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Abstract—360◦ videos demand substantial bandwidth to de-
liver an immersive viewing experience to users. In wireless
networks, this high data rate demand can be accommodated
by utilizing the terahertz (THz) frequency band. However, THz
band communications are susceptible to self-blockage. To ensure
reliable transmission, this paper studies the streaming of 360◦

videos over THz wireless systems using multiple multi-antenna
access points (APs). Users’ requests for video tiles give rise to an
optimization problem that involves asynchronous bitrate selection
for those tiles and beamforming design for the APs. We formulate
this problem as a macro-action decentralized partially observable
Markov decision process (MacDec-POMDP). To efficiently tackle
this problem for multiple users, we propose an asynchronous
deep reinforcement learning (DRL) algorithm using a multi-
agent actor-critic method to determine the bitrate selection
policy. The APs’ beamforming is determined by solving an
optimization problem using the weighted minimum mean square
error (WMMSE) algorithm. Results show that our proposed
approach provides a higher average quality of experience (QoE)
for the users when compared with two benchmark algorithms.

I. INTRODUCTION

In 360◦ video streaming, users delve into an immersive
visual experience using a head-mounted display (HMD). Com-
pared to conventional video streaming, 360◦ video requires
significantly higher bandwidth because it provides users with
a high-resolution 360◦ visual field across three degrees of
freedom [1]. The abundant bandwidth available in the tera-
hertz (THz) frequency band can overcome this challenge [2].

Wireless systems operating in THz frequency band en-
counter a number of challenges, such as channel impairment
due to molecular absorption and susceptibility to blockage
by obstacles. Moreover, when a user with its HMD turns
around to view another part of a 360◦ video, the THz link
may be blocked by the user’s own body, which is known
as self-blockage [2]. The availability of a line-of-sight (LoS)
link is crucial for reliable THz communication. To improve
the reliability in a THz-enabled 360◦ video streaming system,
multiple access points (APs) can jointly transmit 360◦ videos
to the users [3]. In a multi-user 360◦ video streaming system,
delivering the entire 360◦ video with the highest quality to
all users may exceed the available bandwidth. However, at
any time, each user watches a 360◦ video only from one
direction. The region of the video that a user is watching at
any given time is called a viewport. To efficiently utilize the
network bandwidth, it is desirable to deliver to each user only
its viewport with the maximum possible quality [4].

In practical 360◦ video streaming systems, the video is split

into chunks in the temporal domain, with each chunk contain-
ing a few seconds of video frames. In the spatial domain, each
360◦ video frame is divided into tiles [5]. To prevent video
stalling during playback, a prefetching scheme is employed to
decide when and how the tiles for the upcoming video chunks
should be sent to each user [1]. In such systems, each user
asynchronously requests a new video chunk based on its buffer
status. Transmitting a set of tiles for each 360◦ video chunk
based on the viewport of a user can reduce bandwidth con-
sumption and enable a more flexible transmission mechanism
through bitrate selection for the tiles [6].

Recently, streaming of 360◦ videos over wireless networks
has received considerable attention. Yaqoob et al. in [4]
proposed a combined field-of-view (FoV) prediction-assisted
360◦ video streaming algorithm and a priority-based bitrate
adaptation algorithm. Huang et al. in [6] proposed a deep
reinforcement learning (DRL) algorithm to maximize the
achievable bitrate in an intelligent reflecting surface (IRS)-
aided rate-splitting virtual reality (VR) streaming system.
Zhao et al. in [7] proposed iterative algorithms to determine
the beamforming vectors for maximizing the weighted sum
average rate in a multicast VR streaming system. Yang et al.
in [8] proposed a DRL-based algorithm to improve the users’
visual experience in a millimeter wave (mmWave)-enabled VR
streaming system. The aforementioned works consider either
synchronized chunk requests or single-user video streaming.
Thus, these works have not taken into account asynchronous
requests from users for new video chunks based on their buffer
status. Furthermore, self-blockage is a challenge for 360◦

video streaming in THz wireless networks. The algorithms
proposed in [4], [6], [7] do not consider self-blockage.

In this paper, we study 360◦ video streaming in a THz wire-
less system with multiple multi-antenna APs. We propose a
360◦ video streaming approach to maximize the users’ quality
of experience (QoE). Our approach involves two algorithms:
one for optimizing the bitrate selection for video tiles and
another for optimizing the beamforming vectors at the APs.
The main contributions of this paper are as follows:

• We formulate the bitrate selection for the video tiles as
a macro-action decentralized partially observable Markov
decision process (MacDec-POMDP) [9] due to the asyn-
chronous decision-making inherent in this problem.

• We propose an asynchronous multi-agent deep determin-
istic policy gradient (DDPG) algorithm using a macro-
action-based independent actor with individual central-



ized critic (Mac-IAICC) approach. This algorithm can
effectively obtain the policy for bitrate selection.

• The APs require beamforming design in each time slot,
resulting in a non-convex optimization problem. To tackle
this issue, we develop a weighted minimum mean square
error (WMMSE) algorithm for beamforming design.

• The results on a public 360◦ video dataset [10] show that
our proposed approach outperforms two benchmark algo-
rithms, including the combined FoV tile-based adaptive
streaming (CFOV) algorithm [4] and the alternating op-
timization (AO) algorithm, in terms of the average QoE.

This paper is organized as follows. The system model is
presented in Section II. Section III introduces the MacDec-
POMDP problem formulation. In Section IV, we present our
proposed DRL and WMMSE algorithms. Simulation results
are presented in Section V. Conclusion is given in Section VI.

Notations: We represent vectors and matrices by boldface
lowercase and uppercase letters, respectively. |·| denotes the
cardinality of a set. (·)H denotes conjugate transpose operator.
IN denotes an identity matrix of size N . ∥·∥ denotes the norm
of a vector as well as the norm of a complex number. 1(z ∈ Z)
denotes the indicator function. We define [z]+ = max{0, z}.

II. SYSTEM MODEL

Consider U users who are watching 360◦ videos in an
indoor environment, using THz wireless links as shown in
Fig. 1. We denote the set of users by U = {1, . . . , U}. The
users are stationary. However, they can turn around to watch
different parts of the video. Let l3D

u = (xu, yu, hu) denote
the location of the HMD that is worn by user u ∈ U , where
xu, yu, and hu denote the x−axis coordinate, the y−axis
coordinate, and the height of user u’s HMD, respectively. Let
A = {1, . . . , NAP} denote the set of ceiling-mounted APs.
We denote the location of AP a ∈ A by l3D

a =
(
xa, ya, h

AP
)
,

where xa and ya denote the coordinate of AP a on the x− and
y−axes, respectively, and hAP is the height of the ceiling. Each
AP and each user’s HMD are equipped with a uniform linear
array (ULA) of Nt and Nr antenna elements, respectively. Let
fc denote the carrier frequency of the transmitted signals. The
spacing between adjacent antenna elements is chosen to be
d = λc

2 , where λc is the wavelength of carrier frequency fc.
Let γu,a denote the LoS path gain between AP a ∈ A and

user u ∈ U . Considering c0 as the speed of light, we have
γu,a = c0

4πfc∥l3D
a −l3D

u ∥e
− 1

2κ(fc)∥l3D
a −l3D

u ∥, where κ(fc) (in m−1)
denotes the molecular absorption coefficient at frequency fc
[3]. Let aa(ψAoD

u,a ) ∈ CNt and au(ψAoA
u,a ) ∈ CNr denote the array

steering vectors for ULA at AP a and user u, respectively.
ψAoD
u,a and ψAoA

u,a represent the angle-of-departure (AoD) and
the angle-of-arrival (AoA) of the THz beam from AP a to
user u, respectively. The i-th element of vector aa(ψAoD

u,a )

is equal to ej
2πd
λc

(i−1) sin(ψAoD
u,a) for i ∈ {1, . . . , Nt}. The l-

th element of vector au(ψAoA
u,a ) is equal to ej

2πd
λc

(l−1) sin(ψAoA
u,a)

for l ∈ {1, . . . , Nr}. Let Gu,a ∈ CNt×Nr denote the channel
gain matrix between AP a and user u. We have Gu,a =√
gaguγu,aaa(ψAoD

u,a )au(ψAoA
u,a )

H , where ga and gu are the
antenna gains (in dBi) at AP a and user u, respectively.

Fig. 1: A THz-enabled 360◦ video streaming system. 360◦ video streams are
sent to each user by the APs which are not in the user’s self-blockage region.

The APs are connected to a central control unit (CCU) via
a wired connection. The beamforming vectors at the APs are
determined by the CCU in each time slot. Let T = {1, 2, . . .}
denote the set of time slots, each with a duration of T slot. Let
bu,a(t) ∈ CNt denote the beamforming vector from AP a ∈ A
to user u ∈ U in time slot t ∈ T . Considering Pmax as the
maximum transmit power of an AP, we have∑

u∈U
∥bu,a(t)∥2 ≤ Pmax, a ∈ A, t ∈ T . (1)

Let ϕu(t), where 0 ≤ ϕu(t) ≤ 2π, denote the longitude
angle of user u’s head orientation in time slot t ∈ T . This
angle is measured by the user’s HMD. We define a self-
blockage angle ϕblocked to characterize the self-blockage region
of the users with respect to the locations of the APs [2].
Fig. 2(a) shows an illustration of a user’s self-blockage region.
Let Anb

u (t) denote the set of APs which are not in the self-
blockage region of user u ∈ U in time slot t ∈ T . We have
Anb
u (t) =

{
a | a ∈ A, |ϕu(t)− ϕu,a − π| ≥ ϕblocked

2

}
, where

ϕu,a denotes the longitude angle of the LoS link between
user u and AP a. Let ru(t) denote the data rate of user
u in time slot t. For the sake of brevity, we define vector
du,u′(t) =

∑
a∈Anb

u′ (t)∩Anb
u (t) G

H
u,abu′,a(t). We have

ru(t) = B log2
(
1 + dHu,u(t)Γ

−1
u (t)du,u(t)

)
, (2)

where B is the transmission bandwidth, and Γu(t) is the
interference-plus-noise covariance matrix at user u. We have
Γu(t) =

∑
u′∈U\{u} du,u′(t)dHu,u′(t)+σ2INr , where σ2 is the

variance of the additive white Gaussian noise.
To enhance bandwidth efficiency in streaming 360◦ videos,

we leverage a tile-based approach. Let V = {1, . . . , V }
denote the set of available 360◦ videos. In the time domain,
each video v ∈ V is segmented into Cv chunks. Let Cv =
{1, . . . , Cv} denote the chunk indices for video v. As shown
in Fig. 2(b), we consider that each video chunk has a fixed
duration of T chunk (in time slots) and contains F video frames.
Let F = {1, . . . , F} denote the set of indices of the video
frames within a chunk. In the spatial domain, each video frame
is divided into N tiles. Let N = {1, . . . , N} denote the set of
indices corresponding to the tiles of each video frame.

360◦ videos are streamed to users as chunks. We consider a
prefetching scheme in which each user downloads one chunk
at a time and subsequently requests the next chunk based
on its buffer status. A viewport prediction algorithm is used



Fig. 2: (a) Illustration of a user’s self-blockage region. AP 2 is located within
the self-blockage region, whereas AP 1 is not. (b) Illustration of a video chunk
with F video frames. The tiles in the viewport are shown in green, while those
in the marginal region are shown in yellow.

to determine which video tiles should be transmitted to the
users. Due to prediction error, in addition to the tiles covering
the predicted viewport, some additional tiles, which cover a
marginal region of a viewport, may also be sent. Let N pred

u,c,v

denote the set of tile indices that should be sent to user u
upon its request for chunk c of video v. Specifically, N pred

u,c,v

is a prediction set containing tiles from both the viewport and
the marginal region. We consider that N pred

u,c,v is given using
the viewport prediction algorithm proposed in [4].

After receiving the chunk request from a user, the CCU
determines the quality level of the tiles. Let M = {1, . . . ,M}
denote the set of quality levels, where 1 is the lowest quality.
Let νm (in bits/s) denote the bitrate required to encode a tile
at quality level m ∈ M. We use the binary decision variable
βu,n,m to indicate whether quality level m ∈ M is selected
for tile n ∈ N pred

u,c,v when user u ∈ U requests chunk c ∈ Cv
of video v ∈ V (βu,n,m = 1) or not (βu,n,m = 0). We have∑
m∈M

βu,n,m ≤ 1, u ∈ U , n ∈ N pred
u,c,v, c ∈ Cv, v ∈ V. (3)

Let τREQ
u,c,v (in time slots) denote the time when user u ∈ U

requests the tiles of chunk c ∈ Cv of video v ∈ V . Let
Bu

(
τREQ
u,c,v

)
(in time slots) denote the buffer status of user u

in time slot τREQ
u,c,v . To prevent buffer overflow, each user only

requests for a new video chunk when its buffer status is below
a certain threshold [5]. Let BTHR

u (in time slots) denote the
buffer size threshold for user u. When the buffer status of
user u is not below BTHR

u , it should wait for a period of time
before requesting the next video chunk. Let τWT

u,c,v denote the
waiting time for user u after receiving chunk c of video v.
We have τWT

u,c,v =
[
[Bu(τ

REQ
u,c,v)− τTD

u,c,v]
+ + T chunk −BTHR

u

]+
,

where τTD
u,c,v (in time slots) denotes the time it takes for

chunk c of video v to be transmitted from the APs to
user u. We have τTD

u,c,v = min
{
t′ ∈ T

∣∣ ∑t′

t=τREQ
u,c,v

ru(t) ≥
T chunk ∑

n∈N pred
u,c,v

∑
m∈M βu,n,mνm

}
− τREQ

u,c,v + 1. The next
chunk of video v is requested by user u in time slot τREQ

u,c+1,v =
τREQ
u,c,v + τTD

u,c,v + τWT
u,c,v . The buffer status of user u is updated

as Bu(τ
REQ
u,c+1,v) =

[
[Bu(τ

REQ
u,c,v)− τTD

u,c,v]
++T chunk − τWT

u,c,v

]+
.

Let Υu,c,v denote the QoE of user u ∈ U for chunk c ∈ Cv
of video v ∈ V . We consider that Υu,c,v depends on three fac-
tors: the average quality of the tiles in the viewport ℓ̄view

u,c,v , the
spatial quality smoothness of the tiles in the viewport ℓspatial

u,c,v ,

and the rebuffering delay τRD
u,c,v [4]. Next, we describe how

CCU obtains each of these QoE factors.
Let N actual

u,c,v denote the set of tile indices that user u ∈ U
has actually viewed for chunk c ∈ Cv of video v ∈ V . ℓ̄view

u,c,v

is obtained by averaging the quality of the tiles in set N actual
u,c,v .

We have ℓ̄view
u,c,v =

1

|N actual
u,c,v|

∑
n∈N actual

u,c,v

∑
m∈M βu,n,mm.

The spatial quality smoothness factor measures the intra-
chunk quality switch. The variance of the quality level of
the tiles in the viewport may lead to viewing irritation and
other physiological effects such as fatigue. We have ℓspatial

u,c,v =
1

|N actual
u,c,v|

∑
n∈N actual

u,c,v

(∑
m∈M βu,n,mm− ℓ̄view

u,c,v

)2
.

The rebuffering delay τRD
u,c,v captures video stalling during

playback. A video is stalled when the downloading time of
chunk c exceeds the user’s buffer status at chunk c’s request
time. We have τRD

u,c,v =
[
τTD
u,c,v −Bu

(
τREQ
u,c,v

)]+
.

The QoE of user u ∈ U for chunk c ∈ Cv of video v ∈ V
is the weighted sum of the mentioned factors. We have

Υu,c,v = ℓ̄view
u,c,v − λspatialℓspatial

u,c,v − λRDτRD
u,c,v, (4)

where λspatial and λRD are the non-negative weighting coeffi-
cients which penalize user u’s QoE due to the nonzero intra-
chunk quality switch and rebuffering delay, respectively.

III. PROBLEM FORMULATION

Each user asynchronously requests for a new video chunk
based on its buffer status. The CCU aims to maximize the
users’ expected long-term QoE. Since the CCU should make
asynchronous decisions on the quality level of the requested
video tiles, we formulate the bitrate selection for those tiles as
a MacDec-POMDP [9], [11] with Tmax decision epochs. For
each user, an agent in the CCU is responsible for providing
high-quality video tiles to that user. Next, we describe the
observation, action, and reward of each agent.
Observation: The CCU does not have access to the global
system state (e.g., N actual

u,c,v ). Instead, it obtains a partial ob-
servation of the underlying system state. Let binary vector
υu,c,v ∈ {0, 1}N indicate the tile indices predicted for trans-
mission to user u ∈ U upon its request for chunk c ∈ Cv of
video v ∈ V . The n-th element of vector υu,c,v is equal to
1(n ∈ N pred

u,c,v). We refer to the agent responsible for making
a decision on behalf of user u as agent u. Let om

u (t) denote
the macro-observation vector of agent u at the beginning of
time slot t ∈ T . When user u requests chunk c of video v, the
macro-observation vector of agent u contains υu,c,v and the
buffer status of user u in time slot τREQ

u,c,v (i.e., Bu
(
τREQ
u,c,v

)
). For

τREQ
u,c,v ≤ t < τREQ

u,c+1,v , we have om
u (t) =

(
υu,c,v, Bu

(
τREQ
u,c,v

))
.

Action: At time slot t = τREQ
u,c,v , agent u will take a macro-

action which remains unchanged for τREQ
u,c,v ≤ t < τREQ

u,c+1,v .
Let am

u (t) denote the macro-action which is taken by agent u
at time slot t. Let νu,n denote the bitrate of tile n ∈ N pred

u,c,v

when user u ∈ U requests chunk c ∈ Cv of video v ∈ V . We
set νu,n = 0 for n /∈ N pred

u,c,v . Agent u selects the bitrate of tile
n ∈ N pred

u,c,v using the following relaxed constraint:

ν1 ≤ νu,n ≤ νM , u ∈ U , n ∈ N pred
u,c,v, c ∈ Cv, v ∈ V. (5)



Thus, we have am
u (t) = (νu,n, n ∈ N ), u ∈ U , τREQ

u,c,v ≤ t <

τREQ
u,c+1,v . After determining νu,n, agent u rounds it down to the

nearest possible bitrate based on the quality levels available
in set M. The variables βu,n,m, n ∈ N , m ∈ M can be
determined for user u using the obtained bitrate for the tiles.
Reward: The agents aim to cooperatively maximize the QoE
of the users. In each time slot t ∈ T , we consider a shared
reward over agents denoted by R(t). Given Υu,c,v as the QoE
of user u ∈ U for chunk c ∈ Cv of video v ∈ V , we have

R(t) =
∑
u∈U

∑
v∈V

∑
c∈Cv

Υu,c,v1
(
τREQ
u,c,v + τTD

u,c,v = t
)
. (6)

In a POMDP, a history of observations and actions provides
sufficient statistics for the agent to make decisions. Let hm

u (t)
denote the macro-observation-action history of agent u in time
slot t ∈ T . Each agent u selects a macro-action am

u (t) =
µu (h

m
u (t)) using a deterministic policy µu based on hm

u (t) in
time slot t. Let µ = (µu, u ∈ U) and am(t) = (am

u (t), u ∈ U)
denote the agents’ joint policies and macro-actions, respec-
tively. Let Q∗ (hm,am) denote the maximum action-value
function when agents choose the joint macro-action am given
the joint macro-observation-action history hm. For tile bitrate
selection, we formulate the following optimization problem:

Pm : Q∗ (hm,am) = maximize
µ

Eµ

{ Tmax∑
t′=t

γt
′−tR(t′)

∣∣∣
hm(t) = hm, am(t) = am

}
, subject to constraint (5),

where γ is the discount factor. Problem Pm aims to learn a
joint policy µ that maximizes the expected discounted reward.

By performing macro-action am
u (t) in time slot t = τREQ

u,c,v ,
the number of bits required for transmitting chunk c ∈ Cv of
video v ∈ V to user u ∈ U is determined. The CCU determines
the beamforming vectors by maximizing the system’s sum-rate
in each time slot while satisfying the selected bitrate of the
requested video tiles for users. In each time slot t ∈ T , the
CCU solves the following optimization problem:

Pb : maximize
bu,a(t), ξu≥0,
u∈U, a∈A

∑
u∈U

ru(t)− λbξu

subject to constraint (1),

T slotru(t) ≥ ∆rem
u (t)− ξu, u ∈ U ,

where λb is a positive scaling factor. ∆rem
u (t) denotes the

remaining bits of the requested chunk available for trans-
mission to user u ∈ U in time slot t ∈ T . ∆rem

u (t) is
initialized by T chunkT slot ∑

n∈N pred
u,c,v

∑
m∈M βu,n,mνm at time

slot t = τREQ
u,c,v . For τREQ

u,c,v + 1 ≤ t < τREQ
u,c+1,v , we have

∆rem
u (t) =

[
∆rem
u (t− 1)− T slotru(t− 1)

]+
. ξu is a slack vari-

able for penalizing the objective function when the remaining
bits cannot be fully transmitted to user u in the current time
slot. Problems Pm and Pb are difficult to solve. The former is
a finite-horizon stochastic optimal control problem. The latter
is a non-convex optimization problem.

IV. ALGORITHMS DESIGN

To solve problem Pm, we learn a Mac-IAICC for each
agent. Mac-IAICC facilitates offline training using centralized
information and online execution in a decentralized manner
for the agents. In particular, we develop a DDPG algorithm to
learn an independent actor and an individual centralized critic
for each agent. Let ωu and ϑu denote the learnable parameters
of the neural networks corresponding to the actor and critic
of agent u ∈ U , respectively. The actor network of agent u
specifies the policy of that agent for tile bitrate selection. We
have am

u (t) = µωu (hm
u (t)). The centralized critic network of

agent u learns the action-value function Qϑu
(hm(t),am(t)).

DDPG is able to learn the policy and action-value functions
in a stable and robust manner using a replay buffer and sepa-
rate target networks [12]. Since agents in a MacDec-POMDP
asynchronously start and complete their macro-actions, a new
replay buffer needs to be designed. To this end, we collect
the macro-observation, macro-action, and reward of the agents
into a buffer called macro-action concurrent experience replay
trajectories (Mac-CERTs) at each time slot t ∈ T . For
τREQ
u,c,v ≤ t < τREQ

u,c+1,v , agent u ∈ U receives a cumulative
reward for the executed macro-action at time slot τREQ

u,c,v as
Rc
u(t) =

∑t
t′=τREQ

u,c,v
γt

′−τREQ
u,c,vR(t′). Then, at the end of each

time slot t, agent u stores its transition experience in the Mac-
CERTs buffer as a tuple (om

u (t),a
m
u (t),o

m
u (t+ 1), Rc

u(t)).
Note that om

u (t), am
u (t), and om

u (t + 1) remain unchanged
until agent u completes its current macro-action at the end of
time slot t = τREQ

u,c+1,v − 1. Thus, a macro-action am
u (t) takes

∆τ (a
m
u (t)) = τREQ

u,c+1,v − τREQ
u,c,v time slots to complete. For

training agent u’s actor network, we only consider the tuples
in the Mac-CERTs buffer that correspond to agent u. We filter
those tuples by selecting the ones that agent u completes its
macro-action. Training each agent’s critic network requires all
the joint macro-observation-action information. To train the
critic networks, we filter the tuples in the Mac-CERTs buffer
by selecting the ones that an agent has completed its macro-
action. Let Du and Dm denote the set of tuples which are used
for training agent u’s actor and critic networks, respectively.

Each agent u ∈ U updates ϑu by minimizing the temporal
difference (TD) error. Let ω−

u and ϑ−
u , respectively, denote

the weights of agent u’s target actor and critic networks. The
TD error is obtained as follows:

LTD
u (ϑu) = EΛm

u∼Dm

{(
Qϑu

(
hm,am)− Q̂

ϑ
−
u
(hm,am)

)2}
,

(7)

where Λm
u =

(
om,am,o′m, Rc

u

)
and Q̂

ϑ
−
u

(
hm,am

)
= Rc

u +

γ∆τ (a
m
u)Q

ϑ
−
u

(
h′m, a′m). We obtain a′m using the target actor

networks of the agents. We have a′m =
(
µ
ω

−
u

(
h′m
u

)
, u ∈ U

)
.

Each agent u ∈ U updates ωu using the action-value
function gradient. The policy gradient is obtained as follows:

∇ωuLPG
u = Eom

u∼Do
u

{
∇am

u
Qϑu

(hm,am)
∣∣
am

u=µωu (hm
u)

×∇ωuµωu (hm
u )

}
, (8)



Algorithm 1 Training Algorithm for DRL-based Bitrate Selection

1: Set the maximum number of episodes Emax, the minibatch size Bm, and
the soft target network update constant ε ∈ (0, 1).

2: Randomly initialize the learnable parameters ϑu and ωu, u ∈ U .
3: Set the target network weights ϑ−

u := ϑu and ω−
u := ωu, u ∈ U .

4: for each episode do
5: Initialize om

u and determine am
u ← µωu (hm

u)+ϱm for each agent u.
6: for each time slot t ∈ {1, . . . , Tmax} do
7: Determine beamforming vectors using Algorithm 2.
8: Obtain the next macro-observation vector o′m

u and the cumulative
reward Rc

u for each agent u.
9: for each agent u ∈ U do

10: Store the tuple
(
om
u ,a

m
u ,o

′m
u , R

c
u

)
in the Mac-CERTs buffer.

11: if macro-action am
u is completed then

12: om
u ← o′m

u and am
u ← µωu (hm

u) + ϱm.
13: end if
14: end for
15: Sample a random minibatch of Bm from the sets Dm and Du.
16: Determine the required gradients based on (7) and (8).
17: Update ϑu and ωu for each agent u ∈ U using Adam optimizer.
18: ϑ−

u ← εϑu+(1− ε)ϑ−
u and ω−

u ← εωu+(1− ε)ω−
u , u ∈ U .

19: end for
20: end for
21: Outputs are ωu for each agent u ∈ U .

where Do
u =

{
om
u

∣∣ (om
u ,a

m
u ,o

′m
u , R

c
u

)
∈ Du

}
. Algorithm 1

describes our proposed training algorithm for DRL-based
bitrate selection. We train the actor and critic networks of
the agents for Emax episodes, each with Tmax time slots. To
encourage effective exploration, we add an exploration noise
ϱm to the actions determined by the actor networks. We use
the soft update technique with constant ε to update the target
networks. In Line 7 of Algorithm 1, we employ the WMMSE
algorithm described below to solve Pb in each time slot.

Let vu(t) ∈ CNr denote the receive beamformer used by
user u ∈ U in time slot t ∈ T . The MSE of user u in
time slot t is obtained as eu(t) = ∥1 − vHu (t)du,u(t)∥2 +∑
u′∈U\{u} ∥vHu (t)du,u′(t)∥2 + σ2∥vu(t)∥2. Problem Pb is

equivalent to the following optimization problem [13]:

PMSE : minimize
bu,a(t),vu(t),
wu(t), ξu≥0,
u∈U, a∈A

∑
u∈U

wu(t)eu(t)− log2 wu(t) + λbξu

subject to constraint (1),
wu(t)eu(t)− log2 wu(t)

≤ 1− (∆rem
u (t)− ξu)/(T

slotB), u ∈ U ,

where wu(t) is a weight factor for user u in time slot t. To
solve problem PMSE, we develop a WMMSE algorithm. We
initialize the beamforming vectors with a feasible solution.
Given Ju(t) =

∑
u′∈U du,u′(t)dHu,u′(t) + σ2INr , the users’

receive beamformers are obtained as follows:

vu(t) = J−1
u (t)

∑
a∈Anb

u (t)

GH
u,abu,a(t), u ∈ U . (9)

For each user u, the weight factor wu(t) is updated as
wu(t) = e−1

u (t). For fixed vu(t) and wu(t), u ∈ U , PMSE is
solved using convex optimization to obtain new beamforming
vectors. A suboptimal solution of PMSE is obtained by itera-
tively optimizing vu(t), wu(t), and bu,a(t), a ∈ A, u ∈ U .
Algorithm 2 describes our WMMSE algorithm.

Algorithm 2 WMMSE Algorithm for Beamforming Design

1: Initialize bu,a(t), u ∈ U , a ∈ A with a feasible solution.
2: Repeat
3: Update vu(t) based on (9) and set wu(t) := e−1

u (t) for u ∈ U .
4: Obtain the updated bu,a(t), u ∈ U , a ∈ A by solving PMSE when

vu(t) and wu(t), u ∈ U are fixed.
5: Until

∑
u∈U log2 wu(t) converges.

6: Outputs are bu,a(t), u ∈ U , a ∈ A.

TABLE I: Simulation Parameters

Parameter Value Parameter Value Parameter Value Parameter Value

fc 1.05 THz ga, gu 25, 15 Emax 5000 ε 10−2

Pmax 5 dBm Nt, Nr 6, 2 Tmax 153 λb 2

σ2 −77 dBm ϕblocked π T chunk 1 s γ 0.99

B 0.5 GHz λspatial, λRD 0.5 T slot 100 ms Bm 256

For the actor and critic networks of the agents, we consider
the neural networks comprising two long short-term mem-
ory (LSTM) layers and two fully connected (FC) layers. Each
LSTM layer has a hidden size of dh. The output size of
the first and second FC layers is dfc and dout, respectively.
After training, the computational complexity of the online tile
bitrate selection using the pre-trained actor network obtained
by Algorithm 1 for each agent is O(dindh+d

2
h+dhdfc+dfcdout),

where din is the size of the actor network’s input layer.
Furthermore, solving the optimization problem PMSE in Line 4
of Algorithm 2 has a polynomial computational complexity.

V. PERFORMANCE EVALUATION

We consider a 10 m × 10 m × 4 m indoor environment
and three APs. The APs are located at (9, 1, 4), (5, 5, 4),
and (1, 9, 4). We consider six users, each with a height of
1.6 m. We conduct our experiments using a public 360◦

video dataset [10]. We use the viewport prediction algorithm
proposed in [4], where the video tiles for transmission are
predicted by combining the current chunk’s viewport and
another viewport obtained by spherical walk. A frame rate of
30 frames per second is considered for the videos. Each video
frame is divided into 24 tiles. We consider five quality levels,
resulting in the maximum achievable QoE for users being 5.
We select the bitrate value for encoding the tiles from set
{28, 33, 38, 43, 48} Mbps. We set dh = 512 and dfc = 256.
The learning rate in Algorithm 1 is set to 10−4. Other simu-
lation parameters are summarized in Table I. We implement
our algorithms in Python 3.7 using PyTorch framework. For
comparison, we consider the following benchmark algorithms:

• Combined FoV tile-based adaptive streaming (CFOV)
algorithm [4]: In this algorithm, a priority-based bitrate
adaptation algorithm is used to select the bitrate of tiles.
The APs in the users’ self-blockage region are determined
after detecting beam failure, a process that takes 300 ms.

• Alternating optimization (AO) algorithm: In this al-
gorithm, the average QoE and sum-rate maximization
subproblems are solved iteratively. In each iteration, given
the beamforming vectors, the average QoE is maximized
for the users who request a new video chunk. Then, given
the video tile bitrates, PMSE is solved using Algorithm 2.

In Fig. 3, we study the impact of increasing the maximum
buffer size threshold on the 360◦ video streaming system
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Fig. 3: (a) Average viewport tile quality, (b) average rebuffering delay, and (c) average sum-rate across users versus the maximum buffer size threshold.
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Fig. 4: Average QoE across users versus the maximum buffer size threshold.

performance. The users can prefetch more video chunks when
the buffer size threshold increases. The results in Fig. 3(a)
illustrate that our proposed approach provides a higher average
viewport tile quality compared to the considered benchmark
algorithms. By increasing the maximum buffer size threshold,
users have more time to prefetch their requested chunks with-
out experiencing video stalling. Thus, as shown in Fig. 3(b),
the average rebuffering delay decreases for all the algorithms.
The AO algorithm provides a conservative solution for bitrate
selection by reducing the penalizing terms in eqn. (4). Thus, it
achieves a lower average viewport tile quality, a lower average
rebuffering delay, and a higher average sum-rate as shown in
Fig. 3. The CFOV algorithm does not consider self-blockage
and uses a reactive THz beam failure detection. Therefore,
it has the highest average rebuffering delay and the lowest
average sum-rate. Our proposed approach effectively reduces
average rebuffering delay and increases the average sum-rate,
while maintaining a high average viewport tile quality.

The results in Fig. 4 illustrate that, considering all the
QoE factors in eqn. (4) , our proposed approach provides a
higher average QoE compared to the considered benchmark
algorithms. The average QoE decreases as the maximum
buffer size threshold increases. This is due to the performance
degradation of the employed viewport prediction algorithm.

VI. CONCLUSION

In this paper, we considered a THz-enabled multi-user 360◦

video streaming system with multiple multi-antenna APs. We
modeled the bitrate selection for video tiles as a MacDec-
POMDP. We proposed an asynchronous DRL-based algorithm
for bitrate selection. We employed a WMMSE algorithm for
the design of beamforming vectors at the APs. The results

showed that our proposed video streaming approach can pro-
vide a higher QoE for the users compared with two benchmark
algorithms. For future work, we will consider improving the
performance of viewport prediction as well as replacing the
WMMSE algorithm with a DRL algorithm [14].
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