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Abstract—In federated learning, clients cooperatively train a
global model by training local models over their datasets under
the coordination of a central server. However, clients may some-
times be unavailable for training due to their network connections
and energy levels. Considering the highly non-independent and
identically distributed (non-IID) degree of the clients’ datasets,
the local models of the available clients being sampled for training
may not represent those of all other clients. This is referred as
system induced bias. In this work, we quantify the system induced
bias due to time-varying client availability. The theoretical result
shows that this bias occurs independently of the number of
available clients and the number of clients being sampled in each
training round. To address system induced bias, we propose a
FedSS algorithm by incorporating stratified sampling and prove
that the proposed algorithm is unbiased. We quantify the impact
of system parameters on the algorithm performance and derive
the performance guarantee of our proposed FedSS algorithm.
Theoretical and experimental results on CIFAR-10 and MNIST
datasets show that our proposed FedSS algorithm outperforms
several benchmark algorithms by up to 5.1 times in terms of the
algorithm convergence rate.

Index Terms—Federated learning, system induced bias, strati-
fied sampling

I. INTRODUCTION

Federated learning (FL) [1], [2] is a decentralized machine
learning approach, which enables a large number of clients to
cooperatively train a global model using their local datasets.
In FL, a central server maintains the global model and co-
ordinates the training process for multiple training rounds.
In each training round, some clients are sampled to perform
training over the global model using their local datasets. The
local model updates are then sent to the central server for
global model update. During this process, clients do not need
to send their local datasets to any central entity. Thus, the
cost for data transmission (e.g., energy, bandwidth resources)
can be reduced, and data privacy can be preserved. Federated
averaging (FedAvg) algorithm [1] is one of the state-of-the-art
FL algorithms. Other FL algorithms have also been proposed
to address various issues such as the communication cost [3],
[4], system and statistical heterogeneity [5]–[7], privacy [8],
fairness [9], model compression [10], model retraining [11],
and incentive mechanism design [12]. Some recent works, e.g.,
[2], [13], [14], have provided comprehensive survey on FL.

This work was supported by the National Natural Science Foundation of
China under Grant 62202214, Natural Sciences and Engineering Research
Council of Canada, and the Digital Research Alliance of Canada (alliance-
can.ca).
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Fig. 1. (a) A real-world example of time-varying client availability on a live
streaming platform; (b) An example to illustrate system induced bias.

There are two important facts related to the clients in FL.
First, the clients’ datasets are typically non-independent and
identically distributed (non-IID). This is due to various factors
including the geographical locations and personal preferences
of the clients. We define a group as a set of clients whose
datasets are approximately IID, e.g., clients from a geographi-
cal location with similar personal preference. Second, only
a small subset of clients (e.g., 0.1%–10%) may be available
for training in each training round due to various constraints
(e.g., network conditions, energy levels) [2]. Meanwhile, the
set of available clients may change over time. We refer to
this as time-varying client availability. For example, Fig. 1(a)
shows real-world streamers’ data on a live streaming platform
[15]. Streamers can act as clients for FL tasks (e.g., gesture
prediction) when they are available. In this example, we define
a group as a set of clients streaming with a particular language
(e.g., English). Thus, the clients in the same group may
have similar background and behaviors than those from other
groups. The first bar entitled “Platform” shows the fraction of
clients belonging to each group. The remaining bars (i.e., 1,
2, . . .) show the fraction of available clients in each group at a
particular time. Fig. 1(a) shows that the availability of clients
in different groups can change significantly over time.

Although some of the existing works have considered
the non-IID datasets (e.g., [3]–[11]), they do not take into
account the time-varying client availability and the resulting
system induced bias. The system induced bias occurs when
the datasets of the sampled clients do not represent those
of the entire population (i.e., both available and unavailable
clients). Consider Fig. 1(b) as an example. Suppose the central



server samples three clients from the set of available clients
in each training round. In the training rounds when those
sampled clients belong to either one or two groups out of
those three groups (e.g., training rounds 1 and 3), the global
model obtained based on the local models of those sampled
clients will be biased and may not fit the datasets of clients
from the other groups in the system.

System induced bias is an important open problem [2] and
some existing works have proposed approaches to tackle this
issue. Perazzone et al. in [16] considered intermittent connec-
tivity of clients and proposed an algorithm for determining
the selection probability of each client. Buyukates et al. in
[17] considered time-varying client availability and analyzed
the average age of information of clients’ local models. Xia et
al. in [18] considered unknown future client availability and
proposed an online algorithm called CS-UCB-Q to improve
fairness among clients, i.e., to ensure that each client partici-
pates in a certain proportion of training rounds. Huang et al.
in [19] proposed an online Lyapunov optimization algorithm
to guarantee long-term fairness among clients. Ribero et al.
in [20] proposed a client sampling strategy to minimize the
variance of the participation rates of the clients. Avdiukhin et
al. in [21] proposed an asynchronous FL algorithm to address
temporal client unavailability. Chen et al. in [22] proposed
an asynchronous online FL algorithm, where the local models
of those clients that are available less frequently are assigned
with higher weights. The aforementioned works address the
system induced bias by making clients contribute approxi-
mately equally to the system (e.g., being sampled with similar
frequency) in the long run, while the scheduling is independent
of the datasets of the clients. Using these approaches, the
trained global model in one training round may still be biased.
Thus, the global model may vary significantly across training
rounds, which may slow down the convergence rate.

In this work, we focus on time-varying client availability
and aim to address the system induced bias by guaranteeing the
client sampling be unbiased. We regard FedAvg algorithm [1]
as a benchmark1 and aim to answer the following questions:

• How do we quantify the system induced bias of FedAvg
algorithm under time-varying client availability?

• How do we address the system induced bias?
• How much is the performance improvement?

Answering the first question is not straightforward. We first
introduce an equivalent scheme which determines the same
global model as FedAvg algorithm. To quantify system in-
duced bias, we use the bias of the global model with respect to
the local models of clients and time-varying client availability.
To answer the second question, we incorporate stratified
sampling and propose an algorithm, called FedSS. The main
idea is to sample clients based on their data statistics and to
ensure that the datasets of the sampled clients can represent
those of the entire population. Although such an idea has been

1The analysis in this paper can be extended to study other synchronous FL
algorithms. Examples include variants of FedAvg algorithm such as FedProx
[23] and Scaffold [24].

suggested by Kairouz et al. in [2, Section 7.2.3], they did not
provide theoretical analysis. Shen et al. in [25] analyzed how
stratified sampling can address the non-IID datasets of clients.
However, they did not consider time-varying client availability.

Answering the third question is challenging. This is because
the study of this system requires us to quantify how the system
factors (e.g., data statistics of different groups) affect the
algorithm performance via the interaction between the central
server and clients as well as the selection of sampling schemes.
We overcome the challenges and provide rigorous proof to
derive the theoretical performance guarantee. We derive the
client allocation scheme (i.e., number of clients sampled in
each group) that optimizes the algorithm performance.

We summarize our main contributions as follows:
• We quantify the system induced bias of FedAvg algorithm

under time-varying client availability. Our analytical re-
sults show that as long as the number of available clients
of an arbitrary group is not proportional to the number of
clients of that group (see the example in Fig. 1(a)), such
bias always exists no matter how much we increase the
number of available clients and sampled clients.

• To address the system induced bias, we propose FedSS
algorithm by incorporating stratified sampling. We prove
that FedSS algorithm is unbiased. Moreover, we theo-
retically derive its performance guarantee and propose
an optimal client allocation scheme. Theoretical results
show that our algorithm performance does not depend
on the time-varying client availability, which is ideal.
When compared with FedAvg algorithm, the performance
improvement of our proposed FedSS algorithm is linearly
increasing with the non-IID degree of the clients’ data.

• We conduct experiments using MNIST [26] and CIFAR-
10 [27] datasets. To verify that our proposed approach
can be extended to the variants of FedAvg algorithm,
we incorporate stratified sampling into FedProx algorithm
[23], where this extended algorithm is called FedProxSS.
The results show that both of our proposed FedSS and
FedProxSS algorithms have a faster convergence rate
than FedAvg [1], FedProx [23], and CS-UCB-Q [18]
algorithms. The improvement can be up to 5.1 times when
the non-IID degree of the clients’ data is high.

This paper is organized as follows. We present the system
model in Section II. Then, we quantify the bias and propose
FedSS algorithm in Section III. In Section IV, we analyze
the performance guarantee. We present experimental results
in Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider N clients, denoted by set N = {1, 2, . . . , N}.
Each client n ∈ N has a local dataset Dn. Let Dn denote
the number of data samples in dataset Dn, i.e., Dn = |Dn|.
We consider a supervised learning task. Each data sample
contains a feature x and a label y. Different clients may
have different empirical distributions in terms of their data
samples. For example, clients may live in different geographic
regions and have different personal preferences [2, Section



3.1]. For mathematical simplicity, we consider K groups of
clients and assume that data samples of an arbitrary client from
group k ∈ K ≜ {1, 2, . . . ,K} are generated from distribution
Pk(x,y). Let Nk ⊂ N denote the set of clients of group
k ∈ K. Since each client belongs to exactly one group, we
have ∪k∈KNk = N and ∩k∈KNk = ∅. We consider the setting
that the central server knows which group each client belongs
to. When the central server does not have such information, it
can estimate the group of a client based on certain statistics
of clients’ datasets (see Section V-A).

In the following, we introduce the FL process among clients.
Then, we present the performance metric for FL algorithm.

A. FL Process with Time-Varying Client Availability

In FL, clients cooperatively train a global model under the
coordination of a central server. We consider synchronous FL
algorithms, with FedAvg algorithm [1] and its variants [23],
[24] as typical examples. Suppose there are T training rounds.
At the beginning of the FL process, the central server first
initializes the parameter vector (i.e., the weights of the neurons
and the biases between neurons) of the global model as ω0.

We consider time-varying client availability. For example,
at any time, a client may be unavailable for training if it is
disconnected from the network, busy in other computationally
intensive tasks, or low in battery power. In training round t ∈
T ≜ {1, 2, . . . , T}, let Ak

t ⊆ Nk denote the set of available
clients in group k. We assume that set Ak

t remains unchanged
in training round t, and the central server is aware of the set
of available clients Ak

t for k ∈ K.2 For analytical simplicity,
we assume that each client n ∈ Nk belongs to set Ak

t with
equal probability for t ∈ T .3

In training round t, the central server first samples S clients
from the available clients in set At ≜ ∪k∈KAk

t . Let St ⊆
At denote the set of sampled clients in training round t. In
FedAvg algorithm [1] and its variants [23], [24], clients are
sampled using simple random sampling, i.e., clients in set At

are randomly sampled with equal probability. Then, the central
server sends the global model ωt−1 determined in training
round t−1 to the sampled clients. Upon receiving ωt−1, client
n ∈ St performs training for E epochs over its local dataset.
Let ωn

t denote the local model of client n ∈ St in training
round t, which is initialized to be ωt−1. In each epoch, each
sampled client randomly partitions its dataset into M mini-
batches and performs stochastic gradient descent (SGD) steps:

ωn
t := ωn

t − η∇fn(ω
n
t ; ξn), (1)

where η and ξn denote the step size and mini-batch of client
n, respectively, and fn(ω

n
t ; ξn) denotes the loss function of

the model with parameter vector ωn
t given the mini-batch ξn.

The operator := corresponds to assignment.

2This can be achieved through one of the following ways. First, clients
may reserve their available time period a priori (e.g., midnight). Alternatively,
when a client is available, it can send a message to the central server.

3For the scenario where clients from set Nk belong to set Ak
t with different

probabilities, we can partition each group into multiple sub-groups, where
each sub-group contains the clients with similar probability of being available
in each training round. Then, the theoretical analysis in this work still holds.

After E epochs, each sampled client n ∈ St uploads its
local model ωn

t to the central server. Then, the central server
updates the global model based on a predefined function, i.e.,

ωt = G({ωn
t , n ∈ St}), (2)

where function G(·) has different expressions in different FL
algorithms [1], [23], [24]. In FedAvg algorithm [1],

G({ωn
t , n ∈ St}) =

∑
n∈St

Dnω
n
t∑

n′∈St
Dn′

. (3)

B. Performance Metric

We use fn(ωT ) ≜ Eξn [fn(ωT ; ξn)] to characterize the
degree that the global model ωT fits the data of client n [1],
i.e., the expected loss of the global model with parameter
vector ωT over the data of client n. We use F (ωT ) to
characterize the degree that ωT fits the data of all clients [1],

F (ωT ) ≜
∑
n∈N

Dn∑
n′∈N Dn′

fn(ωT ). (4)

We denote ω⋆ as the parameter vector of the global model
that minimizes F (ωT ), i.e., ω⋆ = argminωT

F (ωT ).
The objective is to minimize the precision of the trained

global model, i.e., the difference between the expected loss of
the trained global model EωT

[F (ωT )] and the minimum loss
F (ω⋆) [24], [28]. Note that a smaller precision implies that
the trained global model better fits the data of all clients.

III. SYSTEM INDUCED BIAS AND FEDSS ALGORITHM

In most of the existing FL algorithms, the central server
samples clients using simple random sampling, and the local
models are aggregated with weights that are independent of the
groups that the clients belong to, e.g., in (3). However, when
we consider a scenario with time-varying client availability,
such approaches for sampling and model aggregation can lead
to system induced bias. In the following, we first introduce
an equivalent scheme of the FL process and the notations for
analysis. Then, we derive the system induced bias. Finally, we
provide a solution to address the bias. For analytical simplicity,
similar to [28], we assume that clients have the same number
of data samples, i.e., Dn = Dn′ for n, n′ ∈ N . We will relax
this assumption in Section V.

A. Equivalent Scheme and Notations

We introduce an equivalent scheme to the FL process
presented in Section II, i.e., both of them lead to the same
global model ωT given the realization of client and mini-
batch sampling. This scheme is introduced only for the under-
standing of system induced bias and will not be considered in
practical systems.

Equivalent Scheme. The central server sends ωt−1 to all
clients in set N for local training. When local training is
completed, only the sampled clients in set St send their local
models to the central server for global model update.

Recall that St ⊆ At, which contains only available clients.
This equivalent scheme is introduced for theoretical analysis,



with which we can quantify the difference between the local
models of the entire population and those of the sampled
clients. Let I ≜ {1, . . . , TEM} denote the set of SGD steps.
The SGD step over the mth mini-batch in the eth epoch of
training round t ∈ T is denoted by the ith SGD step, where
i = (t − 1)EM + (e − 1)M + m. Global synchronization
corresponds to the event when clients send their local models
to the central server for model aggregation. We define set
IG ≜ {tEM | t = 1, . . . , T}. After the ith SGD step, where
i ∈ IG, global synchronization is performed.

We use ωn
i to denote the parameter vector of the local

model of client n after the ith SGD step. Let vn
i denote the

parameter vector of the local model of client n after global
synchronization (if required). Thus,

ωn
i = vn

i−1 − ηi−1∇fn(v
n
i−1; ξ

n
i−1), i ∈ I, (5)

where ηi−1 and ξni−1 are the step size and mini-batch in the
ith SGD step, respectively, and

vn
i =

{
ωn

i , i ∈ I \ IG,
G({ωn

i , n ∈ Sτ(i)}), i ∈ IG,
(6)

where τ(i) ≜ ⌊i/(EM)⌋ ∈ T denotes the index of training
round that the ith SGD step belongs to.

B. System Induced Bias under FedAvg Algorithm

Based on the equivalent scheme, we now derive the system
induced bias of FedAvg algorithm. Let Ak

t ≜ |Ak
t | and

At ≜
∑

k∈K Ak
t . For fairness of comparison, we assume that

Ak
t ≥ S for all k ∈ K, t ∈ T . That is, the central server

is able to sample any arbitrary number of clients from any
group (ranging from zero to S) across training rounds. This
assumption is reasonable because in practical systems, S and
At are usually 50− 5000 and 105 − 107, respectively [2].

Let ω̄i ≜
∑

n∈N ωn
i /N and v̄i ≜

∑
n∈N vn

i /N denote
the average values of ωn

i and vn
i for all n ∈ N in the ith

SGD step, respectively. We quantify the system induced bias
using ESτ(i)

[v̄i]− ω̄i for i ∈ IG, i.e., the difference between
the global model after global synchronization and the average
parameter vector of local models of the entire population.

Lemma 1 (Bias). For any SGD step i ∈ IG, FedAvg algorithm
with simple random sampling leads to the following bias:

ESτ(i)
[v̄i]− ω̄i =

∑
k∈K

((
Ak

τ(i)

NkAτ(i)
− 1

N

) ∑
n∈Nk

ωn
i

)
. (7)

Proof. Under the assumption that Dn = Dn′ for n, n′ ∈ N ,
for any i ∈ IG, we have ESτ(i)

[v̄i] = ESτ(i)
[
∑

n∈Sτ(i)
ωn

i /S]
based on the definition of v̄i and equations (3) and (6). Thus,

ESτ(i)
[v̄i] =

1

S

∑
k∈K

∑
n∈Nk

P(n ∈ Sτ(i) | n ∈ Nk)ω
n
i , (8)

where P(n ∈ Sτ(i) | n ∈ Nk) denotes the probability
that a client in set Nk is sampled in training round τ(i).
We have assumed that any client n ∈ Nk belongs to set
Ak

t with equal probability. Thus, for n ∈ Nk, we have
P(n ∈ Sτ(i) | n ∈ Nk) = (Ak

τ(i)/Nk)(S/Aτ(i)). That is,

the probability that client n is available multiplied by the
probability that this client is sampled. By substituting (8) and
the expression of ω̄i, we obtain (7).

According to Lemma 1, we have the following observations.

Remark 1 (Bias). For any i ∈ IG, if there exists k ∈ K such
that Ak

τ(i)/Aτ(i) ̸= Nk/N , then the equality ESτ(i)
[v̄i]−ω̄i =

0 does not always hold, i.e., the system induced bias exists.

Remark 2 (Impact of S). This bias is independent of the
number of clients sampled in each training round, i.e., S.

Remark 3 (Impact of Aτ(i)). Suppose we fix Ak
τ(i)/Aτ(i) to

be a constant. The bias is independent of the total number of
available clients, i.e., Aτ(i).

In practical systems, the ratio Ak
τ(i)/Aτ(i) may be very

different from Nk/N and can change significantly over time
(see the real-world example in Fig. 1(a)). In this case, system
induced bias always exists no matter how much we increase
either the number of available clients or sampled clients.

C. FedSS Algorithm

In this section, we propose our FedSS algorithm, which
is an FL algorithm that can tackle the aforementioned bias.
Our FedSS algorithm differs from FedAvg algorithm from the
following two aspects: client sampling and function G(·).

1) Client sampling: In training round t ∈ T , the central
server samples S clients using stratified sampling [29], [30].
That is, the central server randomly samples clients from
each group independently. An important question is how many
clients should be sampled from each group. We will provide
an answer to this question in Section IV-B when we analyze
the performance guarantee. For now, let Sk denote the number
of clients sampled from group k in each training round. We
have

∑
k∈K Sk = S. Let Sk

t denote the set of sampled clients
of group k in training round t, and St ≜ ∪k∈KSk

t .
2) Function G(·): In FedSS algorithm, the central server

computes ωt as follows:

G({ωn
t , n ∈ St}) =

∑
k∈K

∑
n∈Nk

Dn∑
n′∈N Dn′

∑
n∈Sk

t

Dnω
n
t∑

n′∈Sk
t
Dn′

 .

(9)
Specifically,

∑
n∈Sk

t
Dnω

n
t /(
∑

n′∈Sk
t
Dn′) is the weighted

average of the parameter vectors of the sampled clients of
group k. The term

∑
n∈Nk

Dn/
∑

n′∈N Dn′ is the weight
assigned to group k. Hence, G({ωn

t , n ∈ St}) is the weighted
average of the associated average parameter vectors of all
groups k ∈ K. For example, suppose the number of data sam-
ples of a particular group is higher than other groups. When the
central server computes G({ωn

t , n ∈ St}), the weight assigned
to the local models of the clients of that group will be larger.

3) Unbiasedness: The proposed algorithm can address the
system induced bias by making the global model an unbiased
estimation of the local models of all clients. Such unbiasedness
does not depend on the choice of Sk for k ∈ K.



Lemma 2 (Unbiasedness). When Sk is positive for all k ∈ K,
FedSS algorithm is unbiased, i.e., ESτ(i)

[v̄i] = ω̄i for i ∈ IG.

Proof. For any i ∈ IG, based on the definition of v̄i and vn
i

as well as function G(·) in (9), we have

ESτ(i)
[v̄i]=

∑
k∈K

Nk

NSk
τ(i)

( ∑
n∈Nk

P(n ∈ Sτ(i) | n ∈ Nk)ω
n
i

)
,

(10)
where with stratified sampling, P(n ∈ Sτ(i) | n ∈ Nk) =
(Ak

τ(i)/Nk)(S
k
τ(i)/A

k
τ(i)) for any n ∈ Nk. By substituting

(10), we have ESτ(i)
[v̄i] =

∑
k∈K

∑
n∈Nk

ωn
i /N = ω̄i.

Lemma 2 confirms that the expected global model ESτ(i)
[v̄i]

is always equal to the average local models of all clients
ω̄i. That is, under our proposed algorithm, v̄i is an unbiased
estimation of ω̄i, which is independent of S and Aτ(i). In the
next section, we derive the mean squared error (MSE) of such
an estimation (i.e., the expected value of ∥v̄i− ω̄i∥2). A small
MSE implies that the realization of the global model v̄i will
not be far from the average local models ω̄i of all clients.

IV. CONVERGENCE ANALYSIS AND COMPARISON

In this section, we first present the assumptions we used for
analysis. Then, we derive the MSE of the global model. This
is challenging because the analysis requires the computation
of the variance of the clients’ local models within each group
with respect to system parameters. Based on the MSE result,
we analyze the performance guarantee of our proposed FedSS
algorithm in terms of the precision of the global model and
propose an optimal client allocation scheme. Finally, we derive
the performance improvement of our proposed algorithm.

A. Assumptions of Loss Function and Datasets

We make the following assumptions on the loss function
and the datasets of clients. Assumptions 1−4 are commonly
considered in the existing works (e.g., [24], [28]). Assumption
5 is related to the datasets of the K groups of clients. Let Ω
denote the space of ω. Let I+ ≜ I ∪ {0}.

Assumption 1. Loss function fn(·) is β-smooth for n ∈ N ,
i.e., |fn(y)−fn(x)−∇fn(x)

T (y−x)|≤ β
2 ∥y−x∥2, x,y ∈ Ω.

Assumption 2. Loss function fn(·) is µ-strongly convex for
n ∈ N , i.e., fn(y) ≥ fn(x)+∇fn(x)

T (y−x)+ µ
2 ∥y−x∥2,

x,y ∈ Ω.

Assumption 3. The variance of the stochastic gradients is
bounded for n ∈ N , i.e., Eξni

[∥∇fn(ω
n
i ; ξ

n
i )−∇fn(ω

n
i )∥2] ≤

σ2
n, i ∈ I.

Assumption 4. The expected value of the squared norm
of the stochastic gradients is bounded for n ∈ N , i.e.,
Eξni

[∥∇fn(ω
n
i ; ξ

n
i )∥2] ≤ R2, i ∈ I+.

Assumption 5. The expected value of the variance of the
stochastic gradients from the clients of any group k ∈ K is
bounded. That is, for group k ∈ K,

Eξk
i

 ∑
n∈Nk

∥∥∥hn
i (ξ

n
i )− h̄

k
i (ξ

k
i )
∥∥∥2

Nk − 1

 ≤ H2
k , i ∈ I+, (11)

where hn
i (ξ

n
i ) ≜ ∇fn(ω

n
i ; ξ

n
i ), ξki ≜ (ξni , n ∈ Nk), and

h̄
k
i (ξ

k
i ) ≜

∑
n∈Nk

hn
i (ξ

n
i )/Nk.

Although the data samples of the clients from group k are
generated using the same distribution Pk(x,y), in Assumption
5, the value of H2

k is non-zero for two reasons. First, the em-
pirical distributions of the data samples of different clients may
be different. Second, various data samples can be generated
by distribution Pk(x,y), under which the randomly sampled
mini-batches ξni of different clients may be different. Thus,
H2

k can reflect the dissimilarity of the empirical distributions
of the clients from group k ∈ K and that of the data samples
generated by distribution Pk(x,y). We refer to H2

k as the
degree of dissimilarity of the clients’ datasets in group k.

B. MSE of the Unbiased Estimation

Let ξH
i = (ξni′ , i′ ≤ i, n ∈ N ) denote the realization of

the mini-batch sampling until the ith SGD step. Let SH
i =

(St′ , t
′ ≤ τ(i)) denote the collection of sampled client sets

until training round τ(i). We define Hi ≜ (ξH
i ,S

H
i ). The value

of ω̄i depends on Hi−1, and the value of v̄i depends on Hi−1

and the sampled client set Sτ(i) for i ∈ IG.
We now characterize the MSE of the global model after

global synchronization with respect to client and mini-batch
sampling. Such an MSE reveals the expected quadratic gap be-
tween the realization of the global model with client sampling
v̄i and the average local models of all clients ω̄i.

Lemma 3 (MSE). Let ηi be non-increasing with respect to
i ∈ I+ and satisfies ηi ≤ 2ηi+EM .4 Under Assumption 5,

EHi−1,Sτ(i)

[
∥v̄i − ω̄i∥2

]
≤ 4E2M2η2i

∑
k∈K

(
Nk

N

)2(
1

Sk
− 1

Nk

)
H2

k , i ∈ I. (12)

Proof. For i ∈ I \ IG, we have v̄i = ω̄i based on (6). Thus,
EHi−1,Sτ(i)

[∥v̄i−ω̄i∥2] is equal to zero and hence is not larger
than any nonnegative constant, i.e., inequality (12) holds. We
now focus on the case for i ∈ IG. Based on (6) and Lemma
2, given any Hi−1, v̄i is the estimator of the population mean
ω̄i under stratified sampling. Based on [29, eqn. (5.2)],

EHi−1,Sτ(i)

[
∥v̄i − ω̄i∥2

]
=
∑
k∈K

(
Nk

N

)2(
1

Sk
− 1

Nk

)
EHi−1

[∑
n∈Nk

∥ωn
i −ω̄k

i ∥2

Nk − 1

]
,

(13)

4For example, ηi = 2/(a(i+ b)) for i ∈ I+, where a > 0 and b > EM .



where ω̄k
i ≜

∑
n∈Nk

ωn
i /Nk for k ∈ K. We first bound ∥ωn

i −
ω̄k

i ∥ for i ∈ IG. Let i0 be the largest index that corresponds
to a global synchronization process before index i, so i0 = i−
EM . We always have vn

i0
= vn′

i0
for all n, n′ ∈ N . According

to the definition of ωn
i and ω̄k

i ,

∥ωn
i − ω̄k

i ∥
=
∥∥vn

i0
−
∑i−1

i′=i0
ηi′∇fn(v

n
i′ ; ξ

n
i′)

− 1
Nk

∑
n′∈Nk

(
vn′

i0
−
∑i−1

i′=i0
ηi′∇fn′(vn′

i′ ; ξ
n′

i′ )
)∥∥

=
∥∥∑i−1

i′=i0
ηi′
(∑

n′∈Nk
∇fn′(vn′

i′ ; ξ
n′

i′ )/Nk−∇fn(v
n
i′ ; ξ

n
i′)
)∥∥

≤
∑i−1

i′=i0
ηi′
∥∥∑

n′∈Nk
∇fn′(vn′

i′ ; ξ
n′

i′ )/Nk−∇fn(v
n
i′ ; ξ

n
i′)
∥∥.

(14)

We now bound EHi−1
[
∑

n∈Nk
∥ωn

i − ω̄k
i ∥2/(Nk − 1)]. Re-

call that hn
i (ξ

n
i ) ≜ ∇fn(ω

n
i ; ξ

n
i ). For any i /∈ IG, vn

i = ωn
i ,

we have hn
i (ξ

n
i ) = ∇fn(v

n
i ; ξ

n
i ). Based on Assumption 5,

EHi−1

[∑
n∈Nk

∥ωn
i − ω̄k

i ∥2/(Nk − 1)
]

≤ EHi−1

[∑
n∈Nk

(∑i−1

i′=i0
ηi′∥hn

i′ (ξ
n
i′ )−h̄k

i′ (ξ
k
i′ )∥
)2

Nk−1

]
(a)
≤ EHi−1

[
(EMηi0)

2
∑

n∈Nk
∥hn

i (ξ
n
i )−h̄k

i (ξ
k
i )∥2

Nk−1

]
≤ 4E2M2η2iH

2
k ,

(15)

where (a) is due to the convexity of (
∑i−1

i′=i0
ηi′∥hn

i′(ξ
n
i′) −

h̄
k
i′(ξ

k
i′)∥)2 and the non-increasing ηi that satisfies ηi ≤

2ηi+EM for i ∈ I+. According to (13) and (15), we obtain
(12) for i ∈ IG.

Recall that a smaller MSE implies that the realization of
the global model v̄i is closer to the average local models
ω̄i of all clients, which intuitively leads to a better algorithm
performance. Lemma 3 implies that under our proposed FedSS
algorithm, the MSE does not depend on the variation of the
number of available clients. This is ideal because this implies
that the algorithm performance will not be affected by the
time-varying client availability. In addition, when H2

k is small
(e.g., the empirical distributions of the clients from group k
is more similar), the MSE of the global model becomes small
as well. When Nk increases, the value of H2

k has a stronger
impact on the MSE.

C. Precision and Client Allocation

Let ωSS
T denote the global model obtained using our pro-

posed FedSS algorithm. We now present the bound of the
precision, i.e., EωT

[F (ωSS
T )]−F (ω⋆), under FedSS algorithm.

Theorem 1 (Precision). Let α1 = max{8β/µ− 1, EM} and
ηi = 2/(µ(i+ α1)). Under Assumptions 1−5,

EωT
[F (ωSS

T )]− F (ω⋆)

≤ BSS ≜
2β

α1 + TEM

(
C1 + CSS

2

µ2
+

2β∥ω0 − ω⋆∥2

µ

)
,

(16)

where

C1 ≜
∑

n∈N σ2
n/N

2 + 6βΓ + 8β(EM − 1)2R2, (17)

CSS
2 ≜ 4E2M2

∑
k∈K (Nk/N)

2 (
1/Sk − 1/Nk

)
H2

k , (18)

and σ2
n is the bound of the variance given in Assumption 3.

We define Γ ≜ F (ω⋆) −
∑

n∈N Eξn [fn(ω
⋆
n; ξn)]/N , where

ω⋆
n = argminω Eξn [fn(ω; ξn)].

The proof can be found in Appendix. Based on Theorem
1, we propose an optimal client allocation scheme, which
determines the number of clients sampled from each group
such that the bound of the precision, i.e., BSS, is minimized.

Proposition 1 (Optimal Client Allocation). The client alloca-
tion that minimizes the bound of the precision BSS is

Sk = HkNkS/(
∑

k′∈K Hk′Nk′), k ∈ K, (19)

where Hk is the squared root of H2
k in (11).

Proposition 1 is proven by showing that minimizing the
bound of the precision is equivalent to minimizing the bound
of the MSE EHi−1,Sτ(i)

[∥v̄i− ω̄i∥2] in (3). Then, the optimal
Sk for k ∈ K is achieved by solving the following problem:

minimize
Sk,k∈K

∑
k∈K (Nk/N)

2 (
1/Sk − 1/Nk

)
H2

k

subject to
∑

k∈K Sk = S,

Sk > 0, k ∈ K.

(20)

Problem (20) is a convex programming problem, as its ob-
jective function is the sum of multiple convex functions and
its constraints are linear. Moreover, constraint Sk > 0 can
be written as Sk ≥ 0 for k ∈ K. This is because for
any Sk approaches zero, the objective function approaches
infinity, which cannot be the optimal value to problem (20).
By checking the Karush–Kuhn–Tucker (KKT) conditions of
problem (20), we obtain the optimal Sk in (19). Proposition
1 implies that if the degree of dissimilarity of the data H2

k

or the number of clients Nk in group k is higher than that
of other groups, then more clients should be sampled from
group k. The central server can estimate H2

k across training
rounds. However, the exact value of H2

k can be obtained
only after the entire FL process is completed. Alternatively,
the central server can use proportional client allocation for
implementation simplicity. That is, Sk = SNk/N for k ∈ K.
When H2

k is identical for all k ∈ K, proportional client
allocation minimizes the bound of the precision BSS.

D. Comparison between FedSS and FedAvg Algorithms

We first introduce some notations. Based on Assumption 5,
the expected value of the variance of the stochastic gradients
from all clients is bounded. Thus, there exists an H2 that
satisfies the following inequality:

Eξi

[∑
n∈N

∥∥hn
i (ξ

n
i )− h̄i(ξi)

∥∥2
N − 1

]
≤ H2, i ∈ I+, (21)



where ξi ≜ (ξki , k ∈ K), and h̄i(ξi) ≜
∑

n∈N hn
i (ξ

n
i )/N .

Different from H2
k defined in (11), the reason for having a

non-zero H2 is that the data samples of the clients from
different groups are generated using different distributions, i.e.,
Pk(x,y) for k ∈ K. Thus, the value of H2 can be much larger
than those of H2

k for k ∈ K, and it reflects the non-IID degree
of the datasets of all clients.

It is challenging to determine the performance of FedAvg
algorithm under arbitrary client availability due to its biased
nature. Thus, we focus on the case where Ak

t /At = Nk/N
holds for k ∈ K and t ∈ T . In this case, the FedAvg algorithm
is unbiased as well, while it may achieve a higher MSE than
our proposed algorithm.5 Let BAVG denote the upper bound
of the precision of the global model under FedAvg algorithm,
i.e., EωT

[F (ωAVG
T )] − F (ω⋆) ≤ BAVG, where ωAVG

T denotes
the global model obtained using FedAvg algorithm. Let BSS-O

and BSS-P denote the corresponding bound of FedSS algorithm
under optimal and proportional client allocation, respectively.

Corollary 1 (Precision Difference). The difference between
BAVG and BSS-P, i.e., BAVG −BSS-P, is given by

8βE2M2

µ2(α1 + TEM)

(
1

S
− 1

N

)(
H2 −

∑
k∈K

NkH
2
k

N

)
. (22)

In addition, BAVG −BSS-O is not smaller than BAVG −BSS-P.

This is proven by first deriving the bound BAVG, where the
proof is simiar as that of Theorem 1, and then computing
the difference between BAVG and BSS-P or between BAVG and
BSS-O. Note that a larger gap BAVG − BSS-P or BAVG − BSS-O

implies a more significant improvement of our proposed al-
gorithm. Corollary 1 shows that when compared with FedAvg
algorithm, the improvement of our proposed algorithm linearly
increases with the non-IID degree of the clients’ datasets (i.e.,
H2) and linearly decreases with the degree of dissimilarity of
the clients’ datasets in any arbitrary group (i.e., H2

k ).

V. PERFORMANCE EVALUATION

In the experiments, clients collect data from MNIST [26]
or CIFAR-10 [27] datasets. Both datasets have been used in
many existing works on FL, e.g., [1], [7]. To evaluate how
the non-IID degree affects the performance, we consider the
following setting [24]. The dataset of a client consists of two
parts, i.e., an IID part and a non-IID part. A client first selects
data samples for the IID part by randomly selecting data from
the dataset. Then, we sort the remaining data based on their
labels. The sorted dataset is divided into equal size blocks.
Finally, each client selects data samples for the non-IID part by
randomly selecting blocks from the sorted dataset. We define
the non-IID ratio as the ratio of the number of data samples
in the non-IID part to the total number of data samples. A

5Intuitively, under such a scenario, the derived precision reduction of our
proposed algorithm (when compared with that of FedAvg algorithm) provides
a lower bound of the actual precision reduction. That is, when we relax such a
scenario setting, our proposed FedSS algorithm can improve the performance
more significantly than the derived result. We will show the results under the
relaxed setting in Section V.

higher ratio implies that the distributions for generating the
data samples of clients from different groups (i.e., Pk(x,y),
k ∈ K) are more different, and hence it implies a higher non-
IID degree of clients’ data. We follow [1] and set N = 100
and S = 10. For the time-varying client availability, we use
the dataset in [15], which contains the availability information
of streamers on a live streaming platform. We have relaxed
the assumptions and approximation considered in Section IV.

A. Client Classification

In the experiments, we relax the setting where the central
server knows the group that each client belongs to. We focus
on an important scenario with label distribution skew [2,
Section 3.1]. That is, the clients of different groups k ∈ K
have different label distributions Pk(y), while the conditional
distribution P (x | y) is identical for all groups.6 Our proposed
approach is also applicable to feature distribution skew [2, Sec-
tion 3.1] by classifying clients based on feature distributions.

Let Y ≜ {y1,y2, . . . ,yL} denote the set of discrete labels,
where L is the total number of labels. Let pn ≜ (Dl

n/Dn, l ∈
L ≜ {1, 2, . . . , L}) denote the empirical label distribution of
client n ∈ N .7 Here, Dl

n is the number of client n’s data
samples with label yl. The main idea for the central server is
to classify clients into groups by clustering their vectors pn for
n ∈ N into multiple groups using clustering algorithms (e.g.,
the expectation-maximization (EM) algorithm for Gaussian
mixture model [31]). Since most clustering algorithms require
a pre-determined number of groups, we let the central server
exhaustively try different number of groups K◦. For each K◦,
the central server determines the group classification result
C(K◦) and computes score(K◦) using Silhouette score [32]:

score(K◦) =
∑
n∈N

sout
n (C(K◦))− sin

n(C(K
◦))

Nmax{sin
n(C(K

◦)), sout
n (C(K◦))}

. (23)

Here, sout
n (C(K◦)) = mink ̸=kn

∑
n′∈Nk

∥pn−pn′∥/Nk, where
kn denotes the group that client n belongs to. The value of
sin
n(C(K

◦)) =
∑

n′∈Nkn\{n}∥pn−pn′∥/(Nkn
−1) for Nkn

\
{n} ̸= ∅, and sin

n(C(K
◦)) = sout

n (C(K◦)) otherwise. A larger
score(K◦) implies that the label distributions of the clients
within a group is more similar, and those from different groups
are more diverse. Finally, the central server obtains the best
group classification result by finding the maximum score(K◦).

It is challenging to analyze the performance of such classi-
fication approach due to the complicated relationship between
the clients’ datasets. We now focus on a special case.

Assumption 6 (Identical Label Case). We assume that vector
pn ∈ {e1, e2 . . . , eL} for any n ∈ N , where el is of size L

6Consider image recognition as an example. The label distribution skew
corresponds to the case where clients of different groups have images of
different types of objects. If some clients have images containing the same
type of object, then these images may look similar regardless of the clients.

7Although submitting the label distribution may reveal the statistics of
clients’ data, its impact on the clients’ privacy could be minimal. Take image
recognition for bus and plane classification as an example. Clients need to
submit only the number of bus and plane images that they have, and they do
not need to submit the corresponding images.



TABLE I
IMPACT OF NON-IID RATIO.

Non-IID ratio 80% 90% 95%
Rounds Speedup Rounds Speedup Rounds Speedup

(CIFAR-10 dataset)
FedAvg 35 (1×) 41 (1×) 199 (1×)
FedSS-O 14 (2.50×) 23 (1.78×) 39 (5.10×)
FedSS-P 14 (2.50×) 22 (1.86×) 47 (4.23×)
FedProx 34 (1.03×) 67 (0.61×) 114 (1.75×)
FedProxSS-O 15 (2.33×) 23 (1.78×) 43 (4.63×)
FedProxSS-P 15 (2.33×) 20 (2.05×) 46 (4.33×)
CS-UCB-Q 14 (2.50×) 28 (1.46×) 159 (1.25×)
(MNIST dataset)
FedAvg 39 (1×) 51 (1×) 89 (1×)
FedSS-O 32 (1.22×) 40 (1.28×) 44 (2.02×)
FedSS-P 30 (1.30×) 34 (1.50×) 44 (2.02×)
FedProx 37 (1.05×) 65 (0.78×) 58 (1.53×)
FedProxSS-O 34 (1.15×) 40 (1.28×) 51 (1.75×)
FedProxSS-P 36 (1.08×) 36 (1.42×) 52 (1.71×)
CS-UCB-Q 36 (1.08×) 42 (1.21×) 61 (1.50×)

and has 1 as the lth element and zeros elsewhere. That is, all
data of a client corresponds to an identical label. Meanwhile,
the set of clients whose data corresponds to label l ∈ L, i.e.,
N label

l ≜ {n | pn = el, n ∈ N}, is non-empty.

Proposition 2 (Performance Guarantee). Given i ∈ I and
k ∈ K, let convki denote the convex hull of hn

i (ξ
n
i ) for n ∈

Nk. There exists a threshold χ such that given any i ∈ I,
if ∥zk

i − zk′

i ∥ > χ for any zk
i ∈ convki and zk′

i ∈ convk
′

i ,
then the proposed client classification approach ensures H2−∑

k∈K NkH
2
k/N > 0.

This proposition is proven with two steps. First, under
Assumption 6, we can prove that K◦ = L leads to C(L) =
(N label

l , l ∈ L) based on the clustering algorithm [31]. Thus,
score(L) = 1. By showing that there does not exist any
K◦ ̸= L that ensures score(K◦) = 1, the proposed approach
sets K = L as the number of groups and classifies clients
using C(L).

Second, based on the separating hyperplane theorem [33,
Section 2.5] and the definition of H2

k for k ∈ K and H2, if
the convex hull of the stochastic gradients over the datasets
corresponding to different labels are separated (i.e., ∥zk

i −
zk′

i ∥>χ), then H2 −
∑

k∈K NkH
2
k/N > 0.

Proposition 2 shows that under Assumption 6, the proposed
client classification approach ensures BSS-O ≤ BSS-P < BAVG.

B. Experimental Results

Table I shows the number of training rounds required to
achieve a loss of 1.5 and 0.1 with CIFAR-10 and MNIST
datasets, respectively. We choose a small threshold for MNIST
dataset, as a small number of training rounds is sufficient for
achieving a small loss. The blue horizontal bars graphically
show the corresponding number of training rounds, where the
FedAvg algorithm [1] serves as the baseline. Each column with
“Speedup” shows the number of training rounds of the baseline
divided by that of the corresponding algorithm. To verify that
our proposed approach can be extended to improve the per-
formance of other synchronous FL algorithms, we incorporate

TABLE II
IMPACT OF S (WITH A NON-IID RATIO OF 95%).

S 10 20 30
Rounds Speedup Rounds Speedup Rounds Speedup

FedAvg 199 (1×) 34 (1×) 32 (1×)
FedSS-O 39 (5.10×) 25 (1.36×) 24 (1.33×)
FedSS-P 47 (4.23×) 24 (1.42×) 23 (1.39×)
FedProx 114 (1.75×) 28 (1.21×) 37 (0.86×)
FedProxSS-O 43 (4.63×) 25 (1.36×) 22 (1.45×)
FedProxSS-P 46 (4.33×) 25 (1.36×) 24 (1.33×)

stratified sampling into FedProx [23], a variant of FedAvg
algorithm. We call this extended algorithm as FedProxSS and
set µ = 0.01 (see [23]). For both FedSS and FedProxSS, we
use suffix “-O” and “-P” to refer the optimal and proportional
client allocation schemes, respectively. In practical systems,
we need to estimate the values of H2

k for k ∈ K across
training rounds and cannot know their ground-truth values
before the FL process is completed. Thus, the algorithms with
optimal allocation scheme may not necessarily achieve a better
empirical performance than those with proportional scheme.

In Table I, we compare our proposed algorithms with
FedAvg [1], FedProx [23], and CS-UCB-Q [18] algorithms.
A smaller number of training rounds implies a higher conver-
gence rate. We have the following observations. First, for both
CIFAR-10 and MNIST datasets, our FedSS and FedProxSS
algorithms always achieve a higher convergence rate than the
FedAvg algorithm. This improvement is significant when the
non-IID ratio is high. Under a ratio of 95%, the improvement
can be up to 5.1 times with CIFAR-10 dataset. Second, the
convergence rate improvement of our FedSS and FedProxSS
algorithms under CIFAR-10 is more significant than that
under MNIST. This implies that our proposed algorithms are
more beneficial when the training requires a larger number
of rounds to reach a certain level of performance. Third,
when compared with CS-UCB-Q, our proposed FedSS and
FedProxSS algorithms can improve the convergence rate by
up to 4.08 times when the non-IID ratio is high.

We now present the test accuracy results (i.e., the ratio of
correct image recognition over test dataset) with CIFAR-10
dataset. Results in Figs. 2(a) and (b) show that our FedSS
algorithm improves the test accuracy when compared with the
FedAvg algorithm. When the non-IID ratio is high (i.e., 95%),
at training round t = 30, the accuracy improvement can be
up to 53.4%. Similarly, in Figs. 2(c) and (d), our proposed
FedProxSS achieves a higher test accuracy than FedProx.
Moreover, the fluctuation of the test accuracy under our
proposed FedSS and FedProxSS algorithms are less significant
than that under FedAvg and FedProx algorithms. This validates
that our proposed algorithms can mitigate the system induced
bias and hence the unexpected variation of the global model
updates across training rounds.

From Table II, we can observe that when the number of
sampled clients is small, our proposed algorithms improve
the convergence rate more significantly. This is consistent
with Corollary 1. When compared with FedAvg and FedProx
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Fig. 2. Test accuracy: FedAvg and FedSS with a non-IID ratio of (a) 80%
and (b) 95%; FedProx and FedProxSS with (c) 80% and (d) 95%.

algorithms under S = 30, our proposed algorithms under
S = 10 can achieve a comparable convergence rate. Thus,
our proposed algorithms can reduce the number of sampled
clients while maintaining a satisfactory performance.

VI. CONCLUSION

In this work, we characterized the system induced bias of
FedAvg algorithm under time-varying client availability. We
found that such system induced bias always exists even if the
number of available clients and sampled clients is increased.
To address the system induced bias, we proposed a FedSS
algorithm by incorporating stratified sampling. We proved that
the proposed FedSS algorithm is unbiased and derived the
theoretical performance guarantee. Experimental results show
that when compared with FedAvg, FedProx, and CS-UCB-Q
algorithms, our proposed FedSS and FedProxSS algorithms
can improve the convergence rate by up to 5.1 times.

To extend this work, it may be interesting to consider
clients of the same group having diverse probabilities of being
available and quantify the system induced bias. Moreover, it
may be worthwhile to design an algorithm for detecting the
groups of clients in an online fashion without requesting the
statistics of clients’ datasets.

APPENDIX

We first present lemmas that are related to the SGD steps
at the clients. Then, we prove Theorem 1 using these lemmas.

1) Lemmas: Let gi(ξi) =
∑

n∈N ∇fn(v
n
i ; ξ

n
i )/N , where

ξi ≜ (ξni , n ∈ N ). Recall that fn(vn
i ) ≜ Eξni

[fn(v
n
i ; ξ

n
i )]. We

denote ḡi =
∑

n∈N ∇fn(v
n
i )/N . Note that Eξi

[gi(ξi)] = ḡi

for i ∈ I and ω̄i+1 = v̄i − ηigi(ξi) based on (5) and (6).
Under Assumptions 1–4, we have the following lemmas.

Lemma 4 (Bound of SGD Step). Under Assumptions 1 and
2, if ηi ≤ 1/4β, then for any i ∈ I, EHi

[
∥ω̄i+1 − ω⋆∥2

]
≤

(1−ηiµ)EHi−1,Sτ(i)

[
∥v̄i − ω⋆∥2

]
+η2i EHi

[∥gi(ξi)− ḡi∥]+
6βη2i Γ + 2EHi−1,Sτ(i)

[∑
n∈N ∥v̄i − vn

i ∥2/N
]
.

Lemma 5 (Variance of SGD Step). Under Assumption 3, for
any i ∈ I+, EHi

[
∥gi(ξi)− ḡi∥2

]
≤
∑

n∈N σ2
n/N

2.

Lemma 6 (Divergence). Under Assumption 4, if ηi is non-
increasing in i ∈ I+ and satisfies ηi ≤ 2ηi+EM , then
EHi−1,Sτ(i)

[∑
n∈N ∥v̄i−vn

i ∥2/N
]
≤4η2i (EM−1)2R2, i ∈ I.

The proofs are similar as those for Lemmas 1−3 in [28,
Section A.2] and hence are omitted here. The major difference
is that in our work, sampled clients perform SGD steps over
multiples mini-batches in each local epoch.

2) Proof for Theorem 1: Now, we prove Theorem 1. We
define ∆i+1 ≜ EHi,Sτ(i+1)

[∥v̄i+1 − ω⋆∥2] for i ∈ I+. Note
that v̄0 = ω0, we set ∆0 = ∥ω0 − ω⋆∥2. In the following,
we first bound the value of ∆i+1 for i ∈ I+. Then, we
prove Theorem 1 by bounding EHTEM−1,ST

[F (ωSS
T )]−F (ω⋆),

which is equivalent to EωT
[F (ωSS

T )]− F (ω⋆).
Bound of ∆i+1: Based on the definition of ∆i+1, we have

∆i+1=EHi,Sτ(i+1)

[
∥v̄i+1 − ω̄i+1∥2

]
+EHi

[
∥ω̄i+1 − ω⋆∥2

]
+ EHi,Sτ(i+1)

[2⟨v̄i+1− ω̄i+1, ω̄i+1− ω⋆⟩] , i ∈ I+, (24)

where the operator ⟨v̄i+1− ω̄i+1, ω̄i+1−ω⋆⟩ denotes the dot
product of vectors v̄i+1− ω̄i+1 and ω̄i+1− ω⋆.

For the right-hand side of (24), according to Lemmas 4–6,
EHi

[
∥ω̄i+1 − ω⋆∥2

]
≤ (1−ηiµ)EHi−1,Sτ(i)

[
∥v̄i − ω⋆∥2

]
+

η2iC1, i ∈ I, where C1 is defined in (17). Meanwhile, if i+1 ∈
I \ IG, then v̄i+1 = ω̄i+1 according to (6). If i + 1 ∈ IG,
then EHi,Sτ(i+1)

[2⟨v̄i+1 − ω̄i+1, ω̄i+1 −ω⋆⟩] is equal to zero
by Lemma 2. As a result, based on Lemma 3,

∆i+1 ≤ (1− ηiµ)EHi−1,Sτ(i)

[
∥v̄i − ω⋆∥2

]
+ η2i (C1 + CSS

2 ), i+ 1 ∈ IG, (25)

where CSS
2 is defined in (18).

We now bound the value of ∆i+1 for i ∈ I+. Consider
a diminishing step size ηi = α0/(i+ α1), where α0 > 1/µ
and α1 > 0 ensures that η1 ≤ min{1/µ, 1/(4β)} and ηi ≤
2ηi+EM . We can prove that for i ∈ {−1} ∪ I+,8

∆i+1 ≤ V

α1 + i+ 1
, (26)

where V ≜ max
{
(α2

0(C1 + CSS
2 ))/(α0µ− 1), (α1 + 1)∆0

}
.

This is proven using mathematical induction.
Bound EHTEM−1,ST

[F (ωSS
T )] − F (ω⋆): Based on As-

sumptions 1 and 2, we have EHTEM−1,ST
[F (ωSS

T )] −
F (ω⋆)≤β∆TEM/2. Based on (26), by setting α0 = 2/µ and
α1 = max{8β/µ− 1, EM}, we obtain (16).

8We also consider i = −1 in order to include the initial value ∆0.
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