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Abstract—Viewport prediction is a key enabler for 360◦ video
streaming over wireless networks. To improve the prediction
accuracy, a common approach is to use a content-based viewport
prediction model. Saliency detection based on traditional convo-
lutional neural networks (CNNs) suffers from distortion due to
equirectangular projection. Also, the viewers may have their own
viewing behavior and are not willing to share their historical
head movement with others. To address the aforementioned
issues, in this paper, we first develop a saliency detection model
using a spherical CNN (SPCNN). Then, we train the viewers’
head movement prediction model using personalized federated
learning (PFL). Finally, we propose a content-based viewport
prediction framework by integrating the video saliency map and
the head orientation map of each viewer using fusion techniques.
The experimental results show that our proposed framework
provides higher average accuracy and precision when compared
with three state-of-the-art algorithms from the literature.

Index Terms—Personalized federated learning, saliency detec-
tion, 360◦ video, viewport prediction.

I. INTRODUCTION

A 360◦ video provides immersive viewing experience with
the sense of total presence for the viewers. Delivering the en-
tire 360◦ video to the viewers require much higher bandwidth
compared to the conventional two-dimensional (2D) video [1].
However, at any time, each viewer watching a 360◦ video
perceives it only from one direction. The region of the video
that the viewer is watching at any given time is called a
viewport. The center of the viewport is known as viewpoint.
To efficiently utilize the wireless network bandwidth, each
video frame is divided into tiles. Then, the tiles covering the
viewport are delivered to the viewers with maximum possible
quality [2]. Most of the 360◦ video streaming techniques
require the prediction of the viewport of each viewer [3].

Recently, deep neural networks (DNNs) are utilized in
viewport prediction models to improve the prediction accu-
racy. Viewport prediction can be categorized into content-
independent and content-based approaches [4]. In content-
independent approach, the viewers’ historical head movement
is used for viewport prediction. Liu et al. in [5] proposed long
short-term memory (LSTM) and gated recurrent unit (GRU)
architectures to predict the viewers’ viewports. Chao et al. in
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[6] proposed a transformer-based architecture to predict the
future viewports. Since DNNs require a large amount of data
for training, each viewer cannot obtain a prediction model with
high accuracy only by using its local historical data. Moreover,
due to privacy concerns, the viewers may not be willing to
share their historical data with others.

Recently, federated learning (FL) has been employed to
enable different viewers to train a single learning model
collaboratively under the coordination of a central server.
The viewers do not need to share their local raw data with
others. FedAvg [7], which is a popular FL algorithm, has
been used in [8] for viewport prediction. However, viewers
may have different viewing patterns and this can lead to data
heterogeneity among the viewers’ historical data. The data
heterogeneity issue can be addressed by using personalized FL
(PFL) algorithms. In PFL, a personalized model is obtained
for each viewer using techniques such as meta-learning [9]
and model decomposition [10]. A PFL algorithm based on
meta-learning has been used in [11] for viewport prediction.
However, both [8] and [11] use a content-independent viewport
prediction approach.

In content-based viewport prediction approach, both the
video content and the viewers’ historical head movement
are used to predict the future viewports. In particular, the
content of the video frames is used for saliency detection. The
performance of viewport prediction can further be improved by
taking into account the historical head movement of the view-
ers [12]. Nguyen et al. in [13] proposed a deep convolutional
neural network (CNN), trained by transfer learning, to obtain
the saliency map of each 360◦ video frame. Then, an LSTM
architecture is used to predict the viewport. Wang et al. in [2]
proposed a convolutional LSTM architecture as the learning
model for content-based viewport prediction. The proposed
algorithms in [2] and [13] are centralized viewport prediction
algorithms. In addition, both [2] and [13] use traditional CNNs
in their saliency detection model.

To facilitate storing and processing of 360◦ videos, the
videos are usually projected onto the 2D plane. Equirectan-
gular projection (ERP) is a commonly used projection format.
However, planar projection of 360◦ video frames can lead
to space-varying distortions [12]. This makes translational
weight sharing in traditional CNNs to be ineffective for 360◦



videos. Spherical convolution for an ERP projected video
frame has been introduced in [14], which can impose both
the translational and rotational invariance of the weights in
the CNNs. Recently, employing spherical convolution in the
U-Net architecture has shown superior performance in saliency
detection for 360◦ videos [12], [14]. However, the work in [14]
leverages the saliency map of the previous frame as the model
input. Thus, it is prone to error propagation. The algorithm in
[12] requires feedback from the viewers about their viewport.

In this work, we propose a content-based viewport pre-
diction framework, which to the best of our knowledge is
the first one using PFL. We decouple the viewport prediction
model into two parts. The first part is responsible for saliency
detection. The second part is responsible for head movement
prediction. The contributions of this paper are as follows:

• We develop a DNN architecture based on spherical CNN
(SPCNN) to enable efficient saliency detection for 360◦

video frames. The model is trained by the server without
the need for previous saliency maps or any feedback from
the viewers to be used as its input.

• To tackle the viewers’ privacy concerns and data hetero-
geneity issue, we propose to train the head movement
prediction model using a PFL algorithm.

• We use fusion techniques to enable content-based view-
port prediction. In particular, we integrate the outputs
of the saliency detection and head movement prediction
models using fusion techniques. Then, the viewport is
predicted based on the obtained fused feature map.

• The results on a public 360◦ video dataset [14] show
that for 6× 8 tiling pattern, our proposed framework can
achieve an accuracy which is on average 4.35%, 5.88%,
and 7.46% higher than that of the viewport prediction
algorithms proposed in [11], [8], and [4], respectively.

This paper is organized as follows. The saliency detection
model is described in Section II. Our proposed PFL-based
head movement prediction algorithm is presented in Sec-
tion III. In Section IV, we present our proposed viewport pre-
diction framework. In Section V, we evaluate the performance
of the proposed framework. Section VI concludes the paper.

II. SPCNN-BASED SALIENCY DETECTION MODEL

In this section, we first describe the spherical convolution
for 360◦ video frames that are projected onto a 2D plane.
We then present our proposed SPCNN-based architecture for
saliency detection.

A. Spherical Convolution

A spherical manifold S2 is defined as a set of points located
on the surface of a unit sphere in R3. We parameterize S2 by
the latitude and longitude angles θ and ϕ, respectively. The
latitude angle θ, where 0 ≤ θ ≤ π, is the angle measured
from the z-axis. The longitude angle ϕ, where 0 ≤ ϕ ≤ 2π, is
the angle measured from the x-axis after projection onto the
x−y plane. The vertical and horizontal coordinates of an ERP
projected video frame are the latitude and longitude angles
on the sphere, respectively. Since the areas near the poles are

required to be stretched horizontally, ERP results in greater
distortion in the polar regions of the sphere. Each video frame
of a 360◦ video can be represented as a continuous function λ
on a spherical manifold S2. We have λ : S2 → RK , where
K is the number of channels (e.g., K = 3 for RGB color
system). Let k denote a kernel function on S2. Similar to [14],
we consider the kernel function k as a sphere cap. For an
ERP projected video frame, the spherical convolution can be
expressed as follows:

(λ ∗ k)(θ, ϕ)

=

∫ 2π

0

∫ π

0

λ(θ′, ϕ′)k(θ′ − θ, ϕ′ − ϕ) sin θ′ dθ′ dϕ′, (1)

where sin θ′ is used to compensate the ERP distortion.
Given (1), sampling along the vertical and horizontal coordi-
nates enables discrete spherical convolution on ERP projected
video frames. We denote the sets of sampling points along the
vertical and horizontal coordinates by Θ and Φ, respectively.

B. Saliency Detection Model
A saliency detection model determines the saliency map

for each video frame. Consider a server containing a training
dataset that consists of ERP projected 360◦ video frames and
their corresponding saliency maps. LetMsrv = {1, . . . ,M srv}
denote the set of 360◦ videos in the server’s training dataset.
Since the duration of each video is different, we denote the set
of indices corresponding to frame timestamps of 360◦ video
m ∈Msrv by T m = {1, . . . , Tm}. For 360◦ video m ∈Msrv,
let vmt and smt denote the video frame and its corresponding
saliency map at timestamp t ∈ T m, respectively. We develop a
saliency detection model which consists of a contraction path
and an expansion path. Different from U-Net, which is based
on traditional CNNs, our proposed model uses a SPCNN-
based architecture. Moreover, we employ a convolutional
block attention module (CBAM) [15] in our proposed saliency
detection model to refine the intermediate output features using
the channel attention module (CAM) and spatial attention
module (SAM). The CAM and SAM extract the inter-channel
and inter-spatial relationship of the features, respectively.

As shown in Fig. 1, the saliency detection model takes the
current video frame vmt as input. The output is the predicted
saliency map ŝmt . The input passes through a contraction path,
a spherical convolutional layer, a CBAM, and an expansion
path. The contraction path consists of three spherical convo-
lutional layers, each of which is followed by a 2 × 2 max
pooling layer. In the expansion path, there are three spherical
convolutional layers, each after an unpooling layer.

Let ωsrv denote the learning parameters of the saliency
detection model. We have ŝmt = gsrv(vmt ;ωsrv), where gsrv(·)
denotes the prediction function based on the considered
SPCNN-based architecture. The server aims to determine ωsrv

by minimizing the following loss function:

Lsrv(ωsrv) =
1

M srv

∑
m∈Msrv

1

Tm

∑
t∈T m

∑
θ∈Θ

∑
ϕ∈Φ

β(θ, ϕ)

× (ŝmt (θ, ϕ)− smt (θ, ϕ))
2
, (2)



Fig. 1: SPCNN-based architecture for saliency detection.

where β(θ, ϕ) is a weighting coefficient and is equal to the
solid angle of the sampled area normalized by the solid angle
of a unit sphere (i.e., 4π). Lsrv(ωsrv) is minimized using
stochastic gradient descent (SGD) and a fixed learning rate
over training epochs.

III. PFL-BASED HEAD MOVEMENT PREDICTION

In this section, we first describe a GRU-based DNN archi-
tecture for predicting the viewers’ head movements. Then, we
propose a PFL algorithm which enables the viewers to train
their head movement prediction models without sharing their
historical data with others including the server.

A. Head Movement Prediction Model
The viewers can watch 360◦ videos with head mounted

displays (HMDs). An HMD is able to measure the head
movement of each viewer. The measured head movement
can be represented by the latitude and longitude angles. Let
U = {1, . . . , U} denote the set of viewers. Let Mu =
{1, . . . ,Mu} denote the set of videos for which viewer
u ∈ U has its head movement measurements in its training
dataset. Let T m,u = {1, . . . , Tm,u} denote the set of indices
corresponding to frame timestamps of 360◦ video m ∈ Mu

watched by viewer u ∈ U . At timestamp t ∈ T m,u, we denote
the head movement of viewer u by om,u

t = (θm,u
t , ϕm,u

t ).
We use a GRU-based DNN architecture for head movement
prediction.

As shown in Fig. 2, the head movement prediction model
takes a sequence with length Q of the current and previous
head movements, i.e., Om,u

t = {om,u
t−Q+1, . . . ,o

m,u
t } as input,

and returns the predicted head movement at the (t + P )-th
timestamp, i.e., ôm,u

t+P , where P denotes the prediction window.
The head movement prediction model consists of two layers.
Each layer has Q GRU cells. Let d denote the number of
features in the hidden state of each GRU cell. h1

0 and h2
0 ∈

Rd are the initial hidden states of the first and second layers,
respectively. h1

0 and h2
0 are initialized to zero for the first input

sequence of the head movements corresponding to each video
m ∈ Mu watched by viewer u ∈ U . The output of the last
GRU cell in the second layer passes through a fully connected
(FC) layer. The output of the FC layer is the predicted head
movement at the (t+ P )-th timestamp.

For each viewer u ∈ U , let ωu denote the learning parame-
ters of the head movement prediction model. We have ôm,u

t+P =

Fig. 2: GRU-based head movement prediction model.

gu(Om,u
t ;ωu), where gu(·) denotes the prediction function

based on the considered GRU-based DNN architecture. Each
viewer u aims to determine ωu by minimizing the following
loss function based on its local historical head movement:

Lu(ωu) =
1

Mu

∑
m∈Mu

1

Tm,u

∑
t∈T m,u

∥∥ôm,u
t+P − om,u

t+P

∥∥2 . (3)

B. Model Training Using PFL

In this section, we propose a PFL algorithm for training
the head movement prediction model. The proposed PFL
algorithm can address the data heterogeneity issue and pre-
serve the viewers’ privacy. Model decomposition has recently
emerged as a promising method for PFL. For model de-
composition, we use an approach similar to FedBABU [10],
which has been used for image classification tasks. For each
viewer u ∈ U , we decompose the learning model ωu into a
global learning model ωGRU and a local head model ωFC,u.
We have ωu = {ωGRU,ωFC,u}. ωGRU and ωFC,u contain the
learning parameters of the GRU cells and the FC layer in
Fig. 2, respectively. All the local head models ωFC,u, u ∈ U ,
are initialized with the same random weights ωFC and are
kept fixed during training of the global model ωGRU. After
convergence to a global model, each viewer u obtains its
personalized prediction model including its personalized local
head model ωFC,u by fine-tuning the learning model ωu based
on its local historical data.

The global model ωGRU is trained through communication
rounds. Let R = {1, . . . , R} denote the set of communica-
tion rounds. At the beginning of each communication round
r ∈ R, the viewers download the latest global model ωGRU

r−1

from the server. ωGRU
0 is initialized randomly by the server.

Each viewer u ∈ U initializes its global model ωGRU,u
r by

the downloaded global model. We have ωGRU,u
r = ωGRU

r−1 ,



Algorithm 1: PFL-based Training Algorithm
1: Set the number of communication rounds R; the number of

local update iterations n; the learning rate η.
2: Initialize randomly ωGRU

0 and ωFC.
3: Set ωFC,u := ωFC, u ∈ U .
4: for each communication round r ∈ R := {1, . . . , R} do
5: for each viewer u ∈ U in parallel do
6: Given ωGRU

r−1 and Lu(ωu) in (3), perform n local
update iterations to obtain the updated ωGRU,u

r .
7: end for
8: ωGRU

r :=
∑

u∈U
Nu

N
ωGRU,u

r .
9: end for

10: for each viewer u ∈ U in parallel do
11: Fine-tune the learning model ωu := {ωGRU

R ,ωFC,u} using
the local historical data.

12: end for

u ∈ U . Then, each viewer performs n local update itera-
tions to update the global model using its local historical
data. For each local update iteration, we have ωGRU,u

r ←
ωGRU,u

r −η∇ωGRULu(ωu)
∣∣
ωGRU=ωGRU,u

r
, where η is the learning

rate. After finishing the local update iterations, each viewer
uploads its updated global model ωGRU,u

r to the server. At
the end of each communication round r, the server computes
the new global model ωGRU

r by aggregating the updated
global models it has received from the viewers. We have
ωGRU

r =
∑

u∈U
Nu

N ωGRU,u
r , where Nu =

∑
m∈Mu Tm,u is

the number of data samples for viewer u and N =
∑

u∈U Nu.
Algorithm 1 summarizes our proposed PFL-based training
procedure for the head movement prediction model.

IV. VIEWPORT PREDICTION FRAMEWORK

In this section, we present a framework to predict the
viewport at the (t + P )-th timestamp, when a viewer is
watching a 360◦ video at timestamp t. Let M denote the set
of 360◦ videos that can be streamed from the server to the
viewers. Consider viewer u ∈ U is watching video m ∈ M.
At timestamp t, if the server does not have the saliency map
for video frame vmt+P , the pre-trained SPCNN-based saliency
detection model is used by the server to determine the saliency
map ŝmt+P . The viewer u also uses its personalized pre-trained
head movement prediction model to obtain ôm,u

t+P based on its
current and previous head movements. The viewer sends the
predicted head movement ôm,u

t+P to the server. Given ôm,u
t+P as

the viewpoint, the server applies a Gaussian kernel to obtain
the corresponding head orientation map χm,u

t+P for viewer u.
Then, by using fusion techniques, the server integrates the
predicted saliency and head orientation maps to obtain a fused
feature map fm,u

t+P .
Different fusion techniques have been proposed in the

literature to determine a fused feature map from multiple low-
level feature maps [12], [16]. In this work, we investigate
four fusion techniques, namely, mean, max, and, as well as
regional. For mean fusion, we have fm,u

t+P =
ŝmt+P+χm,u

t+P

2 . For
max fusion, we have fm,u

t+P = max{ŝmt+P , χ
m,u
t+P }. For and

fusion, we have fm,u
t+P = ŝmt+P × χm,u

t+P . For regional fusion,
we first normalize each feature in the maps ŝmt+P and χm,u

t+P

Fig. 3: Obtaining the fused feature map and the selected tiles
using the regional fusion technique.

to be within [0, 1]. Then, as shown in Fig. 3, the predicted
saliency and head orientation maps are divided into tiles. The
maximum feature value is obtained in each tile. Let γs and γχ
denote the average of the maximum feature values over all tiles
of ŝmt+P and χm,u

t+P , respectively. For regional fusion, we have
fm,u
t+P = (1− γs)

2ŝmt+P + (1− γχ)
2χm,u

t+P . After obtaining the
fused feature map fm,u

t+P , considering the field-of-view (FoV)
of the HMD, we predict the viewer’s viewport based on the
adjacent tiles with maximum feature values.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Dataset: We conduct our experiments using a public 360◦

video dataset [14]. The dataset consists of 104 videos includ-
ing five sports events: basketball, parkour, BMX, skateboard-
ing, and dance. There are 27 viewers. Each video has been
watched by at least 18 viewers. For each viewer, the eye gaze
points are recorded when watching the videos. We consider 80
and 24 videos in the training and test datasets, respectively.
Parameters Setting: The FoV of the HMD is set to 90◦ ×
135◦. For training the SPCNN-based saliency detection model,
we set the number of training epochs and the learning rate to be
100 and 0.01, respectively. For the head movement prediction
model, we set Q = 10 and d = 64. In Algorithm 1, we set
R = 80, n = 2, and η = 0.01. Unless stated otherwise, we
consider 6 × 8 tiling pattern and P = 5. We perform the
experiments in Python 3.6 with PyTorch library.
Benchmarks: We compare the performance of our proposed
content-based viewport prediction framework with the follow-
ing viewport prediction algorithms as benchmarks:

• Combined field-of-view (CFOV) prediction [4]: The
viewport is predicted by combining the current viewport
and another viewport obtained by spherical walk.

• GRU-based viewport prediction using FedAvg [8]: The
viewport is predicted using the head movement prediction
model trained by FedAvg.

• Common-personalized federated averaging (ComPer-
FedAvg) prediction [11]: The head movement prediction
model is trained by a PFL algorithm based on meta-
learning.

Performance Metrics: We evaluate the viewport prediction
performance using the accuracy and precision [2] as the
performance metrics. Let Mts,u = {1, . . . ,M ts,u} denote
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Fig. 4: (a) Average accuracy and (b) average precision of our
proposed viewport prediction framework using different fusion
techniques.

the set of videos watched by viewer u ∈ U from the test
dataset. Let Υ̂m,u

t and Υm,u
t , respectively, denote the set of

tiles selected based on the predicted viewport and the set of
tiles covering the ground truth viewport of viewer u ∈ U
watching video m ∈ Mts,u at timestamp t ∈ T m,u. The
accuracy and precision are defined as αm,u

t =
|Υ̂m,u

t ∩Υm,u
t |

|Υ̂m,u
t ∪Υm,u

t |

and ρm,u
t =

|Υ̂m,u
t ∩Υm,u

t |
|Υ̂m,u

t | , respectively, where | · | denotes
the cardinality of a set. A higher accuracy implies a lower
number of missing tiles in set Υ̂m,u

t and a higher precision
means lower number of incorrectly selected tiles in set Υ̂m,u

t .
For each viewer u ∈ U , the average accuracy and preci-
sion are obtained as 1

M ts,u

∑
m∈Mts,u

1
Tm,u

∑
t∈T m,u αm,u

t and
1

M ts,u

∑
m∈Mts,u

1
Tm,u

∑
t∈T m,u ρm,u

t , respectively.

B. Experimental Results

Effect of Different Fusion Techniques: In Fig. 4, we study
the impact of different fusion techniques on the performance
of our proposed viewport prediction framework. Fig. 4 shows
the average accuracy and precision for the viewers who have
watched all the videos in the test dataset. As shown in Fig.
4, and fusion can achieve a higher average accuracy and
precision compared with other fusion techniques. A region
should be salient simultaneously in both the video frame
saliency map and the head orientation map to be considered
in the fused feature map obtained by and fusion. As shown
in Fig. 4, for all the viewers, and fusion ensures an average
accuracy and precision higher than 0.67 and 0.74, respectively.

1 2 3 4 5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

(a)

1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

(b)

Fig. 5: (a) Average accuracy and (b) average precision versus
prediction window P . We use and fusion for our proposed
framework.

Effect of Increasing the Prediction Window: A viewer
watching a 360◦ video can prefetch the tiles for the next
timestamps. Thus, the delay in delivering the video frames
can be reduced by increasing the prediction window P . Fig. 5
shows the average accuracy and precision across the viewers
who have watched all the videos in the test dataset versus P .
Increasing P leads to the prediction performance degradation
for all the algorithms. However, our proposed content-based
viewport prediction framework provides a higher average ac-
curacy and precision when compared with other benchmarks.

Effect of Different Tiling Patterns: In Table I, we consider
that each video frame can be divided into either 2× 3, 4× 6,
or 6 × 8 tiles. We compare the average accuracy of our pro-
posed framework with the benchmarks. The results in Table I
illustrate that all the algorithms have higher performance for
4× 6 tiling pattern. Since the FoV of the HMD is fixed, sets
Υ̂m,u

t and Υm,u
t contain less tiles for 2×3 tiling pattern. Thus,

compared to 4× 6 tiling pattern, missing a correct tile in set
Υ̂m,u

t may have much impact on αm,u
t . As shown in Table I,

for 2 × 3 tiling pattern, our proposed framework achieves a
higher accuracy by using regional fusion. For 6 × 8 tiling
pattern, our proposed framework using and fusion achieves the
prediction accuracy which is on average 4.35%, 5.88%, and
7.46% higher than that of the proposed algorithms in [11], [8],
and [4], respectively. Thus, tiling pattern and fusion techniques
are two important factors for 360◦ video streaming using our
proposed viewport prediction framework.



TABLE I: The average accuracy of our proposed framework
and the benchmarks for different tiling patterns.

Algorithm Tiling Pattern
2× 3 4× 6 6× 8

Our Proposed Framework using and Fusion 0.74 0.77 0.72
Our Proposed Framework using regional Fusion 0.75 0.77 0.65

ComPer-FedAvg Algorithm [11] 0.71 0.76 0.69
Viewport Prediction using FedAvg [8] 0.70 0.75 0.68

CFOV Algorithm [4] 0.67 0.72 0.67

VI. CONCLUSION

In this work, we proposed a framework for content-based
viewport prediction. To address the projection distortion prob-
lem caused by ERP for 360◦ videos, we exploited spherical
convolution and developed a SPCNN-based architecture for
saliency detection. We used a GRU-based DNN architecture
for head movement prediction. We addressed the viewers’
privacy concerns and data heterogeneity issue by using a PFL
algorithm for training the head movement prediction model.
Finally, to predict the viewport of each viewer, we integrated
the video saliency map and the viewer’s head orientation
map using fusion techniques. We showed that our proposed
framework can achieve a higher average accuracy than the
state-of-the-art viewport prediction algorithms proposed in [4],
[8], and [11]. One direction for future work is to consider
priority weights for the tiles based on their feature values in
the fused feature map for efficient 360◦ video delivery. Also,
in practical FL systems, the viewers may have diverse and lim-
ited computational capabilities. One can consider employing
masking vectors in a PFL algorithm (such as the PerFedMask
algorithm proposed in [17]) to address both data and device
heterogeneity issues.
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