Distributed Maximum Lifetime Routing in Wireless
Sensor Networks Based on Regularization

Vahid Shah-Mansouri and Vincent W.S. Wong
Department of Electrical & Computer Engineering
The University of British Columbia, Vancouver, Canada
e-mail: {vahids, vincentw}@ece.ubc.ca

Abstract— The maximum lifetime routing problem in wireless
sensor networks has received increasing attention in recent years.
One way is to formulate it as a linear programming problem
by maximizing the time at which the first node runs out of
energy subject to the flow conservation constraints. The solutions
in this problem correspond to the rates allocated to each link.
In this paper, we first show that, under certain conditions, the
solutions of this problem are not unique for some network
topologies. Given the feasible solutions set, one can further define
a secondary optimization problem by minimizing the end-to-end
packet transfer delay or power consumption. Rather than solving
two sequential optimization problems, in this paper, we propose
the use of a regularization method which can jointly maximize
the network lifetime and minimize another objective (e.g., packet
delay). We describe the fully distributed implementation and
provide performance comparisons with other algorithms.

I. INTRODUCTION

Recent advances in low power integrated circuits have sped
up the development of various types of low cost wireless
sensors, which are the building blocks of the wireless sensor
networks (WSNs). In WSNs, each sensor node has the capa-
bility to sense the environment (e.g., temperature, pressure,
light, acoustic) and process the data. In general, WSNs have
an ad hoc topology and each node is capable of relaying the
data towards the sink.

Most of the sensor nodes are battery powered. The limited
amount of energy in each node is one of the bottlenecks.
To overcome this problem, various energy aware or energy-
constrained algorithms have been proposed in the literature
(e.g., [1]1, [2], [3]). One simple approach is to minimize the
power consumed to deliver a packet to the destination. The
typical solution is to use the shortest path with link costs equal
to the energy required in each link to transmit a packet [4].
Another approach is to maximize the lifetime of the network.

There are various ways to define the lifetime of a WSN. It
can be defined as the time at which the first node runs out
of its energy. Based on this definition, Chang and Tassiulas
formulated the maximum lifetime routing problem as a linear
programming problem [5]. A flow augmentation (FA) heuristic
is used to solve the problem in a distributed manner. In [6], the
work is extended by considering the case when the sequence
of the generated data is unknown. In [7], Madan and Lall
proposed both the partially distributed and fully distributed
algorithms to solve the linear maximum lifetime problem in
WSNs. In [8], the maximum lifetime problem is extended by

considering a variable-length TDMA (Time Division Multiple
Access) frame in the MAC (medium access control) layer.
The problem is formulated as a convex optimization problem
and a heuristic is used to solve it in a centralized manner.
In [9], Brown et al. showed that maximizing the lifetime is
equivalent to maximizing the traffic flow utility over the time.
In [10], Hou et al. studied a two-tier WSN. They formulated
the network lifetime problem for upper-tier aggregation and
forwarding nodes as an optimization problem. In [11], Nama
et al. studied the utility-lifetime tradeoff in maximum lifetime
problem by considering the source rates as variables in the sys-
tem. The objective is the utility maximization and a lifetime-
penalty function is used to penalize large values of the inverse
of the system lifetime. In [12], Dagher er al. proposed an
iterative algorithm to find the Pareto optimal routing solution
for the maximum lifetime problem.

For most of the maximum lifetime problems addressed in
the literature (e.g., [5], [7]), the solutions correspond to the
rates allocated to each link. In this paper, we first show that,
under certain conditions, the solutions of this problem are
not unique for some network topologies. Given the feasible
solutions set, one can further define a secondary optimization
problem by minimizing the end-to-end packet transfer delay
or power consumption. Rather than solving two sequential
optimization problems, in this paper, we propose a method to
combine them as a single optimization problem. The regular-
ization term does not change the complexity of the distributed
method. The contributions of this paper are as follows:

e We propose the use of a regularization method which
can jointly maximize the network lifetime and minimize
another objective (e.g., packet delay, total power con-
sumption).

e By using dual decomposition, the problem can be de-
composed into several sub-problems (one for each node),
which facilitates a fully distributed implementation.

o Results show that our proposed model not only can
obtain the flow rates such that the network lifetime is
maximized, it can also provide a lower average packet
delay and power consumption when compared with other
algorithms [5][7].

The rest of the paper is organized as follows: Section II
describes the maximum lifetime problem and discusses the
conditions under which the solutions are not unique. Section



IIT introduces the regularization technique and the regular-
ization functions. In Section IV, we present the maximum
lifetime problem with regularization and describe a distributed
algorithm based on dual decomposition. Results are presented
in Section V. Conclusions are given in Section VI.

II. BACKGROUND AND MOTIVATIONS

In this section, we first summarize the maximum lifetime
routing problem formulation [5], [7]. We then provide exam-
ples to show that the optimal solutions are not unique. It is
followed by a discussion on the second sequential optimization
problem.

A. Maximum Lifetime Routing Problem

Consider a wireless sensor network. Let V' denote the set of
sensor nodes, IN; denote the set of neighbors of node © € V,
S; denote rate of data generated by node ¢, z;; denote the
rate of data flows from node 7 to node j (i.e., aggregated
rate). Let S,;,. denote the data to the sink. We have, S, =
-> €V, itsink S;. Let E; denote the initial energy of node i,
p;; denote the average power consumed for transmission from
node i to j. Let T;(x) denote the lifetime of the node 7 under
data flow vector x = {x;;}. We have,

E;

Ti(x) = ="
() > jen,: PijTij

(1)

Sensor nodes are assumed to use TDMA for data transmis-
sion. Links which interfere with each other are not scheduled
simultaneously. The maximum transmission rate and the max-
imum fraction of time allocated to each link are constant. The
maximum flow for link (¢, j) is denoted by R;;.

Given S;, I, p;j, and R;;, the objective in the maximum
lifetime routing problem is to maximize the time that the first
node runs out of its energy, subject to the flow conservation
constraints. We have,

maximize min 7;(x)
eV

subject to Z (xij —25:) = S;, VieV
JEN;

ngingij, YVieV,VjeN, (2)

Problem (2) can be converted to the following linear prob-
lem by a change of variable:

minimize ¢

subject to Z (1’7] — Z‘ji) = S7 Vi eV
JEN;
Z DijTij < qFy, VieV
JEN;
0<uzy <Ry, VieV,Vje N, (3)

where ¢ is the upper bound on the inverse of the lifetime of all
the nodes in the network. The optimal value (minimal value)
is denoted by ¢* and is achieved at an optimal solution x*.
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Fig. 1. (a) A WSN with one source and a sink; (b) A WSN with two sources
and a sink.

B. Multiple Optimal Solutions

Problem (3) is a linear programming problem. The feasible
region is the collection of all feasible solutions x which satisfy
the constraints in (3). When the feasible region is not empty
and the optimal value is bounded, then there will be either one
optimal solution or multiple optimal solutions. When problem
(3) has one optimal solution, it is a corner point solution. A
corner point solution is an extreme point of the polyhedron
constructed by the constraints . When problem (3) has multiple
optimal solutions, they are in a hyperplane constructed by
several constraints. Mathematically, an optimization problem
which has a unique optimal solution is called a well-posed
problem (and is called an ill-posed problem otherwise).

Consider the first example shown in Fig. 1 (a). Nodes A, B,
C, and D have equal initial energy. The source and sink nodes
have higher initial energy. The source generates data at the rate
of S;. There are two paths between the source and sink nodes.
The first path (called P;) is via intermediate nodes A, B, and
D. The second path (called P5) is via intermediate nodes C'
and D. Path P; carries .57 proportion of source traffic. Path
P, carries (1 — «)Sy proportion of source traffic. We define
a bottleneck node as the one which has the minimum lifetime
in the network. Suppose node D is the bottleneck node. Thus,
the inequality constraint in problem (3) is active at node D at
the optimum point. That is,

Z Ppj Tpj = ¢ Ep

JEND
where ¢* is the optimal value. Since all other constraints are
satisfied as long as the source sends «.S; proportion of traffic
via path P; and (1 — «)S; proportion of traffic via path Py
for 0 < a < 1, the optimal solutions x* are not unique.



Consider the second example shown in Fig. 1 (b). In this
example, one node along the path between source 2 and the
sink is the bottleneck. Similarly, source 1 can transmit a
portion of its data S7 via the two available multipaths and
this portion can vary within a certain range. Thus, the optimal
solutions x* are also not unique in this example.

C. The Second Optimization Problem

For the above examples, we show that for a WSN with
multiple sources sending data to the sink, although the optimal
value (i.e., maximum lifetime) can be determined by solving
either problem (2) or (3), the optimal solutions (i.e., routing
paths and the corresponding data rates) are not unique. This
gives an opportunity to further optimize another objective
function.

To this end, let X* denote the set of optimal data flow
vectors such that each vector in this set is the optimal solution
in problem (3). Thus, a second optimization problem can be
defined such that the variables are restricted to be the optimal
solutions in problem (3). The second optimization problem
can be defined as:

minimize ¢(x), subject to x € X* 4)

where ¢(x) can be either a cost function, a delay function, or
a function used to model the power consumption. In addition,
the term —¢(x) can be interpreted as a utility function. Since
the constraints in problem (3) are either affine or convex
functions, in order to ensure that problem (4) has a unique
solution, a necessary and sufficient condition is that ¢(x) be
a strictly convex function.

In the next section, we provide the background to combine
problems (3) and (4) as a single optimization problem.

III. EXACT REGULARIZATION OF LINEAR PROGRAM

Consider the following linear programming problem with
variable x:

minimize  fo(x)
subject to  fi(x) >0, i=1,....m
x>0 (%)

where fq, f;’s are linear functions. The optimal value (minimal
value) is denoted by p* and is achieved at an optimal solution
x*. That is, p* = fo(x*).

The second optimization problem is defined as:

minimize  ¢(x)
subjectto  fi(x) >0, i=1,...,m
fo(x) <p*
x =0 (6)

where the domain of x is the set of optimal solutions in (5),
and ¢(x) : R™ — R can either be a linear or nonlinear
function. The level set of ¢(x) is nonempty and bounded.
The nonlinear regularization (or perturbation) of linear
programs was first proposed by Mangasarian et al. [13]. They

showed that solving (5) and (6) sequentially is equivalent to
solving the following optimization problem:

minimize  fo(x) + 0p(x)
subjectto  f;(x) >0, i=1,---,m
xz0 (7)

Mangasarian et al. [13] proved that for all values of ¢ below
some positive threshold, the optimal solutions of the regular-
ized problem (7) are also the optimal solutions in problems
(5) and (6). Recently in [14], Friedlander et al. showed that
this threshold is the inverse of the Lagrange multiplier of the
second inequality constraint in problem (6). They proved that
problem (6) always has a Karush-Kuhn-Tucker (KKT) point.
Thus, this threshold always exists.

A. Regularization Function

For applications in WSNs, the regularization function ¢(x)
is aimed to satisfy the following properties:

1) It is a strictly convex function.

2) It is a separable function.

3) It has a physical interpretation (e.g., end-to-end delay

of a path).

Property (1) ensures that the problem (7) is a well-posed
problem. Property (2) allows problem (7) to be solved in a
distributed manner. Separability implies that ¢(x) is the sum
of some functions ¢; and each local function ¢, only depends
on the information around node . Finally, since ¢(x) is used
as part of the objective function, property (3) ensures that it
has a physical meaning.

A common form of regularization is proposed by Tikhonov
[15][16] where ¢(x) = ||x||3. This function was also used in
[7]. Although this function satisfies properties (1) and (2), it
does not provide a physical meaning.

In the following, we propose two regularization functions
which satisfy the above three properties.

1) Delay Function: The end-to-end packet delay between
a source and a sink depends on the number of hops of the
path and the queuing delay in each intermediate node along
the path. For most of the WSN’s applications, since the data
rate is low and data are also aggregated along the path, it is
reasonable to assume that the queuing delay is not a dominant
factor and the number of hops is more important.

Assume that each sensor node ¢ knows the geographical
locations of itself, its neighbors 7 € N;, and the sink via
some localization algorithms [17]. Thus, it can determine the
distance d;, sini between node j and the sink. We define:

dj7 sink

hij = , eV, jeN; )

di, sink

For a given node 1, if its neighbor j € NN, is farther from
the sink than another neighbor k € N;, then h;; > h;,. We
propose the local delay function at node ¢ as:

pi(x) = Z h?j m?jv

JEN;

i€V ©)



Node i is able to forward its data towards the sink through
some its neighbors. It sends data through the neighbors with
lower h;; (or equivalently through a subset of neighboring
nodes that are closer to the sink). Taking the square of each
term ensures that the function ¢; is strictly convex. This leads
to a suboptimality. We show the amount of suboptimality in
performance comparison section.
The regularization function for delay is:

ox) =D ¢i(x) =D Y 3l

eV i€V jeEN;

(10)

The above function ensures that most of the data traffic is
routed through the minimum hop path on average.

2) Minimizing the Total Power Consumption: A common
objective function to minimize the total power consumption in
the WSNis >,y >~ c v, Pij T4j- Since the above function is
not strictly convex, we take the square in each term and define
the regularization function for power as:

B(x) =D di(x)=>_ > pija

eV ieV jeN;

(1)

The function in (11) is strictly convex and separable. Each
node 7 chooses to forward data through its neighbors 7 which
require less transmission power p;;.

IV. DISTRIBUTED ALGORITHM OF REGULARIZED
PROBLEM

In this section, we first present the primal problem which
is decomposable. For distributed implementation, we then use
dual decomposition to separate the primal problem into several
sub-problems, one for each node.

Based on the results from Section III, problems (3) and (4)
can be combined as a single optimization problem. To ensure
that the primal problem is decomposable, we use the similar
technique as in [7]. For the objective function in (3), q is
replaced by ), N, q? which is decomposable. An additional
constraint ¢; = ¢; (for all i € V, j € IN;) is included to make
sure that all ¢;’s are equal.

The new primal problem which combines problems (3) and
(4) is as follows:

minimize Z (qf +0¢; (X))

i€V
subject to Z (wij —xj;) = S;, VieV
JEN;
Z Dij Tij < qi by, vieV
JEN;
qi = qj, VieV,VjeN,;
0< 45 < Rij, Vi € V, Vj eN; (12)

where .\, ¢i(x) is the regularization term for either delay
objective (10) or power objective (11). Problem (12) is a
convex optimization problem and it can be solved by using the
dual decomposition approach. We first introduce the Lagrange
multipliers (v and ) for the equality constraints in (12). The

other constraints are local constraints in each node and need
not be relaxed. The Lagrangian is:

> (¢ +00i(x))

1%

+Zl/i Z(l‘” —.Z‘ji) _Si

i€V JEN,

+Z Z Yij (@ — q;)

i€V jEN;

= =D uSit) (q? + 864 (x)

% i€V

g Y (v =)+ D wii(vi — Vj)>~

JEN; JEN;

La,x,v,7) =

From the Lagrangian, the dual function and the dual prob-
lem can be defined. A subgradient algorithm can be used
to solve the dual problem. We use the following distributive
algorithm to solve problem (12).

Distributed algorithm for each source i € V:

Given v(t), v(t), and the local information (p;;, E;, R;;), each
node ¢ updates the variables ¢;(t) and x;;(t) for j € N; by
solving the following problem at each iteration ¢:

minimize g7 (t) + 0¢s(x(1)) + @:(t) Y (v (£) = 75(1))
JEN;

+ ) @i () (vilt) — vy(t)

JEN;
subject to Z pij Tij(t) < qi(t) E;
JEN;

0<uz(t) <Ry, VjeN; (13)

The Lagrange multipliers v;(t) and ~;;(t) at each iteration
t are updated based on following equations:

vi(t+1) = vi(t)—a(t) [ Si = > (zi(t) — z;i(t) |, (14)

JEN;
and
Yij (t+ 1) =7;(t) — a(t) (¢;(t) — a:(t)), Vi€ Ny (15)
where «(t) is a positive step size and is chosen as .

Furthermore, x;;(¢) and g;(t) are solutions of problem (13).

In summary, at each iteration, node ¢ updates the values of ¢;
and z;; based on (13). The values of the Lagrange multipliers
are updated based on (14) and (15). Node ¢ then exchanges
the updated values of ¢;, x;5, v;, and ~;;, with its neighbors
7 EN;.

V. PERFORMANCE COMPARISONS

In this section, we compare our distributed regularized
algorithm with the flow augmentation heuristic [6] and the
fully distributed algorithm proposed in [7].

In the first experiment, 36 nodes are randomly deployed in
a square area with each side equal to 70 unit. The maximum
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Fig. 2. Routing paths for different problems: (a) Fully distributed method
[7]; (b) Regularized problem with power term; (c) Regularized problem with
delay term.

transmission radius of each node is 15 unit. Two nodes are
randomly selected as sources. The sink node is located at the
top right corner in the network. We assume a deterministic
path loss model. The power consumed for transmission of one
bit from node 7 to node j (i.e., ps;) is 51 + B2d*, where d is
the physical distance. We choose 31 = 1 and B2 = 0.1. For
the regularization method, we select & = 10~°. Each source
generates 100 bytes/sec of information. The initial energy of
each source node Eg is 30 J while the initial energy of each
intermediate node ¢ (i.e., ;) is 10 J.

In the flow augmentation heuristic, the cost of each link is

determined by [6]:
COStij = Pij 51-_30 EZ-_?’O

where ¢; is the residual energy after each packet transmission.
The packet generation rate is 1 packet/sec and each packet is
100 bytes.
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Fig. 3. Normalized average end-to-end delay by using different algorithms.

Fig. 2 depicts the routing paths by using different maximum
lifetime routing algorithms. Fig. 2 (a) shows the routing based
on the fully distributed method [7], Fig. 2 (b) shows the routing
of the regularized program with power regularization term, and
Fig. 2 (c¢) shows the routing with delay regularization term.
Although all three algorithms provide the same maximum
lifetime of the network, results in Fig. 2 (a) show that almost
all the nodes are involved in routing while the results in Figs. 2
(b) and (c) show that only a subset of nodes are involved in
routing between the two sources and the sink. Note that we
do not include the results for the flow augmentation heuristic
[6] as the results are similar to that in Fig. 2 (a) (i.e., the
routing paths are the same while the data rate of the links are
different).

In the next experiment, we present the results for networks
with a larger number of nodes. 200 nodes are randomly
deployed in a square region with each side equal to 100 unit.
The maximum transmission radius of each node is 5 unit.
There is one sink in the network. The number of sources
varies in each simulation run. Other values of the parameters
in the system are the same as in the previous experiment. The
topology is changed randomly after each simulation run and
the results are averaged over 1000 simulation runs.

Fig. 3 shows the results for the normalized average delay.
The delay is defined as the average number of hops between
each source and the sink. The average values are normalized
by the value obtained from the regularized problem with linear
delay term. Quadratic delay term is the term that we used
to obtain a strictly convex regularization term. The quadratic
term is obtained by taking square from each term in linear
regularization term.

Results show that our proposed algorithm with regularized
delay term provides a lower normalized delay than the flow
augmentation heuristic [6] and the fully distributed algorithm
[7]. This figure also shows that the suboptimality produced by
using strictly convex term is less than 10%.

Fig. 4 shows the results for the normalized average power.
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Fig. 5. Convergence of the optimal value in the network with one source

and 200 nodes.

The total power is defined as the average total power consumed
along each path from the source node to the sink. The
average values are normalized by the value obtained from
the regularized problem with power term. Results show that
our proposed algorithm with regularized power term provides
a lower normalized power consumption than the other two
schemes.

Fig. 5 shows the lifetime of one of the topologies versus
the iteration number used in our distributed implementation of
our proposed regularized problem. The distributed algorithm
converges within 5% of the optimal point after 5,000 iterations,
and it converges to the optimal point after 15,000 iterations.

VI. CONCLUSIONS

In this paper, we first showed that the maximum lifetime
routing problem in general case may lead to multiple optimal
solutions. Different solutions may lead to different network
behaviors such as end-to-end delay or total power consump-
tion. To choose a unique solution, a second optimization

problem may be necessary. We proposed the use of regu-
larization to combine two sequential optimization problems
as a single problem. We also proposed two regularization
functions for delay and total power consumption. We described
the distributed algorithm for the regularized problem via dual
decomposition. When compared our proposed algorithm with
those in [6] and [7], although all three provide the same
optimal lifetime value, our proposed algorithm can further
reduce either the average end-to-end delay or the total power
consumption.
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