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Abstract—In this paper, we propose a novel real-time energy

consumption scheduling algorithm that takes into account load

uncertainty to minimize the energy payment for each user. We

formulate the problem of load scheduling as an optimization

problem. To reduce the computational complexity, we devise

an approximate dynamic programming approach to schedule the

operation of appliances. In our problem formulation, we consider

different sets of appliances including must-run and controllable.

Unlike most of the existing demand side management algorithms

that assume perfect knowledge of users’ energy needs, our design

only requires knowledge of some estimates of the future demand.

Simulation results confirm that the proposed energy scheduling

algorithm can benefit both the users by reducing their energy

expenses and the utility companies by improving the peak-to-

average ratio in load demand.

I. INTRODUCTION

To enable more efficient grid operation, different programs
have been proposed to shape the daily energy consumption
pattern of the users. These programs are referred to as demand
side management (DSM). Among different techniques con-
sidered for DSM (e.g., voluntary load management programs
[1]–[3] and direct load control [4]), smart pricing is known
as an effective means to encourage users to consume wisely
and more efficiently. By reflecting the hourly changes in the
wholesale electricity price to the demand side, users pay what
the electricity is worth at different times of day. They are
encouraged to reduce their load at peak hours. In general, it
is difficult for consumers to follow the real time prices and
respond to their frequent variations. This aspect and other
issues of manual control of appliances are discussed in [5],
[6]. Another approach is to equip users with automated control
units that respond to real-time price signals. Methods to avoid
efficiency loss in the system due to enhanced rationality
levels of users has been discussed in [7]. The effect of load
synchronization, i.e., the concentration of a large portion of
energy consumption in low-price hours, has been studied in
[8]. Load synchronization can be avoided by adopting pricing
tariffs with inclining block rates (IBRs), where the marginal
price increases when the load increases [9].

Most of the existing work in the DSM literature assumes
that the list of all appliances to be scheduled and the price
information are known a priori [7], [10]–[13]. Different meth-
ods have been proposed that consider the effect of price
uncertainties [14], [15]. In this paper, we focus on developing

an automated residential load scheduling algorithm in a retail
electricity market that takes into account load uncertainties.

In general, making decisions about the operating state of
different appliances for the current time slot depends on
the information about the user’s energy needs available at
the current time slot and the expected schedule determined
in the upcoming time slots. This usually includes solving
a mixed-integer program [16]. However, in situations where
computational complexity or convergence time of the algo-
rithm are critical such as in real-time application, a suboptimal
but faster scheme that establishes a balance between simple
implementation and adequate performance is more desired.

In our study, we devise an approximate dynamic programing
approach with elaborate mathematical analysis which takes
into account estimates for the future load and has less com-
putational complexity compared to the design in [16]. The
contributions of this paper are as follows.

• We propose a real-time energy consumption scheduling
algorithm which takes into account load uncertainty for
DSM. Our algorithm is based on solving an approximate
dynamic program to minimize users’ electricity bill pay-
ments. Each appliance sends an admission request to the
energy consumption control (ECC) unit. The start oper-
ation of each appliance is subject to the decision made
by the ECC unit. By running a centralized algorithm, the
ECC unit determines the optimal operation schedule of
each appliance in each time slot.

• We study operation constraints to model a variety of ap-
pliances including must-run and controllable appliances.

• Simulation results show that our proposed adaptive
scheduling algorithm reduces the energy payment of the
users in presence of load uncertainty, compared to the
case where no scheduling algorithm is adopted. It also
improves the overall power system performance by re-
ducing the peak-to-average ratio (PAR) in aggregate load
demand. Compared to [16], our method has much less
complexity while [16] has a slightly better performance.

The rest of this paper is organized as follows. The system
model is introduced in Section II. The problem formulation
and the description of the proposed load scheduling algorithm
are presented in Section III. Simulation results are provided
in Section IV. The paper is concluded in Section V.



II. SYSTEM MODEL

Consider a residential unit that participates in a DSM
program. This unit is equipped with an ECC device to schedule
and adjust the household energy consumption. Let A denote
the set of appliances. Each appliance a 2 A is either must-
run or controllable. Must-run appliances such as TV and PC
need to start working immediately. In contrast, the operation
of controllable appliances can be delayed or interrupted if
necessary. Plug-in electric vehicle (PEV) and washing ma-
chine are two examples of interruptible and non-interruptible
controllable appliances, respectively.

We divide the intended operation cycle into T time slots.
Each time slot begins with an admission control phase. In this
phase, to start the operation of an appliance, an admission
request is sent to the ECC unit. Once an admission request
is submitted, the state of the appliance changes from sleep
to awake. The appliance remains awake until its operation
is finished. However, the operation of an awake appliance
is subject to the acceptance of its admission request and
specification of its operation schedule by the ECC unit. The
decisions regarding the admission of the requests and the
adjustment of the operation of different awake appliances are
updated periodically in each admission control phase.

An awake appliance a can be either inactive (with zero
power consumption) or active (operating at nominal power
�a). Different operating states of must-run and controllable
appliances are shown in Fig. 1. The admission request of
each appliance a specifies the total energy Ea needed to
finish the operation of the appliance, the operating power
�a, and whether the appliance is must-run or controllable.
For controllable appliances, the deadline before which the
operation of the appliance has to be finished, denoted by
�a, and whether it is interruptible or not, are the additional
information to be included in the admission request submitted
by the appliance. For a controllable appliance a, if it is non-
interruptible, the ECC may only delay its operation. However,
for interruptible appliances, the operation can not only be
postponed but also be interrupted and later restored, if needed.

We define binary variable xa
t 2{0, 1} as the state of power

consumption of appliance a 2 A at time slot t 2 {1, . . . , T}.
We set xa

t = 1 if appliance a is admitted to operate at time
slot t (i.e., active), otherwise, we set xa

t = 0 (i.e., inactive).
Let Ea

t denote the remaining amount of energy required to
finish the operation of appliance a when the current time slot
is t. Given Ea

t , for each future time slot k > t > 0, we have

Ea
k =

"
Ea

t � �a

k�1X

i=t

xa
i

#+

. (1)

For each non-interruptible controllable appliance a that is
active at current time slot t, we have

xa
k = 1, 8 k 2 {t, . . . ,�a}, 0 < Ea

k < Ea. (2)

Let lt , P
a2A �ax

a
t denote the total household power

consumption at time slot t. We consider a pricing function
�t(lt) which represents the price of electricity at each time

Fig. 1. Different operating states of (a) must-run, (b) non-interruptible
controllable, and (c) interruptible controllable appliances.

slot t as a function of the user’s total power consumption at
that time slot lt. For combined real-time pricing (RTP) and
IBR pricing tariffs, the price function �t(lt) is defined as [8]:

�t(lt) =

⇢
mt, if 0  lt  bt,
nt, if lt > bt,

(3)

where mt, nt, and bt are price parameters, and mt  nt.

III. PROBLEM FORMULATION AND ALGORITHM
DESCRIPTION

In this section, we consider the problem of efficient power
scheduling such that the electricity payment of each user is
minimized. We assume that only some statistical demand in-
formation are known ahead of time. The demand information,
i.e., the information about the list of appliances that are awake
at each time slot, whether they are must-run or controllable,
and the deadline by which the operation of each appliance
should be finished is revealed only gradually over time. An
update is given at the beginning of each time slot, and the
operation schedule of each appliance is adapted accordingly.

We define the state of the system at each time slot t

as St , (Et, It), where Et , (E1
t , . . . , E

|A|
t ), and It ,

(

˜Mt, ˜Ct,St,�t(·)). The definitions of the sets of appliances
˜Mt, ˜Ct, and St are presented in Table I. At each time slot t,

we seek to minimize the expected energy payment of the user
with respect to demand uncertainties:

minimize
x

a
t , 8 a 2 C̃k,

8 k2{t, . . . , T}

gt
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(4)

subject to xa
k 2 {0, 1}, 8 a 2 ˜Ck, 8 k 2 {t, . . . , T},
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k , 8 a 2 ˜Ck, 8 k 2 {t, . . . , T},

xa
k = 1, 8 a2 ˜Nk, 8 k 2{t, . . . ,�a},

0 < Ea
k < Ea,

where E{·} denotes mathematical expectation and we have
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�
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�
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�
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TABLE I
NOTATIONS USED FOR DIFFERENT SETS OF APPLIANCES.

Mk,t Must-run appliances that are awake at time slot t
and remain awake at time slot k � t.

M̂k,t Must-run appliances that are asleep at time slot t
and will be awake at time slot k � t.

M̃k All must-run appliances that are awake
at time slot k (Mk,t [ M̂k,t).

Ck,t Controllable appliances that are awake at time slot t
and remain awake at time slot k � t.

Ĉk,t Controllable appliances that are asleep at time slot t
and will be awake at time slot k � t.

C̃k All controllable appliances that are awake
at time slot k (Ck,t [ Ĉk,t).

Nk,t Non-interruptible appliances in Ck,t.
N̂k,t Non-interruptible appliances in Ĉk,t.
Ñk All non-interruptible controllable appliances

that are awake at time slot k (Nk,t [ N̂k,t).
St All appliances that are sleeping at time slot t.

Lt =

X

a2M̃t

�a +
X

a2C̃t

�ax
a
t , (7)

Lk,t =

X

a2Mk,t

�a +
X

a2M̂k,t

�a +
X

a2Ck,t

�ax
a
k +

X

a2Ĉk,t

�ax
a
k, (8)

x

a
t , (xa

t , . . . , x
a
T ), E

a
k is as in (1), and the definitions of the

different sets of appliances Mk,t, ˆMk,t, ˜Mt, Ck,t, ˆCk,t, ˜Ck,
and ˜Nk are presented in Table I. We note that Ea

t is known
at time slot t, must-run appliances are active as long as they
are awake, Ck,t = Ct,t for all k � t, and as the demand
information is known up to time slot t, ˆMt,t =

ˆCt,t = ;.
The first term in the objective function in (4) is the payment
of the user in the current time slot t for the known load Lt,
while the second term is the expected cost of energy in the
upcoming time slots. We will refer to the latter as cost-to-
go function. Each appliance can be either on or off. This is
indicated by the first constraint. The second constraint implies
that the operation of each appliance should be finished by its
deadline. The last constraint guarantees that the operation of
non-interruptible appliances will continue once they become
active until they finish their job.

A. Approximate Dynamic Programming Approach

Problem (4) in its current form is difficult to solve as it
requires the computation of the expected schedule for currently
sleeping appliances. To tackle this problem, we minimize an
upper bound of the objective function. That is, we assume that
all appliances that become awake in future time slots are must-
run appliances and we cannot control their operation to reduce
the cost. Thus, we schedule the operation only for currently
awake controllable appliances ˜Ct:

minimize
x
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�
+ E

(
TX

k=t+1

gk
�
Sk, ¯Lk | It

�
)

(9)

subject to xa
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�
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X
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�a +
X

a2Ck,t

�ax
a
k (10)

denotes the expected load (on worst case) at time slot k > t.
Problem (9) determines the operating schedule for the

current time slot as well as the operating schedule for future
time slots to evaluate the cost-to-go. In its current form,
problem (9) is difficult to solve as it requires the calculation of
the expected value of the cost-to-go for a nonlinear function.
The nonlinearity of the cost-to-go function couples the task
of calculating the expectation with the task of calculating the
operating schedule of controllable appliances.

To tackle these computational difficulties, we use the cer-
tainty equivalent approximation, i.e., all uncertainties are fixed
at their expected value [17]. This technique allows to separate
the task of scheduling the operation of controllable appliances
from the task of calculating the expectation. Moreover, by
fixing the uncertainties in their expected values, it is possible
to transfer the whole problem into a linear mixed integer
program. Linear mixed integer programs in general are known
to be NP-complete, and the level of their computational
complexity depends on the number of integer variables and the
number of constraints. One promising technique to simplify
the complexity of problem (9) is to approximate the cost-to-
go by formulating a similar problem which has a less complex
structure [17].

To this end, first, we relax the binary constraint on variables
xa
k and let 0  xa

k  1 for each a 2 ˜Ct and any k 2
{t + 1, . . . , T}. We relax the constraint that in the upcoming
time slots the operation of non-interruptible appliances should
be continued if they start operation, i.e., we remove the last
constraint. We note that as we mark the non-interruptible
appliances as must-run if they start operation, the elimination
of the last constraint does not affect the continuation of their
operation. These changes significantly simplify the computa-
tional complexity of the problem while preserving its structure.
Thus, we formulate the problem of power scheduling in the
form of approximate dynamic programming and determine the
power schedule for the current time slot as the solution of the
following mixed-integer programming problem:

minimize
x

a
t , 8 a2C̃t

gt
�
St, Lt

�
+
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k=t+1
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�
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�
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subject to xa
t 2 {0, 1}, 8 a 2 ˜Ct, (12)

0 xa
k 1, 8 a 2 ˜Ct, 8 k2{t+1, . . . , T}, (13)

�a

�aX

k=t

xa
k = Ea

t , 8 a 2 ˜Ct. (14)

For the price function in (3), since mt  nt, for a total load
lt at time slot t, the user’s payment lt�t(lt) is determined as
the maximum of two intersecting lines [8]:

lt�t(lt) = max
�
mtlt, ntlt+(mt�nt)bt

 
. (15)

Therefore, problem (11) can be reformulated as
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x
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X
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Finally, by introducing another auxiliary variable, ⌫k, for each
time slot k, we can re-write problem (16) as

minimize
⌫t,x

a
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TX

k=t

⌫k (18)

subject to (12)� (14),
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, the estimate of

the power consumption of must-run appliances in an upcoming
time slot k � t, will be calculated in the next sub-section.

Algorithm 1: Energy consumption scheduling algorithm in the
presence of load uncertainty to be executed at the beginning
of each time slot t.

1: Receive admission requests.
2: Label received requests either as must-run or controllable.
3: Activate must-run appliances (activate / remain active).
4: Update ˆl⌧,t according to (19).
5: Update Ea

k according to (1).
6: Solve (18) to activate / deactivate controllable appliances.
7: if activated device is non-interruptible
8: Mark it as must-run.
9: end if

Problem (18) is a mixed-binary linear program and can be
solved efficiently by using MOSEK optimization software
[18]. The solution of problem (18) determines the appropriate
schedule for the operation of controllable appliances. However,
for interruptible appliances, only the operation schedule of
the current time slot t will be executed, and the schedule
of the future time slots t + 1, . . . , T may change when the
optimization problem is solved again in the next time slot as
new information about the future load becomes available.

B. Load Estimation

In our system model, we assume that the demand infor-
mation of the appliances is not known ahead of time, i.e.,
in (17), the set of awake appliances in the upcoming time
slots k > t that are currently sleeping, i.e., set ˆMk,t [ ˆCk,t,
is not known. Instead, only the probability that a currently
sleeping appliance will be active in time slot k > t, �ak,t, is
known at the beginning of the current time slot t. Interested
readers may refer to [16] for more information about how to
calculate �ak,t. By conditioning on the event of observing a
currently sleeping appliance active in an upcoming time slot
k, while the system is at time slot t, the estimate of the power
consumption required in (18) becomes:

ˆlk,t = E {lk,t} =

X

a2Mk,t

�a +
X

a2St

�a�
a
k,t, (19)

where St is defined in Table I.

C. Algorithm Description

In this section, we explain different steps of the proposed
energy consumption scheduling algorithm (Algorithm 1) in
presence of load uncertainty to be executed at each time slot
t. At the beginning of the admission control phase at each
time slot, all received admission requests are labeled as either
must-run or controllable (Lines 1 and 2). Must-run appliances
a 2 ˜Mt are activated right away (Line 3). That is, their
operation starts or continues at the requested power �a. The
current information is used to calculate the expected load in
the upcoming time slots using (19) as indicated in Line 4. The
remaining required energy of each appliance, Ea

k , is updated at
the beginning of the current time slot using (1) (Line 5). Next,
the “on” / “off” state of each awake controllable appliance
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Fig. 2. The pricing parameters used based on the combined RTP and IBR
pricing model in (3). Parameter bt = 3.5 kW is fixed for all time slots.

is set for the rest of the time slots by solving problem (18)
(Line 6). In Lines 7 to 9, if any non-interruptible controllable
appliance becomes active (i.e., it switches from off to on), it
is removed from the list of controllable appliances and it is
added to the list of must-run devices as it should remain on
until it finishes its operation.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results and assess the
performance of our proposed energy consumption scheduling
algorithm. We run the simulation multiple times (i.e., 100
times) with different patterns for the times at which the
appliances become awake. We then present the average results.
Unless stated otherwise, the simulation setting is as follows.
We assume that the general RTP method combined with
IBR is adopted as in (3). Fig. 2 illustrates the variation of
parameters mt and nt of the price function over one day.
We consider a single household with various must-run and
controllable appliances. Controllable appliances can be either
interruptible or non-interruptible. Non-interruptible appliances
include: Electric stove (Ea=4.5 kWh, �a=1.5 kW), clothes
dryer (Ea = 1 kWh, �a = 0.5 kW), and vacuum cleaner
(Ea=3 kWh, �a=1.5 kW). Interruptible appliances include:
Refrigerator (Ea=2.5 kWh, �a=0.125 kW), air conditioner
(Ea=6 kWh, �a=1.5 kW), dishwasher (Ea=2 kWh, �a=1

kW), heater (Ea=4 kWh, �a=1 kW), water heater (Ea=2

kWh, �a = 1 kW), pool pump (Ea = 4 kWh, �a = 2 kW),
and PEV (Ea =10 kWh, �a =2.5 kW). Must-run appliances
include: Lighting (Ea = 3 kWh, �a = 0.5 kW), TV (Ea = 1

kWh, �a = 0.25 kW), PC (Ea = 1.5 kWh, �a = 0.25 kW),
ironing appliance (Ea=2 kWh, �a=1 kW), hairdryer (Ea=1

kWh, �a = 1 kW), and others (Ea = 6 kWh, �a = 1.5 kW).
The time slot at which each appliance becomes awake is
selected randomly from a pre-determined time interval, e.g.
[6:00, 14:00] for electric stove and [16:00, 24:00] for PEV.

A. Performance Gains of Users and Utility Company

To have a baseline to compare with, we consider a system
without ECC deployment, where each appliance a is assumed

TABLE II
PERFORMANCE MEASURES OF DIFFERENT ALGORITHMS.

Average run time of the algorithm (in seconds).
|A|=20 |A|=25 |A|=35

Proposed algorithm 0.7346 0.7769 0.7928
Algorithm in [16] 1.2066 6.5016 14.2728

Average number of integer variables.
|A|=20 |A|=25 |A|=35

Proposed algorithm 4 6 8
Algorithm in [16] 57 89 106

Average number of constraints.
|A|=20 |A|=25 |A|=35

Proposed algorithm 6 8 10
Algorithm in [16] 28 30 33

to start operation right after it becomes awake. Similar to
[14], we consider a system in which the effect of IBR is
ignored and only the basic price in each time slot is taken into
account to schedule the operation of different appliances. As
an upper bound, we also consider the scheme in [16] in which
problem (9) is solved to schedule the operation of controllable
appliances. In our simulation model, we set bt = 3.5 kW in
(3) for all time slots. Simulation results show that, to reduce
electricity payment, the ECC unit shifts the load to time slots
with lower prices such as the few first hours after midnight.
However, the high price penalty for exceeding the bt threshold
prevents load synchronization as discussed in Section I. The
simulation results show that exploiting the use of ECC unit
reduces the average daily payment of the user from $4.76
to $4.10. If the effect of IBR is ignored, the average daily
payment of the user is $4.15. The average daily payment of
the users for the load control algorithm in [16] is $4.01. Our
proposed algorithm also helps reduce the average PAR of the
system from 2.64 to 2.47 (6.4% reduction) compared to the
system without ECC deployment. The average PAR of the
system in which the effect of IBR is ignored is 2.93. The
average PAR of the system with ECE deployment as in [16]
is 1.98. We can see that the efficiency loss in our proposed
scheme compared to the one in [16] is insignificant. Yet, our
design has less computational complexity as we explain next.

In general, integer programs with n integer variables and
m constraints are known to be NP-complete. However, there
exist pseudo-polynomial algorithms for solving m⇥n integer
programs with fixed m which have the order of complexity
of O(n2m+2

(m↵)(m+1)(2m+1)
log(n2

(m↵2
)

2m+3
)), where ↵

is the maximum coefficient in the set of constraints [19]. A
complete discussion of the complexity of the algorithms is
out of the scope of this paper. However, to have a rough
estimate on the order of complexity of our proposed algorithm
compared to the one in [16], simulation results on the average
run time of the algorithm, the number of integer variables, and
the number of constraints for the proposed algorithm compared
to the one in [16] are summarized in Table II.
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B. The Impact of Adopting Inclining Block Rates

In this section, we examine the impact of pricing parameters
mt and nt on the performance of the system. In our simulation
model, parameter mt changes as shown in Fig. 2. We set bt =
3 kW for all time slots. Simulation results for the average daily
payment of the user as well as the average PAR of the system
for different choices of parameter ratio nt/mt are depicted
in Figs. 3 and 4, respectively. By increasing the ratio nt/mt,
the payment of the user will increase, as the user has to pay
more every time its load exceeds threshold bt as shown in
Fig. 3. From Fig. 4, increasing nt/mt improves the PAR of
the system, as load synchronization is prevented. However, for
the system without IBR consideration, changes of the pricing
parameter ratio nt/mt do not affect the PAR.

V. CONCLUSIONS

In this paper, we proposed a residential load control algo-
rithm for DSM in presence of load uncertainty. We formulated
the problem as an approximate dynamic program to minimize
the electricity payment of users in situations where only an
estimate of the future load is available. We employed RTP
combined with IBRs to balance residential load to achieve
a low PAR. Simulation results showed that our proposed
algorithm reduces the energy cost of users, encouraging them
to participate in DSM. Exploiting IBR with RTP tariffs can
help avoid load synchronization, and the combination of the
general RTP method with our algorithm can also reduce the
PAR of the total load. The latter provides incentives for utilities
to support implementing the proposed DSM algorithm.
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