION

Spectrum sensing is a key technique for enabling oppor-
tunistic spectrum access in cognitive radio (CR) systems
[1], [2]. Among different spectrum sensing schemes, energy
detection (ED) has received considerable attention due to its
implementation simplicity [1], [3]. While there are various
studies of ED in the context of cognitive radios, most of them
consider the following standard binary hypothesis test:

H0 : x[n] = v[n], 0  n  N − 1 (primary user is absent),
and
H1 : x[n] = s[n] + v[n], 0  n  N − 1

(primary user is present), (1)

where N is the length of the data record, s[n], x[n], and v[n]
are, respectively, the signal of the primary user, the received
signal at the CR terminal, and the measurement noise.

Performance analysis of ED under the model (1) is well
documented in the literature [3]. The alternative hypothesis
of (1) assumes that the traffic of the primary user is static
during the sensing period. Such an assumption, however, is
not realistic in certain scenarios. For example, when primary
users can dynamically enter and leave the network, random
arrival and/or departure observed in the sensing period is un-
avoidable, especially when a long sensing duration is adopted
for obtaining good sensing performance [4], [5].

Recently, there have been several works which address
the effect of primary user traffic patterns on the detection

performance of ED. In [6], Beaulieu et al. considered the
random arrival or departure of the primary user’s signal, and
proposed a Bayesian-based ED which exploits the distributions
of the arrival and departure times. The impact of signal ar-
rival/departure on the sensing-throughput tradeoff is addressed
in [7]. In [8], the impact of the primary user traffic on the
detection performance is investigated. It is worthy of nothing
that, in [6-8], the characterization of the detection/false-alarm
probabilities resort to certain approximation techniques, e.g.,
the central limit theorem or the Chi-square approximation. In
[9], the authors focused on the case with random arrival, and
derived the exact detection probability of ED; a Bayesian-
based ED is also proposed to improve the robustness of the
detection performance against random signal arrival.

In this paper, we generalize the result in [9] by further taking
into account the effect of random departure of the primary
user’s signal. Specifically, we consider the following model
for the binary hypothesis test:

H0 : x[n] = v[n], 0  n  N − 1 (primary user is absent),
and

H1 :

8
<

:

x[n] = v[n], 0  n < n0,
x[n] = s[n] + v[n], n0  n  n1,
x[n] = v[n], n1 + 1  n  N − 1,

(primary user is present), (2)

where n0 and n1 denote, respectively, the arrival and departure
time of the primary signal.

Given a pair of (n0, n1), we derive the exact expression of
the conditional detection probability. The average detection
probability can then be obtained by taking average of the
conditional probability over the distributions of n0 and n1.
To the best of our knowledge, the results presented in this
paper are the first report in the literature that provides exact
performance analysis for ED under both arrival and departure
of the primary user’s signal. By leveraging the statistical
characterizations of n0 and n1, a Bayesian-based ED is further
proposed for improving the detection performance in the
considered scenario. Simulation results validate the derived
analytic formula, and justify the advantages of the proposed
Bayesian test as compared to the conventional ED.



II. PERFORMANCE ANALYSIS

The test statistic of the conventional ED is given by

T =

N−1X

n=0

|x[n]|2. (3)

Under the alternative hypothesis H1 in (3) and conditioned
on a fixed pair of n0 and n1, the test statistic T can be
decomposed into

T =

n0−1X

n=0

|x[n]|2
| {z }

, T1

+

n1X

n=n0

|x[n]|2

| {z }
, T2

+

N−1X

n1+1

|x[n]|2

| {z }
, T3

. (4)

Based on (4), we first derive the exact expression of the
conditional detection probability; the average detection prob-
ability can then be obtained by taking the expectation with
respect to certain distributions of n0 and n1.

A. Conditional Detection Probability

We assume that (i) the signal s[n] and noise v[n] are zero-
mean white sequences with variances given by σ2

s

and σ2
v

,
respectively; (ii) s[n] and v[n] are independent. With T1, T2,
and T3 defined in (4), it can be verified that

z1 , T1/σ
2
v

⇠ χ2
n0
,

z2 , T2/(σ
2
v

+ σ2
s

) ⇠ χ2
n1−n0+1,

and
z3 , T3/σ

2
v

⇠ χ2
N−n1−1,

where the symbol χ2
m

denotes the central Chi-square distribu-
tion with degrees-of-freedom equal to m.

The associated probability density functions (pdf) are

f
z1(x) =

x(n0/2)−1e−x/2

p
2

n0
Γ(n0/2)

u(x), (5)

f
z2(x) =

x((n1−n0+1)/2)−1e−x/2

p
2

(n1−n0+1)
Γ ((n1 − n0 + 1)/2)

u(x), (6)

f
z3
(x) =

x((N−n1−1)/2)−1e−x/2

p
2

(N−n1−1)
Γ ((N − n1 − 1)/2)

u(x), (7)

where u(x) is the unit step function.
To simplify notation, let us consider the equivalent test

statistic

¯T , T

σ2
v

=

T1

σ2
v

+

T2

σ2
v

+

T3

σ2
v

= z1 +

✓
σ2
s

+ σ2
v

σ2
v

◆
z2 + z3

= z1 + (1 + SNR)z2 + z3, (8)

where SNR , σ2
s

/σ2
v

. Since random variables z1, z2, and z3
are independent, the pdf of ¯T is given by

f
T̄

(x) = f
z1(x) ⇤

✓
1

1 + SNR

◆
f
z2

✓
x

1 + SNR

◆
⇤ f

z3(x)

(9)

where ⇤ denotes the convolution operator. By taking Laplace
transform, we have

F
T̄

(s) = F
z1
(s)L

⇢✓
1

1 + SNR

◆
f
z2

✓
x

1 + SNR

◆�
F
z3
(s)

= F
z1
(s)F

z2
((1 + SNR)s)F

z3
(s), (10)

where L(·) denotes the Laplace transform operator, and the
second equality follows since L{f(ax)} = (a)−1F (s/a) [13].

By taking the inverse Laplace transform of (10) and through
further analysis, an explicit expression for f

T̄

(x) is given in
the following proposition (see Appendix A for a proof).

Proposition 1: Let f
T̄

(x) be defined in (9). Then, we have

f
T̄

(x) =
(1 + SNR)

(n1n0+1)
2p

2

N

Γ(N/2)
e

x

2 x
N

2 −1
1X

i=0

a
i

xi, (11)

where

a0 = 1,

a1 =

(n1 − n0 + 1)/2

N/2
· SNR

1![2(1 + SNR)]

,

a2 =

((n1 − n0 + 1)/2)((n1 − n0 + 1)/2 + 1)

(N/2)(N/2 + 1)

· (SNR)

2

2![2(1 + SNR)

2
]

, . . . . (12)

Based on (11), the detection probability conditioned on a
pair of fixed n0 and n1, denoted by P

D

(n0, n1), is derived in
the following theorem (see Appendix B for a proof).

Theorem 1: The conditional probability P
D

(n0, n1) is
given by

P
D

(n0, n1)

=

(1 + SNR)

−(n1−n0+1)/2

Γ(N/2)

1X

i=0

a
i

2

i

Γ

✓
N

2

+ i,
γ

2

◆
, (13)

where Γ(·, ·) is the incomplete Gamma function [11] and a
i

’s
are defined in (12).

Remark : When n1 is equal to N −1, the signal model (2)
is reduced to the random arrival case considered in [9]. The
conditional probability P

D

(n0, n1) in (13) is simplified to

P
D

(n0, N − 1)

=

(1 + SNR)

−(N−n0)/2

Γ(N/2)

1X

i=0

a
i

2

i

Γ

✓
N

2

+ i,
γ

2

◆
, (14)

which is the result reported in [9, eq. (2.16)].



B. Average Detection Probability

The average detection probability, denoted by P
D

, can be
obtained by averaging P

D

(n0, n1) with respect to the distri-
butions of n0 and n1. We adopt the common assumption that
the arrival and departure times are exponentially distributed
[6]. Thus, the pdf of n0 is

f(n0) = λ0e
−λ0n0u(n0), for λ0 > 0. (15)

The conditioned pdf of n1 given n0 is

f(n1 | n0) = λ1e
−λ1(n1−n0)u(n1 − n0), for λ1 > 0. (16)

In (15) and (16), λ0 and λ1 are the mean arrival and departure
rates. The probability mass function (pmf) of n0, and the pmf
of n1 for a given n0 are, respectively,

p(n0) = e−n0λ0Ts − e−(n0+1)λ0Ts , (17)

and

p(n1 | n0) = en0λ1Ts

⇣
e−n1λ1Ts − e−(n1+1)λ1Ts

⌘
, (18)

where T
s

is the sampling interval. Hence, the average detection
probability can be obtained by averaging P

D

(n0, n1) over the
joint distribution of n0 and n1 as

P
D

=

X

n0,n1

P
D

(n0, n1)p(n0, n1)

=

X

n0,n1

P
D

(n0, n1)

 
X

n0

p(n1|n0)p(n0)

!

=(1− e−λ0Ts

)(1− e−λ1Ts

)

N−1X

n0=0

e−n0(λ0−λ1)Ts

⇥
N−1X

n1=n0

e−n1λ1Ts

(1 + SNR)

(n1n0+1)
2

Γ(N/2)

⇥
1X

i=0

a
i

2

i

Γ

✓
N

2

+ i,
γ

2

◆
. (19)

C. Simulation Results

Simulations are conducted to validate our theoretical study
in Section II. The duration of the sensing window N is
200, the sampling interval T

s

is 1.25 ms, and λ0 = λ1 =

100 seconds. For false-alarm probability P
f

= 0.05, Fig. 1
shows the average detection probability computed according
to (20) and the simulated results. Fig. 2 plots the receiver
operating characteristics (ROC) curves for SNR = 5 dB. Both
figures show that the analytical and simulation results are well
matched.

III. PROPOSED BAYESIAN DETECTOR

A. Bayesian Decision Rule

The performance of ED will degrade significantly in the
presence of signal arrival and departure [5]. Following [9], in
this section we propose a Bayesian-based ED by exploiting the
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Fig. 1. Detection probability Pd versus SNR (Pf = 0.05).
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Fig. 2. Detection probability Pd versus false-alarm probability Pf .

statistical knowledge of n0 and n1. The conditional pmf of the
data samples under hypotheses H0 and H1 are, respectively,

p(x;H0) =
1

(2⇡σ2
v

)

N/2
exp

 
−1

2σ2
v

N−1X

n=0

|x[n]|2
!
, (20)

and
p(x;n0, n1,H1)

=

1

(2⇡σ2
v

)

n0/2
e

1

22
v

P
n01
n=0 |x[n]|2

⇥ 1

(2⇡(σ2
v

+ σ2
s

))

n1n0+1
2

e
1

2(2
v

+

2
s

)

P
n1
n=n0

|x[n]|2

⇥ 1

(2⇡σ2
v

)

Nn11
2

e
1

22
v

P
N1
n=n1+1 |x[n]|2

. (21)

We define
p(x;H1)

=

N−1X

n0=0

p(n0)

N−1X

n1=n0

p(n1 | n0)p(x;n0, n1,H1). (22)

Based on [3], the Bayesian decision rule chooses the hy-
pothesis H1 if

p(x;H1)

p(x;H0)
 γ, (23)

where γ is the decision threshold, p(x;H0) and p(x;H1) are
defined in (20) and (22), respectively.
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Fig. 3. Detection probability Pd v.s. SNR curves obtained by two methods
(Pf = 0.05).

B. Simulation Results and Discussions

To illustrate the performance of the proposed Bayesian ED
in (23), Fig. 3 compares the proposed Bayesian ED (23)
with the conventional ED in terms of the average detection
probability. The setup is the same as that in Section II-C, and
the false-alarm probability is P

f

is chosen to be 0.05. It can be
seen from the figure that the proposed Bayesian-based solution
provides an improved detection performance. With detection
probability P

d

chosen to be 0.95, Fig. 4 shows the achievable
1−P

f

, which is a measure of the channel utilization efficiency
of secondary users [10], [12], attained by the two methods. The
results show that the Bayesian test (23) yields a larger 1−P

f

,
thereby yielding better channel utilization.

IV. CONCLUSION

In this paper, we presented an exact detection performance
analyses for energy detection (ED) in the presence of random
arrival and departure of the primary user’s signal for cognitive
radio systems. A Bayesian-based ED is also proposed to
improve the detection performance against random signal
arrival and departure. These results can be directly generalized
to the scenario of multi-status change considered in [5]. Exact
characterization of the detection probability of the proposed
Bayesian ED (23) is currently under investigation.

APPENDIX

A. Proof of Proposition 1

To prove the proposition, we need the following lemmas.

Lemma A.1: For λ > 0, we have [11]

L{xλ−1e−axu(x)} = Γ(λ)(s+ a)−λ.

Lemma A.2: For ⌫ > 0 and µ > 0, it follows that [11]
Z

x

0

t⌫−1
(x− t)µ−1eδtdt = B(µ, ⌫)xµ+⌫−1

Φ(⌫, µ+ ⌫; δx),

(A.1)
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Fig. 4. (1− Pf ) v.s. SNR curves obtained by two methods (Pd = 0.95).

where B(·, ·) is the beta function, and Φ(·, ·; ·) is the confluent
hyper-geometric function defined as

Φ(↵, γ, z) = 1 +

↵

γ
· z

1!

+

↵(↵+ 1)

γ(γ + 1)

· z
2

2!

+

↵(↵+ 1)(↵+ 2)

γ(γ + 1)(γ + 2)

· z
3

3!

+ · · · (A.2)

From Lemma A.1, it follows readily that

F
z1(s) =

(s+ 1/2)
n0

2p
2

n0
, (A.3)

F
z2
(s) =

(s+ 1/2)−(n1−n0+1)/2

p
2

(n1−n0+1)
, (A.4)

and

F
z3
(s) =

(s+ 1/2)−(N−n1−1)/2

p
2

(N−n1−1)
. (A.5)

As a result, we have

F
T̄

(s) =
1p
2

N

✓
s+

1

2

◆n0
2

⇥
✓
(1 + SNR)s+

1

2

◆(n1n0+1)
2

✓
s+

1

2

◆(Nn11)
2

=

(1 + SNR)

(n1n0+1)
2p

2

N

✓
s+

1

2

◆−Nn1+n01
2

⇥
✓
s+

1

2(1 + SNR)

◆−n1n0+1
2

. (A.6)

The inverse Laplace transform of F
T̄

(s) is



f
T̄

(x) =
(1 + SNR)

−(n1−n0+1)/2

p
2

N

⇥
8
<

:L−1

8
<

:

✓
s+

1

2

◆Nn1+n01
2

9
=

;

⇤L−1

8
<

:

✓
s+

1

2(1 + SNR)

◆(n1n0+1)
2

9
=

;

9
=

;

(a)
=

(1 + SNR)

−[(n1−n0+1)/2]

p
2

N

⇥
("

x[(N−n1+n0−1)/2]−1e−
x

2 u(x)

Γ

�
N−n1+n0−1

2

�
#

⇤
"
x[(n1−n0+1)/2]−1e−x/[2(1+SNR)]u(x)

Γ

�
n1−n0+1

2

�
#)

,

(A.7)

where (a) follows from Lemma A.1. To determine the convo-
lution part in (A.7), we have

x(N−n1+n0−1)/2−1e−x/2u(x)

⇤ x(n1−n0+1)/2−1e−x/[2(1+SNR)]u(x)

= e−x/2

Z
x

0

(x− ⌧)(N−n1+n0−1)/2−1⇥
⌧ (n1−n0+1)/2−1eSNR⌧/[2(1+SNR)]d⌧

(b)
= e−x/2B

✓
n1 − n0 + 1

2

,
N − n1 + n0 − 1

2

◆
x

N

2 −1

⇥ Φ

✓
n1 − n0 + 1

2

,
N

2

;

SNR

2(1 + SNR)

x

◆

= e−x/2B

✓
n1 − n0 + 1

2

,
N − n1 + n0 − 1

2

◆

⇥ x
N

2 −1
1X

i=0

a
i

xi

= e−x/2B

✓
n1 − n0 + 1

2

,
N − n1 + n0 − 1

2

◆

⇥
1X

i=0

a
i

x
N

2 +i−1, (A.8)

where (b) follows from Lemma A.2, and the sequence {a
i

}
in (A.8) is given by (12).

Based on (A.7) and (A.8), we have

f
T̄

(x) =
(1 + SNR)

−(n1−n0+1)/2

p
2

N

Γ

�
N−n1+n0−1

2

�
Γ

�
n1−n0+1

2

�e−x/2

⇥B

✓
n1 − n0 + 1

2

,
N − n1 + n0 − 1

2

◆

⇥
1X

i=0

a
i

x
N

2 +i−1

(c)
=

(1 + SNR)

−(n1−n0+1)/2

p
2

N

Γ

�
N

2

� e
x

2 x
N

2 −1
1X

i=0

a
i

xi,

(A.9)

where (c) holds by the relationship between gamma function
and beta function, and is given by

B

✓
n1 − n0 + 1

2

,
N − n1 + n0 − 1

2

◆

=

Γ

�
n1−n0+1

2

�
Γ

�
N−n1+n0−1

2

�

Γ

�
N

2

� . (A.10)

The assertion follows directly from (A.9) and (A.10).

B. Proof of Theorem 1

Based on (11), it follows that P
D

(n0, n1)

=

Z 1

γ

f
T̄

(x)dx

=

(1 + SNR)

− (n1n0+1)
2p

2

N

Γ(N/2)

1X

i=0

a
i

✓Z 1

γ

e−x/2xN/2+i−1dx

◆

(d)
=

(1 + SNR)

−(n1−n0+1)/2

Γ(N/2)

1X

i=0

a
i

2

i

Γ

✓
N

2

+ i,
γ

2

◆
,

where (d) follows from the definition of the incomplete gamma
function Γ(·, ·) defined in [11, p. 899], with together some
manipulations.
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