
Service Function Chain Reconfiguration in
5G Core Networks Using Deep Learning

Mehdi Setayesh and Vincent W.S. Wong
Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

email: {setayeshm, vincentw}@ece.ubc.ca

Abstract—Software-defined networking (SDN) and network
functions virtualization (NFV) enable service providers to ac-
commodate diversified service requests in the fifth generation
(5G) core networks. Given the time-varying traffic demand
of the service requests, it is crucial for service providers to
embed the service function chains (SFCs) of the service requests
in the network to support load balancing, and to minimize
the reconfiguration overhead due to virtual network functions
(VNFs) migration while satisfying their quality of service (QoS)
requirements. In this paper, we study a delay-aware VNF
migration problem for embedding SFCs in a network with
limited processing resource capacity for NFV-enabled nodes. We
formulate it as a mixed-integer nonlinear optimization problem.
We decompose this problem into two subproblems for stateful
VNF mapping and allocation of processing resources, where the
second subproblem is a convex optimization problem. To solve
the first subproblem, we propose an algorithm based on deep
neural network (DNN) with attention mechanism for learning the
stochastic policy of a near-optimal VNF mapping. Simulation
results show that our proposed algorithm provides a solution
which is very close to the optimal solution obtained by solving a
mixed-integer quadratically constrained programming problem.

I. INTRODUCTION

The fifth generation (5G) communication networks are
envisioned to support multiple network services with diverse
quality of service (QoS) requirements. Software-defined net-
working (SDN) and network functions virtualization (NFV)
are two enablers to provide a flexible and programmable
architecture for 5G networks [1]. SDN provides flexible net-
work management using logically centralized control module.
NFV facilitates the deployment of the virtualized network
functions (VNFs) over NFV-enabled nodes (e.g., commodity
servers) [2]. Leveraging SDN/NFV technologies, different
network functions (e.g., firewall, deep packet inspection (DPI),
intrusion detection system (IDS)) can be deployed as modular
software components on NFV-enabled nodes and can be
chained together to provide a network service in the form
of a service function chain (SFC) [3].

A service request, in the form of SFC, has its own QoS
requirement in terms of end-to-end delay and average data
rate. VNFs running in virtual machines (VMs) are referred to
as VNF instances (VNFIs). The physical links and switches,
which are used to connect two VNFs based on the SFC
sequences, are referred to as tunnels. In the planning phase
of a virtual network, the placement of VNFIs on the NFV-
enabled nodes, the processing resource capacity of VNFIs,
the tunnels connecting VNFs, and the bandwidth of the links
along the tunnels are determined by the service provider in

order to embed SFCs in the virtual network and to meet the
QoS requirements of the service requests.

Given the predetermined VNFIs and tunnels, there are
major challenges for embedding SFCs in the operation phase
of the virtual network. First, the service requests can arrive at
different points of time. Hence, the service provider should
dynamically embed the SFCs. Second, the virtual network
resources can be shared among multiple SFCs. Moreover, the
traffic arrival rate of service requests fluctuates over time,
which may lead to the QoS degradation for service requests
due to insufficient processing resource for VNFs, as well as
bandwidth for the tunnels [4], [5].

To tackle the aforementioned challenges, SFC reconfigura-
tion has received considerable attention recently. Two types of
SFC reconfiguration have been proposed in the literature: VNF
mapping and VNF migration [6]. In VNF mapping, a new
mapping of VNFs on VNFIs with their required processing
resources is considered to satisfy the QoS requirements of the
service requests. In VNF migration, a stateful VNF mapping
on VNFIs is considered. Zhang et al. [7] modeled the VNF
mapping problem as a mixed binary linear program subject
to the constraints of the SFCs data rate requirement and the
link capacity. Tajiki et al. [8] proposed heuristic algorithms
to jointly manage the VNF placement and routing to enable
energy-aware SFC embedding.

To preserve the continuity of the existing flows for the
previously embedded service requests and prevent any service
interruption, VNF migration approach is standardized in [9].
Li et al. in [6] proposed two heuristic algorithms to solve a
SFC reconfiguration problem with the objective of minimizing
the end-to-end latency for all the affected services after the
migration process. Qu et al. in [10] formulated a delay-aware
flow migration problem by considering the trade-off between
load balancing among the VNFIs and the required recon-
figuration overhead. However, in [6] and [10], the effect of
arrival/departure of service requests on VNF migration is not
considered. Specifically, a VNF migration problem is required
to be solved when a new service request arrives. To mitigate
service quality degradation due to the service interruption, it is
important to solve the VNF migration problem by a low time
complexity algorithm for obtaining a near-optimal solution.

To tackle these challenges, in this paper, we study the VNF
migration problem for embedding SFCs in a virtual network.
We propose an algorithm using deep neural network (DNN)
with attention mechanism [11] to minimize the number of

migrations and achieve load balancing by jointly optimizing
the VNF mapping and processing resource allocation over a
virtual network of VNFIs. Our contributions are as follows:
• Considering the arrival of new service requests and time-

varying nature of service requests traffic load, we model
the joint stateful VNF mapping and processing resource
allocation in a delay-aware VNF migration problem as a
mixed-integer nonlinear programming problem.

• We decompose the VNF migration problem into two
subproblems: VNF mapping subproblem and processing
resource allocation subproblem, where the former is a
combinatorial optimization problem and the latter is a
convex optimization problem.

• We propose an algorithm using DNN with attention based
mechanism for solving the VNF mapping subproblem.
In particular, we employ a DNN module as an encoder
to learn the high-dimensional representations of service
requests packet arrival rate and previously executed VNF
mapping solution. We employ another DNN module as
a decoder, which takes the representations as input and
determines the stochastic policy for VNF mapping.

• Simulation results show that our proposed algorithm
achieves near-optimal performance, with an optimality
gap of 4.5% on average and a lower runtime when
compared with the optimal solution based on solving
a mixed-integer quadratically constrained programming
(MIQCP) problem.

This paper is organized as follows. The system model is
described in Section II. The problem formulation is presented
in Section III. Our proposed algorithm is given in Section IV.
In Section V, we evaluate the performance of the proposed
algorithm. Section VI concludes the paper.

II. SYSTEM MODEL

Consider a 5G core network shown in Fig. 1 that consists of
directed links and SDN-enabled nodes, including switches and
NFV-enabled nodes. Switches have only forwarding capability
to direct traffic from their incoming links to the outgoing
links. Those switches, which are at the edge of the network,
are considered as access nodes. NFV-enabled nodes have
both forwarding and processing capabilities. Given the limited
processing capacity of NFV-enabled nodes, different VNFIs
are placed on each NFV-enabled node. A service provider
aims to support multiple network services in the form of SFCs
in the network. Specifically, the service provider should have
the SFC reconfiguration ability to embed the newly arrived
service requests in the network and handle the traffic load
fluctuation of the service requests.

Let R denote the set of service requests supported by the
service provider. Each service request can arrive or depart the
network at different point of time. Let s(r) and d(r) denote
the source and destination nodes of service request r ∈ R,
respectively. The source and destination nodes are the access
nodes. Given all possible combinations of source nodes and
destination nodes, the service provider can obtain the total
number of service requests (i.e., |R|). Let Π(r) denote the SFC

Fig. 1: Illustration of a 5G core network. Two SFCs are embedded in the
network using the predetermined VNFIs.

of request r ∈ R. Π(r) contains a sequence of VNFs through
which request r should pass in the network. We denote the set
of VNF indices in SFC of request r by N (r) = {1, . . . , N (r)}.
VNF index n ∈ N (r) in Π(r) is denoted as π

(r)
n and we

have Π(r) = (π
(r)
1 → π

(r)
2 → · · · → π

(r)

N(r)). We use π
(r)
0

and π
(r)

N(r)+1
as two dummy VNFs located, respectively, at

source node s(r) and destination node d(r). Let F denote the
set of all VNF types (e.g., firewall, IDS) supported by the
service provider. We assume that at most one VNF of type
f ∈ F exists in each SFC Π(r). Each service request r has
an average end-to-end delay requirement D(r) and an average
arrival rate λ(r) in packets per second. Since the source node
of each request r is an access node, traffic flow of request
r is the aggregate traffic of the users sending their traffic
through the base stations to the edge switch s(r) and requiring
the same SFC Π(r) between the same source and destination
nodes [12]. Hence, λ(r) can fluctuate over time due to new
users’ subscription or mobility.

Let E denote the set of physical links in the network. We
denote the bandwidth of link e ∈ E by Be in bits per second.
We also define a virtual link as a directed logical link between
two consecutive VNFs (i.e., from π

(r)
n to π

(r)
n+1, n ∈ {0} ∪

N (r)). Each VNF is embedded to a single NFV-enabled node
in the physical network. Each virtual link can be embedded
to multiple physical links with SDN switches among them.

In practical systems, VNFs are operated in VMs, known as
VNFIs. Multiple VNFIs, each with different type f ∈ F , can
be mapped to one NFV-enabled node. Also, multiple VNFs
with type f , each belongs to different service request r ∈
R, can share the processing resource capacity of one VNFI
with the same type. Let G (I ∪ A,L) denote a directed graph,
where I and A denote the set of VNFI nodes and access
nodes, respectively, and L is a set of logical links between
the nodes. Let I(r)n ⊆ I denote the subset of VNFI nodes
that have the same type as VNF π

(r)
n , n ∈ N (r) for service

request r ∈ R. We denote the processing resource capacity of
VNFI i ∈ I by Ci in cycle/s. Let P (r)

i denote the processing
density (in cycle/packet) of VNFI i for service request r. The
processing density depends on the service type and VNF type.

There is a directed logical link between two nodes i, j ∈
I ∪ A if there is at least one virtual link between the
VNFI/access node, which is mapped to node i, and the

VNFI/access node, which is mapped to node j. We define
an |I ∪ A| × |I ∪ A| matrix L, where lij = 1 if there is
a logical link from node i to j, and lij = 0 otherwise. For
routing traffic from node i to node j, the service provider can
use the available mapping of the virtual links to the physical
links (i.e., predetermined tunnels) if lij = 1. Otherwise, given
the capacity of the physical links (i.e., Be, e ∈ E), the
service provider can solve a routing problem to find the paths
connecting node i and node j. Let t(r),trans and tprop

ij denote,
respectively, the transmission delay for service request r and
propagation delay along the path from i to j. In this work,
we ignore the switch processing delay, which is negligible in
comparison with other delays in the network.

Due to the time-varying nature of the service requests traffic
load, λ(r) changes over time. If λ(r) changes in a way that
degrades the QoS for service request r or reduces the resource
utilization of the VNFIs used by service request r, then
the service provider should consider SFC reconfiguration by
solving a VNF migration problem. The service provider can
consider SFC reconfiguration for embedding a newly arrived
service request. Thus, the service provider may need to release
some idle resources, embed the new service requests, and
consider a stateful flow migration for the existing service
requests in the reconfiguration process [4], [5].

III. PROBLEM FORMULATION

Two sets of overhead can be considered for reconfiguration
of the existing service requests. The first set of overhead is
required due to the stateful mapping of a VNF with type f ∈
F for a service request from one VNFI node to another VNFI
node. The second set of overhead is required when additional
logical links are required for rerouting the traffic. The service
provider aims to keep the reconfiguration overhead at a low
level by reducing the number of stateful VNF migrations and
decreasing the number of required extra logical links. The
service provider aims to minimize the maximum processing
resource utilization ratio among all the VNFIs in the network
in order to balance the load among different VNFIs.

We use the binary decision variable x(r)i to indicate whether
VNFI i ∈ I(r)n is chosen for embedding VNF index n ∈ N (r)

in SFC of service request r ∈ R (i.e., x(r)i = 1) or not (i.e.,
x
(r)
i = 0). Each VNF π(r)

n in SFC of service request r should
be mapped to exactly one VNFI of the same type. We have∑

i∈I(r)n
x
(r)
i = 1

(
λ(r) > 0

)
, n ∈ N (r), r ∈ R, (1)

where 1(·) is an indicator function.
Let µ(r)

i denote the processing rate (in packets per second)
which is allocated to service request r ∈ R at VNFI i ∈
I. Considering the processing resource capacity Ci and the
processing density P (r)

i , we have the following constraint:

λ(r) < µ
(r)
i ≤ Ci/P

(r)
i , i ∈ I, r ∈ R, (2)

where the lower bound in (2) is required for the VNFI node
queue to be stable. We use variable η to denote the maximum
processing resource utilization ratio. Hence, We have

∑
r∈R x

(r)
i P

(r)
i µ

(r)
i ≤ η Ci, i ∈ I, (3a)

0 ≤ η ≤ 1. (3b)

Let t(r),VNFI
i denote the average delay for service request

r ∈ R in VNFI node i ∈ I. Assuming that the traffic
arrival rate and packet processing time follow Poisson and
exponential distributions, respectively, the processing system
is an M/M/1 queue. We have

t
(r),VNFI
i =

1

µ
(r)
i − λ(r) + ε

, i ∈ I, r ∈ R, (4)

where 0 < ε� 1 is a constant. Considering the average end-
to-end delay requirement for each service request r ∈ R, we
have the following constraint:

t(r),trans +
∑
n∈{0}∪N (r)

∑
i∈I(r)n

∑
j∈I(r)n+1

x
(r)
i x

(r)
j tprop

ij

+
∑
n∈N (r)

∑
i∈I(r)n

x
(r)
i t

(r),VNFI
i ≤ D(r), r ∈ R, (5)

where I(r)0 , I(r)
N(r)+1

⊂ A denote the set of source and

destination nodes for service request r ∈ R. We set x(r)i = 1

for i ∈ I(r)0 , I(r)
N(r)+1

. We define binary variable y
(r)
ij to

indicate whether a directed logical link is required to be
created from node i to node j, i, j ∈ I∪A for service request
r ∈ R (i.e., y(r)ij = 1) or not (i.e., y(r)ij = 0). We have

y
(r)
ij =

1(lij = 0)1

(
x
(r)
i = 1

)
1

(
x
(r)
j = 1

)
,

i ∈ I(r)n , j ∈ I(r)n+1, n ∈ {0} ∪ N (r), r ∈ R,
0, otherwise,

(6)
The objective function of the SFC reconfiguration problem

is as follows:

f obj =α1η + α2

∑
r∈R

∑
n∈N (r)

∑
i,j∈I(r)n , i 6=j x

(r)
i x

(r)
j,0

+α3

∑
r∈R

∑
i,j∈I∪A y

(r)
ij , (7)

where α1, α2, and α3 are the priority weights, which are used
to control the tradeoff between the load among the VNFIs and
the reconfiguration overhead. In particular, α1, α2, and α3 are
coefficients for maximum loading factor η among all VNFIs,
number of VNF migrations ν, and the number of additional
logical links, respectively. x(r)j,0 is a known parameter that
indicates the state before reconfiguration. That is, it shows
whether the VNFI j ∈ I(r)n was chosen for embedding
VNF index n ∈ N (r) in SFC of service request r before
reconfiguration (i.e., x(r)j,0 = 1) or not (i.e., x(r)j,0 = 0). For the
newly arrived service requests, we set x(r)j,0 = 0. The service
provider aims to solve the following optimization problem:

minimize
η, x

(r)
i , µ

(r)
i , i∈I, r∈R

f obj (8)

subject to constraints (1)−(6).

Problem (8) is a mixed-integer nonlinear program, which is
NP-hard and difficult to solve. Note that the interruption due
to service request can be detrimental if an algorithm with a

high computational complexity is used to find a new reconfig-
uration. In the next section, we propose a low computational
complexity algorithm using attention-based DNNs to find a
near-optimal solution for problem (8).

IV. PROPOSED ALGORITHM

We decompose problem (8) into two subproblems for ob-
taining the VNF mapping (i.e., obtaining x(r)i) and processing
resource allocation (i.e., obtaining η and µ

(r)
i), respectively.

Given the processing resource allocation, we have the follow-
ing VNF mapping subproblem:

minimize
x
(r)
i , i∈I, r∈R

f obj subject to constraints (1) and (6). (9)

Given the VNF mapping, we have the following processing
resource allocation subproblem:

minimize
η, µ

(r)
i , i∈I, r∈R

f obj subject to constraints (2)−(5). (10)

Since subproblem (10) is a convex optimization problem, its
optimal solution can be obtained efficiently. However, sub-
problem (9) is a combinatorial optimization problem, which
is NP-hard [11]. DNN with attention mechanism is a powerful
tool for finding a near-optimal solution for combinatorial
optimization problems [11], [13]. Hence, to solve subproblem
(9), we design encoder and decoder DNNs for obtaining the
stochastic policy to efficiently determine the mapping of VNFs
on VNFI nodes after the training phase of the DNN modules.

A. Stochastic Policy and Encoder

For the training phase of the algorithm, we need training
data, which consists of different instances of the VNF map-
ping problem. Let K =

{
(i, r) |n ∈ N (r), i ∈ I(r)n , r ∈ R

}
denote the set of all possible service request-VNFI node pairs
in the network. We denote the feature vector of a possible
service request-VNFI node pair k ∈ K by sk =

(
λ(r), x

(r)
i,0

)
.

To show a problem instance, we use set S = {sk | k ∈ K}. For
each problem instance, we aim to find a selection of possible
service request-VNFI node pairs U = {u1, . . . , uM} ⊆ K,
where M =

∑
{r∈R |λ(r)>0} |N

(r)|. We set x(r)i = 1 for the
pair i ∈ I and r ∈ R, which is related to each um ∈ U . Let
p(U | S) denote the stochastic policy of selecting a solution U
given the problem instance S. Using the attention-based DNN
model, we can factorize p(U | S) and parameterize it by θ as:

pθ(U | S) =
∏M
m=1 pθ(um | S, u1, . . . , um−1). (11)

The encoder module produces embeddings (i.e., high-
dimensional representations) of the feature vector sk for all
the service request-VNFI node pairs in a problem instance S.
Given the encoder embeddings, the decoder module produces
the sequence U using (11).

Fig. 2(a) shows an illustration of DNN structure for the
encoder module. The 2-dimensional feature vectors are the
inputs of the encoder. A linear projection layer with learnable
parameters W s

en ∈ Rdh×2 and bsen ∈ Rdh×1 is used to
compute the initial dh-dimensional embeddings of the inputs.

(a) Encoder module (b) Decoder module
Fig. 2: Illustration of the DNN structure for (a) the encoder module and (b)
the decoder module.

Let hk = W s
ensk + bsen denote the initial embedding of the

feature vector sk. The initial embeddings are the inputs of the
attention layer. Attention mechanism is a weighted message
passing algorithm between the inputs of the attention layer
in order to highlight the relevant parts of the input [11]. For
obtaining the message that an initial embedding receives from
the other initial embeddings, at first, three vectors, which are
named query qk = W q

enhk, key κk = W κ
enhk, and value

vk = W v
enhk, are computed for each initial embedding hk,

where W q
en ∈ Rdκ×dh , W κ

en ∈ Rdκ×dh , and W v
en ∈ Rdh×dh

are the learnable parameters. Then, the compatibility gkl ∈ R
is computed between the query qk of hk and the key κl of
another initial embedding hl as gkl = qk·κl√

dκ
. The attention

weight akl ∈ [0, 1], which is the weight of the message value
sent by each initial embedding hl to initial embedding hk, can
be obtained using a softmax function as akl = egkl∑

l′∈K e
g
kl′ .

The output of the attention layer is the sum of the weighted
message value received by each initial embedding hk from
the other initial embeddings. We have h′k =

∑
l∈K aklvl.

Using a skip connection [11] in our encoder, we obtain the
input of the next layer, which is a fully connected feed-forward
(FF) layer. Let ĥk = hk+h′k denote the input of the FF layer.
For the FF layer, we use one hidden layer with dimension df .
Let W f and h̃k denote, respectively, the learnable parameters
and the output of the FF layer. We denote the output of the
encoder module by hfinal

k . Using a skip connection, the final
embedding corresponding to each input feature vector sk is
computed as hfinal

k = ĥk + h̃k.

B. Decoder

Fig. 2(b) shows the decoder structure. The decoder module
is invoked M times. At each iteration, it computes a proba-
bility distribution over the service request r and VNFI node i
pairs, whose selection is possible but they are not selected yet.
That is, at each iteration m, the output is the probability of
selecting a possible index k given the indices u1, . . . , um−1,
which are selected in the previous iterations, i.e., pθ(um =
k | S, u1, . . . , um−1). The input of the decoder has two parts.
The first part is the output of the encoder, i.e., the final
embeddings hfinal

k , which are fixed for all M iterations. The

second part, which is called context embedding hcontext, is
obtained as hcontext =

[
hmean, hfinal

um−1
, M −m+ 1

]
, where

hmean is the mean of the final embeddings, hfinal
um−1

is the final
embedding of the previously selected service request-VNFI
node pair, and M −m+ 1 helps the decoder to determine the
number of remaining selections. At m = 1, we set hfinal

u0
= 0.

The first layer in the decoder is an attention layer. At
each iteration m, we mask all the final embeddings with
λ(r) = 0 in their corresponding feature vector. We mask
the final embeddings corresponding to the previously selected
indices ul, l = {0, . . . ,m− 1}. Each ul specifies the selected
pair of service request r and VNFI node i. Given constraint
(1), we mask all the other embeddings which correspond to the
pairs of the same request r and the other VNFI nodes with the
same type of VNFI node i. We considerW q

de,1 ∈ Rdκ×(2dh+1),
W κ

de,1 ∈ Rdκ×dh , and W v
de,1 ∈ Rdh×dh as the learnable

parameters for the attention layer in the first layer of the
decoder DNN. The second layer of the decoder is another
attention layer. We use the same masking procedure as the
one in the first attention layer of the decoder. The outputs of
this layer are the probabilities over possible indices k, i.e.,
pθ(um = k | S, u1, . . . , um−1). Using the learnable parame-
ters W q

de,2 ∈ Rdκ×dh and W κ
de,2 ∈ Rdκ×dh , the compatibility

gck ∈ R of the query qcontext
c of hcontext

c with the key κfinal
k

of hfinal
k is computed as gck = β tanh

(
qcontext
c ·κfinal

k√
dκ

)
, where the

tanh function is used to clip the result within [−β, β]. Then,
using the softmax function, we have the final probabilities as
follows:

pθ(um = k | S, u1, . . . , um−1) =
egck∑

k′∈K e
gck′

, (12)

where θ is the collection of all learnable parameters in both
encoder and decoder modules.

C. Training Algorithm

Based on encoder and decoder modules, given a problem
instance S as input, we obtain a probability distribution
pθ(U | S), from which we can sample to determine each VNF
in the SFC of the service requests should be mapped to
which VNFI node, i.e., where x

(r)
i , i ∈ I, r ∈ R should

be equal to one. Considering the objective function in (7), we
define L(θ | S) = Epθ(U | S)[f(U)] as loss function for training
our model and obtaining the optimal learnable parameters
θ, where f(U) is the objective value of problem (10). We
minimize L(θ | S) by using Adam optimizer [14], and use
the REINFORCE gradient estimator as follows:

∇L(θ | S) = Epθ(U | S) [f(U)∇ log pθ(U | S)] . (13)

The training algorithm is shown in Algorithm 1. The computa-
tion complexity of the online execution of the proposed algo-
rithm for each SFC reconfiguration problem is O(|K|+Copt),
where Copt is the computational complexity of solving convex
problem (10), which has a polynomial time complexity.

Algorithm 1 Training Algorithm for Stateful VNF Mapping
1: Set the number of epochs and batch size B. Initialize θ.
2: for each epoch do
3: Consider B different problem instances SB .
4: for each S ∈ SB do
5: Feed the feature vectors in S into the DNN modules and

obtain the solution U using pθ(U | S).
6: Determine f(U) by solving problem (10).
7: Determine ∇L(θ | S) based on (13).
8: end for
9: Determine the aggregate gradient over the batch as

∇L(θ | SB) :=
∑

S∈SB
∇L(θ | S)

10: Update θ using Adam optimizer [14].
11: end for
12: Outputs are the learned parameters θ.

Fig. 3: 4-ary fat tree topology.

V. PERFORMANCE EVALUATION

We consider a 4-ary fat-tree topology with 16 NFV-enabled
nodes and 20 SDN switches as shown in Fig. 3. There are four
VNF types, i.e., F = {f1, f2, f3, f4}. There is a VNFI for
each VNF type on each NFV-enabled node. Thus, the network
has 64 VNFI nodes. We set the processing rate for each VNFI
to be 1000 packet/s. The propagation delay of the physical
links are chosen uniformly between 2 and 5 ms. There are
four service requests: SFC1 (f2 → f3 → f4), SFC2 and SFC3
(f1 → f2 → f3 → f4), and SFC4 (f1 → f2 → f4). One of
them can be selected as the departure service request or the
newly arrived service request at the reconfiguration time. For
the existing service requests at the reconfiguration time, we set
the average arrival rate between [200, 400] packet/s, and the
delay requirement D(r) is equal to 45 ms. In Algorithm 1, we
set hyperparameters dh = dκ = 128, β = 10, and B = 512.
We set the number of epochs to be 5000. For generating the
problem instances, given the logical links, we randomly map
the VNFs in the SFC of each service request to the VNFI
nodes to obtain x(r)i,0 . We implement our algorithm in Python
3.7 using PyTorch library and MOSEK optimization solver on
a PC with Nvidia GeForce RTX 2070 GPU, 2.9 GHz Intel(R)
Core(TM) i7-10700 CPU processor and 32 GB memory. For
performance comparison, we transform problem (8) into an
MIQCP problem using the approach proposed in [10] and
solve it by the Gurobi optimization solver.

In Fig. 4, we compare the performance of Algorithm 1 with
MIQCP. The priority factor α1 varies from 0 to 0.8. We set
α2 = 0.8 − α1 and α3 = 0.2. The results are obtained by
averaging over 50 realizations in which SFC1, SFC2, and
SFC3 share the same VNFI for VNF f2, SFC1 and SFC3 share
the same VNFI for VNF f4, and SFC2 and SFC4 share another
VNFI for VNF f4, before the reconfiguration time. Results

Fig. 4: The objective value versus the priority weight α1.

Fig. 5: The maximum loading factor η and the number of VNF migrations
ν versus the packet arrival rate for SFC3. We set λ(1) = 350 packet/s and
λ(2) = 250 packet/s. We set α1 = α2 = 0.4 and α3 = 0.2.

show that there is on average 4.5% optimality gap between
the objective value obtained from our proposed algorithm and
the optimal value obtained by solving the MIQCP problem.
Note that the runtime for the online execution of our proposed
algorithm including solving the convex optimization problem
(10) is only 13 ms, whereas solving the MIQCP problem has
an exponential time complexity with the runtime of 3.65 s.

In Fig. 5, we investigate the impact of the arrival rate
of SFC3 on η and ν when SFC1, SFC2, and SFC3 share
the processing resource of one VNFI for VNF f2 before the
reconfiguration time. We consider SFC4 as the newly arrived
service request with λ(4) = 400 packet/s at the reconfiguration
time. When the packet arrival rate of SFC3 increases, the
maximum loading factor η also increases in order to guarantee
the end-to-end delay for SFCs. When η approaches 1, one of
the VNFs on the shared VNFI migrates to another VNFI.
After the migration, the value of η decreases and the end-to-
end delay for SFCs is satisfied. Also, our algorithm maps the
VNFs of the SFC4 to the VNFIs which are not shared among
the other SFCs. Hence, there is no increase in the values of
η and ν due to the newly arrived SFC4.

VI. CONCLUSION

In this paper, we proposed an algorithm to solve a SFC
reconfiguration problem in SDN/NFV enabled 5G core net-
works. By considering the end-to-end delay for service re-
quests, the limited processing resource capacity of VNFIs, and

the order of the VNFs in the SFCs of the service requests, we
formulated the joint stateful VNF mapping and processing
resource allocation for service requests as a mixed-integer
nonlinear optimization problem. To obtain a near-optimal
solution for such an NP-hard optimization problem, we de-
composed the problem into two subproblems. We proposed an
algorithm based on DNN with attention mechanism to solve
the first subproblem for obtaining the VNF mapping. Given
the solution of the first subproblem, a convex optimization
problem is solved in the second subproblem to obtain the
processing resource allocation. Through simulations, we have
shown that our proposed algorithm can achieve a solution that
is close to the optimal solution obtained by transforming the
SFC reconfiguration problem into an MIQCP problem. For
future work, we will consider the service downtime due to the
VNF migration operation, as well as the techniques by which
the scalability of the proposed scheme can be improved.

ACKNOWLEDGEMENT

This work was supported by Rogers Communications
Canada Inc.

REFERENCES

[1] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 80–87, May 2017.

[2] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “SDN/NFV-
empowered future IoV with enhanced communication, computing, and
caching,” Proc. of the IEEE, vol. 108, no. 2, pp. 274–291, Feb. 2019.

[3] J. Halpern and C. Pignataro, “Service function chaining (SFC) archi-
tecture,” IETF RFC 7665, Oct. 2015.

[4] G. Wang, G. Feng, T. Q. Quek, S. Qin, R. Wen, and W. Tan, “Recon-
figuration in network slicing – Optimizing the profit and performance,”
IEEE Trans. Netw. Service Manag., vol. 16, no. 2, pp. 591–605, Jun.
2019.

[5] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF scaling and flow
routing with proactive demand prediction,” in Proc. of IEEE Int’l Conf.
on Computer Commun. (INFOCOM), Honolulu, HI, Apr. 2018.

[6] B. Li, B. Cheng, X. Liu, M. Wang, Y. Yue, and J. Chen, “Joint resource
optimization and delay-aware virtual network function migration in data
center networks,” IEEE Trans. Netw. Service Manag., 2021.

[7] N. Zhang, Y.-F. Liu, H. Farmanbar, T.-H. Chang, M. Hong, and Z.-
Q. Luo, “Network slicing for service-oriented networks under resource
constraints,” IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2512–
2521, Nov. 2017.

[8] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari,
“Joint energy efficient and QoS-aware path allocation and VNF place-
ment for service function chaining,” IEEE Trans. Netw. Service Manag.,
vol. 16, no. 1, pp. 374–388, Mar. 2019.

[9] ETSI GS NFV-REL 006 V3.1.1, “Network Functions Virtualisation
(NFV) Release 3,” Feb. 2018.

[10] K. Qu, W. Zhuang, Q. Ye, X. Shen, X. Li, and J. Rao, “Dynamic
flow migration for embedded services in SDN/NFV-enabled 5G core
networks,” IEEE Trans. on Commun., vol. 68, no. 4, pp. 2394–2408,
Apr. 2020.

[11] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in Proc. of Int’l Conf. Learn. Representations (ICLR), New
Orleans, LA, May 2019.

[12] R. Yu, G. Xue, and X. Zhang, “QoS-aware and reliable traffic steering
for service function chaining in mobile networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2522–2531, Nov. 2017.

[13] C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and channel
assignment for NOMA with deep reinforcement learning,” IEEE J. Sel.
Areas Commun., vol. 37, no. 10, pp. 2200–2210, Oct. 2019.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of Int’l Conf. Learning Representations (ICLR), San Diego, CA,
May 2015.

