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Abstract—In machine to machine (M2M) communication sys-
tems based on the Third Generation Partnership Project (3GPP)
Long Term Evolution (LTE), the machine type communication
(MTC) devices compete in a random access channel (RACH) to
access the network. An MTC device randomly chooses a preamble
from a pool of preambles and transmits it during the RACH. The
evolved node B (eNodeB) acknowledges the successful reception
of a preamble if that preamble is transmitted by only one device.
To reduce the burstiness of the connection requests in heavy
traffic situations, access class barring (ACB) is proposed in the
3GPP standard. Using ACB, an MTC device postpones its request
in a RACH with a probability p. In this paper, we propose
a new adaptive ACB scheme for congestion control of bursty
M2M traffic. The optimal value of the ACB depends on the total
number of MTC devices competing in a RACH. To estimate this
number, we derive a joint conditional probability distribution
function (PDF) for the number of preambles selected by zero or
one MTC device, conditioned on the number of MTC devices
that passed the ACB check. We design a maximum likelihood
estimator using this PDF. We use this estimation to dynamically
adjust the ACB factor. To further improve our estimation, we use
Kalman filtering based on the dynamics of the system. Numerical
results show that the total service time for the proposed method
is very close to the optimal case where the information of the
number of MTC devices is given.

Index Terms—Machine type communication, congestion con-
trol, access class barring, Kalman filtering.

I. INTRODUCTION

Machine to machine (M2M) communication is an enabling

communication technology which facilitates the realization of

the Internet of Things [1]. An M2M communication system

consists of a large number of machine type communication

(MTC) devices which can communicate with the MTC servers

or other MTC devices to accomplish specific tasks. It is

reported in [2] that by 2020, there will be 12.5 billion

MTC devices in the world. Due to the significant increase

in demand for M2M applications [3], several associations

including Third Generation Partnership Project (3GPP) and

the Institute of Electrical and Electronics Engineers (IEEE)

have started standardization in this area [4].

M2M communications have several applications including

monitoring of vital signs in health care system, monitoring

of the oil pipelines, and smart metering [5]. The cellular

networks can provide a suitable infrastructure for M2M com-

munications. Cellular networks provide ubiquitous connection

in most urban and rural areas. Therefore, there is no need to

deploy new base stations dedicated to M2M communication

[6]. The resources of the cellular network can be divided

between human to human (H2H) communications and M2M

communications.

Since cellular networks are mainly designed for H2H com-

munications, we need to revisit their use for M2M communica-

tions. According to [5] and [7], the number of MTC devices

within a cell can exceed tens of thousands of devices. For

event-driven M2M applications, several MTC devices may be

activated simultaneously. If all the activated devices try to

access the base station or evolved node B (eNodeB) within

a short interval, congestion would occur at the radio access

network (RAN) [8].

To request an uplink connection, an MTC device ran-

domly chooses and transmits a preamble during a logical

shared uplink channel called random access channel (RACH).

The eNodeB can distinguish a request if only one device

has selected this preamble. Several approaches have been

proposed to alleviate the congestion caused by the event-

driven applications. In [9], [10], access class barring (ACB)

mechanism has been proposed for RAN overload control. The

ACB factor allows MTC devices to transmit their connection

requests with different probabilities. Numerical results show

the performance of using a fixed ACB factor in [11], [12].

In [13], [14], it is proposed to separate the RACHs used by

H2H and M2M communications to avoid H2H users of being

blocked from accessing the network in the presence of bursty

M2M traffic.

In [15], the ACB factor and the timing advance are jointly

used to reduce the RAN congestion. In [16], a heuristic

algorithm is proposed to adaptively update the ACB factor.

This update is based on the number of successful transmissions

and the number of collisions in each time slot. This algorithm

uses the fact that by increasing the ACB factor p, the number

of transmitted preambles and the number of collisions are

increased. On this basis, if the number of the observed

collisions (i.e., simultaneous preamble transmissions) is more

than a threshold, then the algorithm will decrease the ACB

factor p for a certain value. On the other hand, if the number

of successful transmissions is more than a threshold, then the

ACB factor p will be increased.

In this paper, we investigate the problem of the overload

control in RAN. We aim to reduce the total service time in



the overload condition instead of rejecting the access in the

core network. To achieve this goal, we determine an accurate

estimate for the number of the MTC devices by using all the

available information at eNodeB (i.e., the number of successful

transmissions and the number of unused preambles in each

time slot). This estimation is used to adaptively adjust the ACB

factor based on the traffic condition. The main contributions

of this paper can be summarized as follows:

• We first derive a new joint conditional probability distri-

bution function (PDF) for the number of preambles which

are selected by zero, one, and multiple MTC devices

conditioned on the number of MTC devices that have

passed the ACB check.

• We propose a maximum likelihood estimator using this

PDF to estimate the total number of the MTC devices in

the system. This estimation is used to adaptively adjust

the ACB factor.

• To further refine the estimation, we propose to use

Kalman filter which takes into account the dynamics of

the system.

• The simulation results show that by estimating the num-

ber of MTC devices, the total service time can approach

the optimal case where the information of the number of

devices is given.

The rest of this paper is organized as follows. In Section II,

the system model and the problem formulation are presented.

In Section III, we use Kalman filter to further improve the

estimation accuracy. Performance evaluation is presented in

Section IV and Conclusions are given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider N MTC devices registered with an eNodeB.

We assume that these devices are activated and request a

connection with the eNodeB within an interval (0, TA). This

can be due to several reasons including an alarm or power

shortage recovery. Each MTC device will be activated at time

t ∈ [0, TA] with probability g(t). Two distributions have

been proposed for g(t) in [11]. One of them follows a beta

distribution and the other one follows a uniform distribution in

interval [0, TA]. In this paper, we assume that eNodeB, does

not have any knowledge about g(t).

The activation time is divided into time slots in the system.

Each time slot starts at the beginning of a RACH and ends by

the start of the next RACH. We use IA to denote the number of

time slots within the activation interval. Each time slot contains

two parts. The first part is the uplink random access channel.

The second part is used for downlink acknowledgement and

data transmission. As illustrated in Fig. 1, the ith time slot

starts at ti−1 and ends at ti. Using the PDF of g(t), the average

number of newly arrived MTC devices in the ith time slot is

λi = E [ai | N ] = N

∫ ti

ti−1

g(t) dt, i = 1, 2, . . . , IA (1)

. . . . . .

t0 = 0 t1 t2 tIA−1 tIA = TA

t
RACH RACH RACH

Fig. 1. Random access procedure in LTE networks.

where the random variable ai is the number of new arrivals

in the ith time slot and it follows a binomial distribution.

Let r denote the number of the preambles assigned by the

eNodeB for M2M communications. As a method to control

congestion, at the beginning of a time slot and before each

random access, eNodeB broadcasts an ACB factor. The ACB

factor is a real number between zero and one. It can be

changed from one time slot to another. We denote this number

in the ith time slot by pi. After receiving the ACB factor at the

beginning of time slot i, each MTC device which is activated

generates a number between 0 and 1. Then it performs an

ACB check by comparing the generated number with pi.

If this number is less than pi, then a preamble is selected

randomly and transmitted for that RACH. Otherwise, it will

be backlogged until the next time slot.

Those MTC devices that have passed the ACB check can

independently select one of the r preambles. If a preamble

is selected by more than one user, collision will occur. The

eNodeB is not able to decode a collided packet. Thus, none of

those devices can access the channel and they have to try in the

next time slots again. In time slot i, the number of successful

transmissions is denoted by si. We know that after time TA

(i.e., i > IA), no more devices activates. The dynamics of the

system can be described as follows

Ni+1 =

{

Ni − si + ai if i ≤ IA

Ni − si if i > IA
, (2)

where Ni is the sum of the backlogged users and new arrivals

at the beginning of the ith time slot.

According to [16], in time slot i, the optimal value of the

ACB factor is equal to

p∗i = min

{

1,
r

Ni

}

. (3)

The eNodeB does not have the information of the value of

Ni. Therefore, we estimate this value using the information

available at eNodeB and the dynamics of the system. In the

next subsection, we focus on estimating the value of Ni.

B. Problem Formulation

In time slot i and after the RACH, the available information

at the eNodeB is the number of unused preambles ui and the

number of successful preamble transmissions si. Let ni denote

the number of MTC devices that have passed ACB check. We

derive the probability of observing ui unused preambles and

si successful preamble transmissions conditioned on ni.

Let Aj denote the event that preamble j is selected by at

most one MTC device. Then, P (Aj) is equal to the probability

that preamble j is selected by exactly one MTC device plus



the probability that it is not selected by any MTC devices.

This probability can be written as

P (Aj) =

(

1−
1

r

)ni

+

(

ni

1

)

1

r

(

1−
1

r

)ni−1

. (4)

Let πk denote the joint probability that k specific preambles

are selected by no more than one MTC device. πk can be

written as

πk =

k
∑

l=0

(

k

l

)(

ni

l

)

l!

rl

(

1−
k

r

)ni−l

, k = 1, . . . , r. (5)

Here, the summation variable l can be interpreted as the

number of preambles that are selected by exactly one MTC

device. Since we are interested in the probability of selecting

k specific preambles, for each l, there are
(

k
l

)

ways to choose

the preambles and l MTC devices can be chosen in
(

ni

l

)

ways.

Assuming the devices as various balls and the preambles as

different baskets, these devices can be placed in the selected

preambles in l! different ways. The remaining ni − l MTC

devices are distributed among r− k preambles in (r− k)ni−l

different ways. Dividing these multiplications by rni gives

the probability πk. We notice that due to the symmetry of the

problem, πk is independent of the set of preambles (i.e., it

is valid for any set of k-preambles). The probability that any

k preambles are selected by no more than one MTC device,

denoted by Sk, can be computed as

Sk=

(

r

k

)

πk

=

(

r

k

) k
∑

l=0

(

k

l

)(

ni

l

)

l!

rl

(

1−
k

r

)ni−l

. (6)

Using the inclusion and exclusion principle [17] along with

equation (6), we can calculate the probability of P
(
⋃r

j=1 Aj

)

as

P
(

r
⋃

j=1

Aj

)

=

r
∑

k=1

(−1)k+1Sk

=

r
∑

k=1

k
∑

l=0

(−1)k+1

(

r

k

)(

k

l

)(

ni

l

)

l!

rl

(

1−
k

r

)ni−l

,

(7)

where P
(

⋃r

j=1 Aj

)

is the probability that at least one pream-

ble is selected by at most one MTC device. Let P2(ni, r)
denote the probability that each preamble is selected by at

least two MTC devices. This is a complementary event to
(
⋃r

j=1 Aj

)

and its probability can be calculated as

P2(ni, r)=1−P
(

r
⋃

j=1

Aj

)

=1−

r
∑

k=1

k
∑

l=0

(−1)k+1

(

r

k

)(

k

l

)(

ni

l

)

l!

rl

(

1−
k

r

)ni−l

=

r
∑

k=0

k
∑

l=0

(−1)k
(

r

k

)(

k

l

)(

ni

l

)

l!

rl

(

1−
k

r

)ni−l

.

(8)

The final step is to derive the joint conditional probability

that ui preambles are unused and si preambles are selected by

exactly one MTC device. There are
(

r
ui+si

)

ways to choose

ui + si preambles out of r preambles. From these preambles,

there are
(

ui+si
si

)

ways to choose si preambles. Moreover, the

si MTC devices can be chosen in
(

ni

si

)

different ways from

ni devices. These devices can be replaced in the selected

preambles in si! ways. The remaining ni−si MTC devices

are distributed among r−ui−si preambles, such that each

preamble is selected by more than one MTC device. This can

be done in (r−ui−si)
ni−siP2(ni−si, r−ui−si) different

ways. Dividing these multiplications by rni results in

P (ui, si | ni) =

(

r

ui+si

)(

ui+si

si

)(

ni

si

)

si!

×
(r−ui−si)

ni−si

rni

P2(ni−si, r−ui−si).

(9)

Now, we can estimate ni by using maximum likelihood

estimator

n̂i = argmax
ni

P (ui, si | ni). (10)

In an M2M system based on 3GPP LTE with r preambles,

ui and si are known to the eNodeB after performing a RACH.

To estimate the number of devices using the estimator in (10),

one can use Newton method. We employ another method to

reduce the complexity during its online operation. There is a

unique corresponding maximum likelihood estimation for each

observed ui and si. Thus, this problem can be solved offline

numerically. A lookup table is obtained with r rows and r

columns for different values of ui and si, respectively. We

denote this table by T . We notice that this table is computed

once and it is used throughout the operation of the system. n̂i

can be calculated using this table as

n̂i = T (ui, si). (11)

Next, we estimate Ni by using n̂i and the ACB factor pi.

The value of n̂i is known from (11). We know that Ni is a

random variable which follows a negative binomial distribution

with parameters ni and pi. We estimate this distribution by

replacing ni with its approximate value n̂i. Thus, we can

calculate the mean square estimation of Ni, which is the
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Fig. 2. A dynamic linear system.

expectation of the random variable Ni conditioned on our

observation n̂i as

N̂i
∆
= E[Ni | n̂i] =

n̂i

pi
=

T (ui, si)

pi
. (12)

Moreover, the variance of Ni can be calculated as

Var[Ni | n̂i] =
n̂i(1− pi)

p2i
=

(1 − pi)

p2i
T (ui, si). (13)

We will use this variance in the next section. Observing ui

and si at time slot i, one can set the ACB factor pi+1 for time

slot i + 1 adaptively using the equations (2) and (12) along

with the fact that p∗i = min{1, r
Ni

}. We have

p̂i+1 =

{

min{1, r

N̂i−si+E[ai]
} if i ≤ IA

min{1, r

N̂i−si
} if i > IA

. (14)

Due to the fact that g(t) is unknown at eNodeB, it does not

have the value of E[ai]. However, we know that the time

between two consecutive RACHs is not significant. Assuming

that variations in g(t) is negligible between two consecutive

RACHs, one can approximate E[ai] by E[ai−1]. An estimate

for E[ai−1] can be obtained using equation (2) along with the

fact that ai−1 ≥ 0 as max{0, N̂i − N̂i−1 + si−1}. Therefore,

we have

E[ai] ≈ max{0, N̂i − N̂i−1 + si−1}. (15)

Thus, p̂i+1 can be calculated as

p̂i+1 =

{

min{1, r

N̂i−si−max{0,N̂i−N̂i−1+si−1}
} if i ≤ IA

min{1, r

N̂i−si
} if i > IA

.

(16)

Note that for the first time slot, we can compute the optimal

ACB by using (3). Moreover, we have N̂0 = 0 and s0 = 0.

III. FURTHER IMPROVEMENT BY USING KALMAN FILTER

In the previous section, we only use the information of each

time slot at eNodeB to estimate the ACB factor. In this section,

we take into account the correlation between Ni+1 and Ni in

addition to the information about the number of preambles

selected by zero and one MTC device. We estimate the state

of the linear system Ni by using Kalman filter [18]. Since the

distribution of ai is unknown at eNodeB, we only use this

estimation for the time slots greater than IA, where there is

+ + +Delay Ki

N̂i+1|i

N̂i|i−1

ỹiN̂i|i

N̂i
si

−

−

Fig. 3. Structure of the Kalman filter.

no more incoming traffic. The dynamics of the system, which

is illustrated in Fig. 2, can be modeled as

Ni+1 = Ni − si, (17)

N̂i = Ni + νi, (18)

where νi is the estimation error. In (18), N̂i is the estima-

tion obtained from (12). In order to use Kalman filter, it

is necessary that νi are zero mean independent, identically

distributed (i.i.d.) Gaussian random variables for all i ≥ IA.

Ni follows a negative binomial distribution with mean N̂i

and variance Var[Ni | n̂i]. The negative binomial distribution

can be approximated as a normal distribution under special

circumstances. Then, random variables νi for all i are inde-

pendent, zero mean Gaussian random variables with variance

Var[Ni | n̂i] given in (13).

We employ the Kalman filter to find an estimation of Ni

based on the measurements up to time slot i. Let Zi

∆
=

{N̂IA , N̂IA+1, . . . , N̂i}, then the a priori estimation of Ni+1

is defined as N̂i+1|i = E[Ni+1 | Zi], which is the maxi-

mum likelihood estimation. Here, the term a priori means

that the estimator has used the observations before time slot

i + 1. The a posteriori estimate of Ni+1 is also defined as

N̂i+1|i+1 = E[Ni+1 | Zi+1]. The Kalman filter is used to

derive these two estimations. According to [18], the Kalman

filter has two distinct phases, namely predict and update. In

the predict phase, the a posteriori estimate of the previous

time slot is used to provide a priori state estimate N̂i+1|i as

N̂i+1|i = N̂i|i − si, (19)

Pi+1|i = Pi|i, (20)

where in (20), Pi+1 | i and Pi | i are a priori and a posteriori

error covariances, respectively. They are defined as

Pi+1|i
∆
= E[(Ni+1 − N̂i+1|i)

2 | Zi], (21)

Pi|i
∆
= E[(Ni − N̂i|i)

2 | Zi]. (22)

In the update phase, the a priori estimate is combined with

the current observation to refine the estimation. This improved

estimate is called a posteriori state estimate. It is denoted by
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Fig. 4. The total service time vs the number of MTC devices N with r = 15

and IA = 100.

N̂i+1|i+1 and can be calculated as

ỹi+1 = N̂i+1 − N̂i+1|i, (23)

Ki+1 =
Pi+1|i

Pi+1|i + Ri+1
, (24)

N̂i+1|i+1 = N̂i+1|i +Ki+1ỹi+1, (25)

Pi+1|i+1 = (1−Ki+1)Pi+1|i, (26)

where ỹi+1 is the measurement residual, which is the dif-

ference of N̂i+1 and N̂i+1|i. Moreover, Ki+1 is the optimal

Kalman gain. In (24), Ri+1 is the covariance of the observation

noise νi+1, which is equal to Var[Ni+1 | n̂i+1] and can be

calculated from (13). The structure of Kalman filter used in

our system is depicted in Fig. 3. As mentioned earlier, we

only employ Kalman filter in time slots after IA. Therefore,

we can use N̂IA as an initialization for Kalman filter. We can

also initialize PIA|IA by Var[NIA | n̂IA ].
The estimated value for the optimal ACB factor at the

beginning of time slot i + 1 for i ≥ IA can be calculated

using equation (3) as

p̂i+1 = min

{

1,
r

N̂i+1|i

}

. (27)

Note that the eNodeB should be able to determine the ACB

factor pi+1 before the beginning of time slot i+1. That is the

reason the a priori estimate N̂i+1|i is used in (27).

IV. PERFORMANCE EVALUATION

In this section, the proposed methods with and without

using Kalman filter are compared with the case optimal ACB

is employed. To obtain the optimal ACB curve, we assume

that the eNodeB is aware of the total number of the active

MTC devices in the system and sets the ACB factor using

(3). We notice that in reality, such information is not available

at eNodeB. In our simulations, we measure the total service

time. It is the mean number of the required RACHs to finish

5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

Number of Preambles r

T
o
ta
l
S
er
v
ic
e
T
im

e
(N

u
m
b
er

o
f
R
A
C
H
s)

Without Kalman filter
With Kalman filter
Optimal ACB
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all the transmissions. In our simulations, first, for a given

number of preambles, the total service time versus the total

number of MTC devices activated in the activation interval is

plotted. Then, for a given number of MTC devices, we plot

the total service time versus the number of preambles. In the

simulations, we assume that each MTC device is activated

under beta distribution with parameters α = 3, β = 4 as [5]

g(t) =
tα−1(TA − t)β−1

T
α+β−1
A B(α, β)

, (28)

where B(α, β) is the beta function [19].

For the first simulation, the number of RACHs within the

activation time and the number of preambles are IA = 100
and r = 15, respectively. We use IA = 100 for all the

simulations. r = 15 is a suggested value for M2M systems

[5]. Fig. 4 shows the total service time as the number of

the MTC devices varies from 5000 up to 30000. It can be

seen that the method with Kalman filter performs close to
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the optimal curve. When Kalman filter is not employed, the

eNodeB estimates the number of MTC devices and adjusts

the ACB factor accordingly. Since the Kalman filter uses not

only the information in the current time slot but also the

information from the previous time slots, one can expect that

it has better performance compared to the case Kalman filter

is not employed.

For the second simulation depicted in Fig. 5, the total

number of MTC devices N is equal to 10000 and the number

of assigned preambles for M2M communication varies from

5 to 40. As we expect, the total service time decreases as

the number of the preambles increases. This figure confirms

the observation that the proposed scheme performs close to

the optimal ACB case. In Fig. 6, the variation of ACB pi
over time is presented while we run the simulation once. In

this figure, the total number of MTC devices and the number

of preambles are N = 1000 and r = 15, respectively. For

time slots i ≤ IA = 100, the ACB factor of the proposed

method with Kalman filter is the same as the method without

Kalman filter. However, for the subsequent time slots, the ACB

factor obtained by employing Kalman filter is very close to the

optimal ACB with smooth variations. Intuitively, this results

from the fact that Kalman filter prevents rapid changes in the

ACB factor by taking into account the correlation between

different time slots. The variations of the ACB factor for the

scheme without Kalman filter is high in some cases however.

Fig. 7 shows the variation of the number of MTC devices Ni

versus time slot with the same parameters used to obtain Fig.

6. Since we use Kalman filter for the time slots greater than IA,

Fig. 7 only includes time slots i > IA. In this figure, for the

method without Kalman filter, the variation of the estimated

Ni is significant. However, in the method with Kalman filter,

the variation of this estimation is smooth near its actual value.

V. CONCLUSION

In M2M systems, for the cases that the activation time of

the MTC devices has a bursty pattern, the RAN congestion

is inevitable. In this paper, we presented a new overload

control scheme for bursty M2M traffic in LTE networks. In

the proposed scheme, we used both the slot information and

the dynamics of the system to estimate the total number of the

backlogged MTC devices in each time slot. We first derived

the joint conditional PDF for the number of unused preambles

and the number of successful transmissions conditioned on

the number of MTC devices that have passed the ACB

check. Then, we estimated this number by using a maximum

likelihood estimator. We used this estimation to adjust the ACB

factor dynamically. Finally, we used Kalman filter to further

improve the estimation accuracy. Simulation results show that

the proposed method performs very close to the optimal case.

For future work, we will consider dynamic preamble assign-

ment. Another direction is to modify the approach to consider

delay sensitive and delay tolerant applications separately.
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