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Abstract—Wireless cellular traffic prediction is essential for
efficient network management and monitoring, yet it is a chal-
lenging task due to the spatial and temporal characteristics
of traffic. Recently, machine learning based traffic prediction
algorithms have been proposed in the literature. However, these
algorithms lack good generalization ability as they cannot adapt
to frequent changes in traffic distribution typically encountered
in wireless networks. In this paper, we propose a traffic prediction
algorithm using large language models (LLMs). We first analyze
the temporal characteristics of traffic and identify those times-
pans in the historical traffic information which are important
for traffic prediction. We use a clustering algorithm to identify
cells with similar traffic patterns. To predict the traffic in a cell,
we incorporate the multi-timespan historical traffic information
of the cell as well as those cells with similar traffic patterns
into natural language sentences and provide them as input to
the LLM. Using our proposed framework, we fine-tune three
popular LLMs (BART, BigBird, and PEGASUS) on the traffic
prediction task. Experimental results show that our proposed
LLM framework outperforms a state-of-the-art graph neural
network (GNN) baseline and achieves up to 12.32% improvement
in terms of the mean absolute error (MAE). Moreover, the
proposed LLM framework has excellent generalization ability
under the zero-shot setting, reducing the MAE by up to 46.84%
compared to the baseline. The ablation studies reveal that
providing information from multiple timespans to the model
reduces the MAE by up to 15.05% compared to only providing
information from the most recent timespan.

I. INTRODUCTION

The current fifth-generation (5G) wireless networks support

different mobile applications with diverse quality of service

requirements, such as video streaming, virtual reality, and

cloud gaming. In order to accommodate these applications and

meet their stringent requirements, it is crucial for the network

operators to predict wireless traffic so that they can provision

the radio and core network resources efficiently.

Wireless cellular traffic depends on various factors, includ-

ing the time of the day (e.g., weekday vs. weekend, peak

hour vs. off-peak hour), special events, public holidays, and

population density. Over the past few years, there have been

different types of data driven or machine learning based traffic

prediction algorithms proposed in the literature. In [1], Wang

et al. proposed a traffic prediction algorithm using long short-

term memory (LSTM) model. In [2], the authors proposed

a traffic prediction algorithm using the attention modules

and convolutional LSTM [3] to capture the spatial-temporal

dependencies. In [4], a Bayesian meta-learning algorithm is

proposed to predict wireless traffic in different regions. In [5],

an adaptive graph convolutional recurrent network (AGCRN)

is proposed which can capture the spatial and temporal corre-

lations. In [6], a dynamic Bernstein graph recurrent network

is proposed for wireless traffic prediction.

The generalization ability is an important feature in machine

learning based traffic prediction models. If a model can gen-

eralize well, it can make accurate predictions even when the

model has been trained using a relatively small dataset, thus

saving the cost for training and data collection. Furthermore,

traffic distributions may change in wireless cellular networks

over time due to changes in user behavior or network topology

(e.g., new base stations being deployed). A model with good

generalization ability can adapt to these changes. A common

approach to determine the generalization ability of a model is

to evaluate its prediction performance on a set of cells that

were not included in the training process, known as zero-shot

evaluation. Most of the existing traffic prediction algorithms

do not demonstrate good zero-shot performance.

In recent years, there has been significant growth in pre-

trained large language models (LLMs), such as GPT-3 [7].

These models are trained on vast text corpora and demonstrate

exceptional generalization abilities [8]. The reason is that the

self-attention modules in LLMs can perform data-independent

operations that are similar to principal component analysis

(PCA) over the input patterns. This enables them to serve as

universal models applicable to various downstream tasks [9].

Notably, some recent studies have utilized LLMs for time-

series forecasting. In [8], the numerical inputs and outputs

are transformed into natural language and different LLMs

are fine-tuned on the time series forecasting task. In [9], the

LLM’s self-attention and feedforward layers are frozen, while

the positional embedding and layer normalization layers are

fine-tuned on the time series forecasting task. However, these

models are not applicable to wireless cellular traffic prediction

since they consider either a single time series [8] or multiple

uncorrelated time series [9]. The spatial correlations of the

traffic patterns between different cells were not considered in

those LLM frameworks.

Inspired by the strong generalization ability of LLMs, in

this paper we utilize LLMs for wireless cellular traffic predic-

tion. Since the computational complexity of LLMs increases

linearly with the size of the input, feeding the entire traffic

history to the model is impractical. On the other hand, only

including the information from the most recent time steps

may not always lead to accurate prediction results. Thus, we



identify the timespans in traffic history that are most important

for traffic prediction. Then, we provide the information from

these timespans to the model to reduce the input length while

increasing the efficiency. Furthermore, in order to leverage the

spatial correlation between cells, our model’s input includes

the traffic history of cells with similar traffic patterns as

auxiliary information to refine the predictions. The main

contributions of this paper are summarized as follows:

• We leverage the capabilities of LLMs for wireless cellular

traffic prediction. We model the traffic prediction problem

as a natural language processing (NLP) task and design

input sentences, called prompts, that encapsulate the

traffic history and inquire about future traffic. Subse-

quently, the model generates responses, which contain

the predicted traffic values. We fine-tune three popular

LLMs (BART [10], BigBird [11], and PEGASUS [12])

and assess their performance on the traffic prediction task.

• Instead of only using the information from the recent time

steps, we analyze the temporal autocorrelation of traffic

to identify timespans in historical traffic information

that are important for traffic prediction. We include the

information from these timespans in the input prompts.

• In order to exploit the spatial correlation between cells,

we train an autoencoder to obtain a low-dimensional

embedding for the traffic in each cell. Then, we invoke a

clustering algorithm to identify cells with similar traffic

patterns. When predicting the future traffic of each cell,

we provide the traffic history of cells with similar traffic

patterns as auxiliary information to refine the predictions.

• Simulation results show that our proposed LLM frame-

work outperforms AGCRN [5], reducing the mean ab-

solute error (MAE) by up to 12.32%. Furthermore, it

shows good generalization ability, reducing the MAE by

up to 46.84% under the zero-shot setting compared to the

baseline.

• Results from the ablation studies show the importance

of using multiple timespans for accurate traffic predic-

tion. Including multi-timespan information can reduce the

MAE by up to 15.05% compared to only considering the

information from the most recent timespan.

The rest of this paper is organized as follows. In Section

II, we present the traffic prediction problem and our proposed

LLM framework. In Section III, we evaluate the performance

between our proposed LLM framework and a baseline scheme,

assess its generalization ability, and present results on the

ablation studies. Conclusion is given in Section IV. Notations:

We use N and N
+ to denote the set of non-negative integers

and positive integers, respectively.

II. SYSTEM MODEL

In this section, we first present the wireless cellular traf-

fic prediction problem. Then, we explain the importance of

considering multiple timespans. We also show the correlation

between the traffic patterns of neighboring cells and discuss

how this information can be exploited for traffic prediction. We

then introduce the input prompts for LLMs that include the

information from multiple timespans and inquire about future

traffic values in a natural language manner.

A. Traffic Prediction Problem

Consider a geographical area is divided into N cells, each

served by a base station. Let N = {1, . . . , N} denote the set

of cells. Let T = {1, . . . , T} denote the set of time steps

measured in hours, where T is the total number of time steps.

We denote the traffic volume of cell n ∈ N during time step

t ∈ T as dnt . Let dn = (dn1 , . . . , d
n
T ) denote the traffic vector

of cell n over all T time steps and dt =
(

d1t , . . . , d
N
t

)

denote

the traffic vector observed during time step t.

The conventional traffic prediction problem is formulated

as predicting the traffic volume during the next Q time steps

based on the historical traffic information from the past P

time steps. In other words, the objective is to maximize the

conditional probability of future traffic given the historical

traffic information:

d
⋆
t:t+Q = argmax

dt:t+Q

p (dt:t+Q | dt−P :t) . (1)

We will show in Section II-B that, instead of only using the

information from the most recent P time steps, it is beneficial

to use the information from other timespans as well.

B. Temporal Dependencies

We analyze the temporal dependencies in traffic data to

identify the timespans in traffic history that are informative for

traffic prediction. The autocorrelation as a function of time lag

l is widely adopted in the literature for temporal dependency

analysis. The temporal autocorrelation for traffic vector dn of

cell n is as follows

rn(l) =

∑T−l

t=1

(

dnt − d̄n
) (

dnt+l − d̄n
)

∑T

t=1

(

dnt − d̄n
)2

, 0 ≤ l < T, (2)

where d̄n denotes the mean value of traffic vector d
n in cell

n. Here, rn(l) is in the range of [−1, 1] and shows how

much the current traffic is correlated to the traffic during l

time steps ago. Fig. 2 shows the temporal autocorrelation of

aggregated Internet traffic across all cells in Milan, Italy. It can

be observed that the current traffic is highly correlated to the

most recent time steps. Thus, we define timespan 0 as follows

T0 = [t− P0, t) , (3)

where t is the current time step and P0 ∈ N is the duration

of timespan in hours. It is also evident from Fig. 2 that the

subsequent peaks occur in l = 24, 48, . . ., suggesting that the

current traffic is similar to the traffic during the same time

step in previous days. We define timespan i ∈ N
+ to include

the time steps centered around t− 24i and express it as

Ti =

[

t− 24i−

⌊

Pi

2

⌋

, t− 24i+

⌊

Pi + 1

2

⌋)

, (4)

where Pi ∈ N is the duration of timespan i in hours. For

instance, when P1 is equal to 3, we have T1 = [t− 25, t− 22).
Without loss of generality, we only provide the information



From Wednesday, 8 PM to Wednesday, 11 PM, the Internet traffic demand of cell 1 was 38, 89, and 

142 MB during each hour. From Thursday, 6 PM to Thursday, 9 PM, the Internet traffic demand of cell 

1 was 81, 56, and 40 MB, and the Internet traffic demand of a smiliar cell was 70, 51, and 34 MB 

during each hour. What will be the Internet traffic demand of cell 1 on Thursday at 9 PM?

Input Prompt LLM (Fine-tuning)

The Internet traffic 

demand of cell 1 

will be 35 MB.

Response

Cell 1Cell 1Cell 1
Cell 3Cell 3Cell 3

Cell 1, Timespan 1

Cell 1, Timespan 0

Auxiliary: Cell 3, Timespan 0

Inquiry

Original 

Traffic

Traffic Embedding

Clustering Algorithm

Timespan 0

Traffic of Cell 1

Timespan 1
Timespan 0

Traffic of Cell 3
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38 89 142
70 51 34

Clustering (Training)

Traffic to Prompt

Token & Position Embedding

Multi-head Attention

Add & Layer Norm

Feed Forward
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Language Modeling Head

Input Prompt

Response
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Fig. 1. Illustration of the proposed LLM framework. The autoencoder determines a low-dimensional embedding of traffic history for each cell. The clustering
algorithm utilizes these embeddings to identify a set of auxiliary cells for each cell that have similar traffic patterns. To predict the traffic in a cell, the
multi-timespan historical traffic information of that cell and its auxiliary cells is incorporated into the prompts and provided as input to the LLM.
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Fig. 2. Temporal autocorrelation of aggregated Internet traffic across all cells
in Milan, Italy.

from the first two timespans, T0 and T1, to the LLM in order

to keep the input length to be short. Consequently, in problem

(1), the future traffic dt:t+Q will be conditioned on dT0
and

dT1
, which represent the traffic vector during timespans T0

and T1, respectively. As an example, suppose we would like

to predict the traffic on Monday at 5 PM, and both P0 and

P1 are set to 3. In this scenario, T0 represents the timespan

from Monday 2 PM to 5 PM, and T1 represents the timespan

from Sunday 4 PM to 7 PM. We gather the historical traffic

information from these timespans and provide them to the

LLM. In Section II-D, we demonstrate how to incorporate

this information into the input prompt of LLMs.

C. Spatial Correlation

We use the Pearson correlation coefficient to measure the

spatial correlation between two cells n and n′. It is defined as

ρ =
cov

(

d
n,dn′

)

σdnσ
dn′

, (5)

where cov(.) denotes the covariance operation and σ is

the standard deviation. The Pearson correlation coefficient is

within the range of [−1, 1]. Fig. 3 shows the spatial correlation

matrix for five randomly selected neighboring cells. It shows

that traffic of neighboring cells is highly correlated.
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Fig. 3. Spatial correlation between five randomly selected neighboring cells.

D. Proposed LLM Framework

Most of the existing frameworks on LLMs consider uncor-

related variables, and tasks with spatial correlation between

variables are not considered. In this paper, we identify cells

with similar traffic patterns and design input prompts that

exploit the spatial correlation. To achieve this, in our proposed

LLM framework, we first train an autoencoder to encode the

traffic history of each cell into a low-dimensional vector. The

autoencoder is depicted in Fig. 1. Each of the encoder and

decoder modules consists of three fully connected layers with

512, 256, and 128 hidden neurons. Each layer is followed

by a rectified linear unit (ReLU) activation function. There

are 64 hidden neurons in the middle layer. The output of

the middle layer serves as the low-dimensional representation

of the traffic, expressed as z
n = fencoder (d

n). The training

objective is to minimize the reconstruction loss defined as

L =
1

NT

N
∑

n=1

∥dn − fdecoder (z
n)∥2

2
. (6)

Next, we invoke a clustering algorithm on the traffic embed-

dings {zn}n∈N to identify cells which have similar traffic

patterns. Suppose that for each cell, we would like to include

auxiliary information from up to S similar cells. We run the



K-means clustering algorithm [2] H times. The algorithm

might yield a different clustering result in each run. Let sn,m
denote the number of runs in which cells n and m, n ̸= m,

were placed in the same cluster. For each cell n, we identify

S cells that have the highest sn,m,m ∈ N , values. These

cells are considered as the auxiliary cells of cell n. This

is based on the assumption that cells appearing together in

clusters more frequently are more likely to have similar traffic

patterns. Furthermore, there might be cells that have unique

traffic patterns not correlated with the traffic patterns of any

other cells. In order to prevent the algorithm from choosing

random auxiliary cells in this case, we set a threshold HTHR.

An auxiliary cell m is chosen only if sn,m ≥ HTHR. Next,

we show how to provide the multi-timespan and auxiliary

information to the LLMs and use them for traffic prediction.

Fig. 1 shows the components of an LLM. The input

prompt is first broken into a sequence of tokens. Each token

is represented by a high-dimensional one-hot vector. The

embedding module determines a dense vector representation

(embedding) for each token. The multi-head self-attention

module determines the importance of each token in the input

sequence relative to the others, enabling the model to capture

long-term dependencies in input sequences. The output of

self-attention is fed into a feed-forward neural network to

generate the output sequence. Layer normalization and residual

connections are added after each layer to stabilize the training

process. Finally, we use the language modeling head from the

Conditional Generation class provided by Hugging Face to

convert the output embeddings back into one-hot vectors.

Both natural language generation and traffic prediction are

sequential tasks that involve sequence-to-sequence generation.

The autoregressive generation process of a language model

can be expressed as

p(y1:J) =

J
∏

j=1

p(yj | y<j), (7)

where p(y1:J) is the probability of generating the entire

sequence y1:J , yj is the token generated in position j, and

y<j represents the tokens generated before position j. This

expression resembles the traffic prediction problem formulated

in problem (1). Both involve generating new tokens based on

the previous tokens. Thus, LLMs can be fine-tuned to capture

different traffic patterns and predict future traffic. Through

fine-tuning, the LLM adapts its pre-learned embeddings to

the traffic prediction task, while the self-attention mechanism

learns to focus on the most important historical traffic infor-

mation, and the feed-forward layers learn to predict the traffic

based on this information.

In order to fine-tune and use LLMs for traffic prediction, we

need to express the inputs and outputs of the traffic prediction

task in a natural language format. First, we use a sliding

window with a stride of one hour to split the dataset into

multiple samples. Each sample of cell n includes information

from the P0 and P1 time steps of timespans T0 and T1,

respectively, and Q predictions. For each cell n, we also

include information from timespan T0 of the auxiliary cells.

Next, we design input prompts that incorporate the information

into natural language sentences and ask for predictions. We

use a template for generating prompt-response pairs across all

samples. Recent studies have shown that including information

such as time-of-day and day-of-week can improve the predic-

tion accuracy [8]. Thus, for each sample, the input prompt

includes historical traffic information, time-of-day, day-of-

week, cell index, and the question. We generate an individual

sentence for each timespan. An example of the input prompt

for Internet traffic is given in Fig. 1. The first sentence in

the example includes historical traffic information for cell 1

during timespan 1. The second sentence combines information

from cell 1 and an auxiliary cell, both during timespan 0.

For auxiliary information, rather than specifying the index of

the auxiliary cell, we use the term “similar” to imply the

correlation between the two cells. The final sentence asks

about the traffic at the desired time. The response includes

the cell index and the prediction. We fine-tune the LLMs on

these prompt-response pairs.

Note that our idea of using multiple timespans can be

applied to other traffic prediction models, including GNN-

based models. However, it typically requires modifying the

model architecture and adding extra layers to incorporate

information from various timespans. In contrast, when using

LLMs, the idea can be implemented by simply updating the

input prompt to include the additional information.

III. PERFORMANCE EVALUATION

We use the Telecom Italia Big Data Challenge dataset [13]

for performance evaluation. It includes the short message

service (SMS), voice call, and Internet traffic data of 10,000

cells organized in a 100 × 100 grid structure in the city of

Milan, Italy. Each cell is a square with the size of 235× 235
meters. The traffic is recorded from November 1, 2013 to

January 1, 2014 in 10-minute intervals. We aggregate the

traffic data of each cell into hourly intervals. Without loss of

generality, we randomly select 100 cells from the dataset. We

use the data from the first 55 days as our training set and the

data from the remaining 6 days as our test set. The prediction

horizon Q is set to 1. We choose P0 = 3 and P1 = 3 for the

LLMs. For a fair comparison, we set P0 = 6 for the baseline

model so that the total duration of the provided information is

the same for the LLMs and the baseline. The MAE and root

mean squared error (RMSE) metrics are used to measure the

prediction performance. The baseline scheme and the LLMs

used in our proposed model are as follows:

1) Adaptive graph convolutional recurrent network

(AGCRN) [5]: This is one of the state-of-the-art GNN-

based models. We implement the model using the official

AGCRN repository. For fair comparison, we perform

hyperparameter tuning to obtain the best results.

2) LLMs: We choose three popular LLMs: BigBird [11],

PEGASUS [12], and BART [10]. BigBird and PEGA-

SUS have pre-trained model sizes of 2.25 GB and 2.23

GB, respectively, while BART is a lightweight model



TABLE I
PERFORMANCE OF OUR PROPOSED MODEL USING DIFFERENT LLMS AND

AGCRN BASELINE SCHEME ON THE TRAFFIC PREDICTION TASK.

Model
SMS traffic Call traffic Internet traffic

MAE RMSE MAE RMSE MAE RMSE

BART 31.43 65.26 17.4 32.28 101.94 162.54

BigBird 29.92 61.05 17.75 33.46 97.87 154.9

PEGASUS 29.55 61.9 17.15 32.08 99.22 159.96

AGCRN 31.59 59.51 19.56 42.04 105.97 156.61

Reduction
+6.46 −2.59 +12.32 +23.69 +7.64 +1.09

in %

with a size of 557.8 MB. We use the Hugging Face

platform to download the pre-trained models and fine-

tune them on the traffic prediction task. We use the

tokenizers provided by Hugging Face for each model.

For the autoencoder, we use the Adam optimizer with a

learning rate of 0.001 and a weight decay factor of 10−8. We

train the autoencoder for 400 epochs with a batch size of 32.

For the clustering algorithm, we set H = 1000, HTHR = 500,

and S = 1. We use the default hyperparameters recom-

mended by Hugging Face to fine-tune the LLMs. Through

experiments, we notice that BART performs the best without

normalization, whereas BigBird and PEGASUS achieve better

results with max-min normalization. AGCRN achieves its best

performance with Z-score normalization. We use normalized

traffic data during training to compute the loss and update the

weights. During testing, we convert the predicted values to

their original scale to determine the true loss.

1) Evaluation Results: Table I shows the evaluation results

of different models on the traffic prediction task. It can be

observed that BigBird and PEGASUS outperform AGCRN

in terms of MAE by up to 6.46%, 12.32%, and 7.64% for

SMS, call, and Internet traffic, respectively. The lightweight

BART LLM yields comparable performance to AGCRN. To

investigate this performance improvement, let us have a closer

look at the traffic data in the Milan dataset. Fig. 4 shows the

entire Internet traffic history of a randomly selected cell. It can

be observed that during the last week, which also constitutes

our test set, the traffic values have an abrupt decrease. We

found this to be the case for most other cells as well. This is

a particularly challenging scenario for most traffic prediction

models due to the non-identical distribution of training and

test sets. However, LLMs can adapt to this change in the

traffic pattern and maintain a good prediction performance

due to their better generalization ability. This generalization

ability, along with the multi-timespan information, are the

main reasons behind the superior performance of LLMs.

Fig. 5 depicts the ground truth and the predictions of

AGCRN and our proposed LLM framework using BigBird

for SMS, call, and Internet traffic at a randomly selected

cell. It can be observed that our proposed LLM framework

captures the patterns of the ground truth traffic accurately and

outperforms AGCRN in terms of MAE and RMSE for call and

Internet traffic. However, it struggles with certain SMS traffic

peaks, such as the sharp increase on the final day shown in

Fig. 5(a), which leads to a higher RMSE compared to AGCRN
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Fig. 4. The entire Internet traffic history of a randomly selected cell.
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Fig. 5. Ground truth vs. predictions of our proposed model and AGCRN for
(a) SMS, (b) call, and (c) Internet traffic at a randomly selected cell.

for SMS traffic. This is because the model leverages historical

traffic data across all timespans rather than focusing solely

on the most recent period, so it occasionally overlooks abrupt

patterns that are confined to a specific timespan.

2) Generalization Ability: We assess the performance of

both LLMs and AGCRN in a zero-shot setting to evaluate

their generalization ability. In particular, we evaluate their

performance on cells that were not included in the training

process. To achieve this, we utilize our initial training dataset

and select an additional 100 cells to create a test set. The

results are shown in Table II. LLMs show a much stronger

generalization ability compared to AGCRN, reducing the

MAE and RMSE by up to 46.84% and 43.71%, respectively.

These results show that LLMs have learned the underlying

traffic features instead of memorizing the training data, which



TABLE II
ZERO-SHOT PERFORMANCE OF OUR PROPOSED MODEL USING THREE

DIFFERENT TYPES OF LLMS AND THE AGCRN BASELINE SCHEME.

Model
SMS traffic Call traffic Internet traffic

MAE RMSE MAE RMSE MAE RMSE

BART 26.97 58.3 16.59 32.72 99.31 186.39

BigBird 26.56 57.3 16.88 32.79 86.43 137.17

PEGASUS 25.51 57.07 14.7 27.78 88.94 145.38

AGCRN 34.91 58.13 27.65 49.35 160.77 238.24

Reduction
26.93 1.82 46.84 43.71 46.24 42.42

in %

leads to a substantial performance improvement over AGCRN.

3) Ablation Study: We perform ablation studies to measure

the influence of each component in our proposed model. First,

we remove the multi-timespan information from the input

prompts, only providing the model with information from

timespan T0. We set P0 = 6 so that the total duration of

the provided information remains the same as before. Table

III presents the results for SMS traffic. Results show that the

MAE performance of BART, BigBird, and PEGASUS LLMs

is degraded by 15.05%, 5.95%, and 11.91%, respectively. We

notice that including multi-timespan information can signif-

icantly improve the prediction accuracy. For further study,

Fig. 6 shows the MAE and RMSE of BART, BigBird, and

PEGASUS LLMs for SMS traffic when considering different

number of timespans. We observe that including information

from additional timespans, such as T2 and T3, can reduce

the MAE and RMSE. We note that the correlation between

distant timespans and current traffic tends to decrease, leading

to diminishing returns in MAE and RMSE improvement as

we include more timespans. Finally, we remove the historical

traffic information of auxiliary cells from the input prompts.

Results are shown in Table III. Without the auxiliary informa-

tion, the MAE performance of BART, BigBird, and PEGASUS

LLMs is degraded by 0.29%, 1.54%, and 0.85%, respectively.

IV. CONCLUSION

In this paper, we modeled wireless cellular traffic predic-

tion as an NLP task and utilized LLMs for cellular traffic

prediction. Our proposed model provides LLMs with informa-

tion from multiple timespans. Additionally, for each cell, we

provided auxiliary information from cells with similar traffic

patterns to refine the predictions. Experiments demonstrated

that our proposed LLM framework outperforms the AGCRN

baseline model in terms of MAE and RMSE. For zero-shot

performance, results showed that our proposed LLM frame-

work outperforms the baseline due to its generalization ability.

Results on ablation studies showed that incorporating multi-

timespan information can significantly improve the prediction

accuracy. In our current work, we used fixed timespans for

all predictions. For future work, we will explore dynamically

selecting timespans based on contextual factors such as the

day of the week.
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