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Abstract—In mobile crowdsourcing systems, smartphones can

collectively monitor the surrounding environment and share data

with the platform of the system. The platform manages the

system and encourages smartphone users to contribute to the

crowdsourcing system. To enable such sensing system, incentive

mechanisms are necessary to motivate users to share the sensing

capabilities of their smartphones. In this paper, we propose

ProMoT, which is a Profit Maximizing Truthful auction mecha-

nism for mobile crowdsourcing systems. In the proposed auction

mechanism, the platform acts as an auctioneer. The smartphone

users act as the sellers and submit their bids to the platform.

The platform selects a subset of smartphone users and assigns

the tasks to them. ProMoT aims to maximize the profit of the

platform while providing satisfying rewards to the smartphone

users. ProMoT consists of a winner determination algorithm,

which is an approximate but close-to-optimal algorithm based on

a greedy mechanism, and a payment scheme, which determines

the payment to users. Both are computationally efficient with

polynomial time complexity. We prove that ProMoT motivates

smartphone users to rationally participate and truthfully reveals

their bids. Simulation results show that ProMoT increases the

profit of the platform in comparison with an existing scheme.

I. INTRODUCTION

Mobile crowdsourcing is a collaborative and distributed
sensing system, in which smartphones can collect and share
sensory data. Nowadays, smartphones are equipped with a set
of embedded sensors, such as camera, microphone, digital
compass, gyroscope, and global positioning system. Mobile
crowdsourcing system opportunistically takes advantage of
smartphone sensing capabilities to relieve the cost of deploying
wireless sensor networks.

A mobile crowdsourcing system typically consists of a
platform and smartphone users [1]–[3], as illustrated in Fig. 1.
The role of the platform is to provide sensing and monitoring
services to platform users and encourage smartphone users to
contribute to the system. Once receiving the requests from
platform users, the platform recruits smartphone users to
collect data. The largest sensor network in the world can be
formed by using smartphones, which are widely distributed in
the environment. Examples of mobile crowdsourcing applica-
tions include Earphone [4] for creating noise maps, Sensorly
[5] for making cellular/WiFi network coverage maps, and
Waze [6] as a community-based navigation application.

The smartphone users may not be interested to share their
sensors with the platform unless they receive satisfying re-
wards which compensate their consumed resources such as
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Fig. 1: A mobile crowdsourcing system consists of a platform residing in the
cloud and the smartphone users, who are connected with the cloud.

battery. Although several mobile crowdsourcing applications
have been proposed [4]–[7], most of them assume that smart-
phones share their sensors voluntarily. Incentive mechanisms
encourage the smartphone users to contribute to the mobile
crowdsourcing system. Such incentive mechanism must be
immune against the strategic behavior of selfish users.

Several auction-based incentive mechanisms have been de-
veloped for mobile crowdsourcing applications. Yang et al.
[8] focus on the profit of the platform and propose a truthful
auction mechanism for mobile crowdsourcing systems. In this
work, which is called MSensing mechanism, tasks are assigned
gradually to smartphone users by a greedy-based heuristic
approach. The profit is sacrificed for the sake of computational
efficiency in this mechanism. TRAC [9] is a truthful auction
mechanism for location-aware sensing in mobile crowdsourc-
ing. In TRAC, the platform assigns its sensing tasks to a set
of smartphone users with the goal of minimizing the total
payment to smartphone users. TRAC does not consider the
profit of the crowdsourcing system. In [10], Koutsopoulos
designs an optimal incentive mechanism to maximize the profit
of the platform, in which the winner determination problem
is NP-hard and cannot allocate the tasks in a computationally
efficient manner. The works presented in [11]–[13] propose
auction mechanisms for mobile crowdsourcing, when a limited
budget is assigned for sensing tasks and the platform performs
a subset of tasks according to its budget constraint. Although
several auction mechanisms have been proposed for mobile
crowdsourcing environment, the existing works suffer from
several drawbacks. They either fail to allocate the tasks by a
computationally efficient algorithm (e.g., [10]) or sacrifice the
profit for the sake of efficiency (e.g., [8] sacrifices the profit to
achieve truthfulness and low complexity solution at the same
time). In addition, some of them do not consider the profit of
the mobile crowdsourcing system (e.g., [9], [11]–[13]).



To address these issues, in this paper, we propose ProMoT,
which is a Profit Maximizing Truthful auction mechanism in
mobile crowdsourcing systems. ProMoT provides incentives
to the users to share the capabilities of their smartphones
with the platform. Each task has a value for the platform.
The profit is defined as the summation of tasks’ value minus
the payments provided to the participating smartphone users.
The platform publicizes its sensing tasks to the smartphone
users. The users submit their bids to perform a subset of tasks.
The platform selects a subset of users and provides proper
payment to them. The goal of our mechanism is to maximize
the profit of the platform, while it motivates the smartphone
users to participate in the mechanism and reveal their bid
truthfully. ProMoT consists of two components, which are
the winner determination algorithm and the payment scheme.
We use a similar system model as proposed by [8]. However,
our winner determination algorithm and payment scheme are
fundamentally different from [8]. The key contributions of our
work are as follows:

• We first formulate the winner determination problem and
show that it is NP-hard. We then convert the problem into
a linear programming (LP) problem and propose a novel
greedy mechanism. The mechanism selects those users
who are most likely to increase the profit of the platform
by using the solution of LP problem.

• We design a payment scheme, which incentivizes the
smartphone users and provides satisfying rewards to
them.

• Through theoretical analysis, we prove that ProMoT satis-
fies the main properties of an auction mechanism, namely
the computational efficiency, individual rationality, and
truthfulness.

• Through extensive simulations, we evaluate the perfor-
mance of ProMoT in comparison with MSensing mech-
anism proposed in [8]. We further show that ProMoT
significantly outperforms MSensing mechanism and im-
proves the profit.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and formulate the problem. In
Section III, we present the winner determination algorithm and
the payment scheme in ProMoT. In Section IV, we evaluate
the performance of ProMoT through extensive simulations.
Conclusions are given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a mobile crowdsourcing system consisting of a
platform and many smartphone users. The sensing tasks are
submitted to the platform by platform users. The platform
periodically advertises the sensing tasks to smartphone users.
Let N denote the number of sensing tasks. The set of sensing
tasks is denoted by T = {⌧1, . . . , ⌧N}. Each task ⌧n 2 T
represents a specific sensing service, which has a value vn > 0
to the platform.

Let M = {1, . . . ,M} denote the set of smartphone users
who are participating in the mobile crowdsourcing system.
Each user m 2 M submits its bid to perform a subset of tasks
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Fig. 2: The platform advertises the tasks to the smartphone users. Once
receiving the sensing tasks, each smartphone user selects a subset of tasks
and submits its bid to the platform. The platform then determines the winners
and assigns the task to them. It also collects data and provides payments.

announced by the platform. Let the pair (Qm, bm) denote the
tasks-bid of user m, where Qm ⇢ T is a subset of tasks
selected by user m according to the sensing capabilities of its
smartphone and its preference. Note that Qm can be one or
multiple tasks from the set T , which are selected by user m.
In addition, bm is the price user m wants to receive, which
beyond that it will not share its sensing devices. Let cm denote
the cost incurred on user m when performing tasks Qm. This
cost is private and unknown to other users. In addition, let pm
denote the payment that user m receives. Smartphone users
are also called bidders in this paper. Among these bidders,
those who have positive payment (i.e., pm > 0) are called
winners. The utility of user m is

um =

⇢
pm � cm, if user m wins
0, otherwise. (1)

Let W denote the set of winners. The profit of the platform is
X

⌧n2[w2WQw

vn �
X

w2W
pw = v(W)�

X

w2W
pw. (2)

A. Auction Mechanism

We introduce a reverse auction mechanism to model the
interactions between the platform and smartphone users. In
this model, the platform is the buyer and acts as an auctioneer,
whereas the smartphone users are sellers. The platform selects
a subset of bidders and assigns the tasks to them. The platform
also provides rewards to the winners to compensate their
shared resources and motivates them to participate truthfully
in the system. Fig. 2 shows the steps of ProMoT.

ProMoT is composed of two major components denoted
by the pair (A,P): a winner determination algorithm A and
a payment scheme P , which calculates the payment vector
p = (p1, . . . , pM ). ProMoT should achieve the main properties
of an auction mechanism, defined as follows.

Definition 1 (Computational Efficiency): An auction
mechanism is computationally efficient if both the winner
determination algorithm A and payment scheme P terminate
in polynomial time.

Definition 2 (Individual Rationality): The platform pro-
vides proper payments to the smartphone users to have non-
negative utility. That is, um � 0, for all m 2 M.

Definition 3 (Truthfulness): An auction mechanism is
truthful if reporting the true cost (i.e., bm = cm, m 2 M)
is the dominant strategy of the bidders.



Proposition 1: An auction mechanism is truthful if and only
if [14, p. 274]:

• The winner selection algorithm is monotone. In other
words, if user m wins the auction by bidding (Qm, bm),
it also wins by bidding (Qm, b0m), when b0m  bm.

• The payment scheme is based on the critical payment.
The critical payment is the highest bid that the bidder
can submit in order to win.

In Section III, we propose ProMoT by introducing the pair
(A,P), which satisfies all mentioned properties.

B. Problem Formulation

In order to formulate the winner determination problem, we
define binary variables xn, 8⌧n 2 T and ym, 8m 2 M. Let xn

indicate whether task ⌧n is assigned to smartphone users. The
binary variable xn is equal to 1 if this task is performed by
some smartphones and is equal to zero otherwise. In addition,
we set ym = 1 if user m wins the competition to perform a
subset of tasks. We also define the vectors x = (xn)⌧n2T and
y = (ym)m2M. The winner determination problem aims to
maximize the social welfare, which is defined as the profit of
the platform plus the utility of all bidders [15]. Assuming that
all users reveal their cost truthfully (i.e., bm = cm, 8m 2 M),
the winner determination problem can be formulated as the
following integer linear programming (ILP) problem.

WD-ILP: maximize
x,y

X

⌧n2T
vnxn �

X

m2M
bmym (3a)

subject to xn 
X

m: ⌧n2Qm

ym, 8⌧n 2 T (3b)

xn, ym 2 {0, 1}, 8m 2 M, ⌧n 2 T ,
(3c)

where the first constraint forces xn to be zero if task ⌧n is
not assigned to any smartphone users. A task will be declined
by the platform if it neither belongs to the tasks-bid of any
smartphone users nor provides profit for the platform. The
following theorem shows that it is not possible to find the
optimal solution efficiently.

Theorem 1: The winner determination problem formulated
in problem (3) is NP-hard.
Proof : We first show that problem (3) can be reduced to the
knapsack problem. Therefore, if a polynomial algorithm can
obtain the optimal solution of problem (3), then it can obtain
the optimal solution of the knapsack problem as well. This is
in contrast to NP-hardness of the knapsack problem [16, Ch.
8]. Given a set S = {s1, . . . , sK} of objects with specified
profit ak and weight wk, as well as knapsack capacities Bi

for different subsets Si ⇢ S, i 2 I, the knapsack problem is

maximize
z

KX

k=1

akzk

subject to
X

s2Si

wszs  Bi, 8i 2 I

zk 2 {0, 1}, k = 1, . . . ,K.

We map an instance of WD-ILP problem to the knapsack
problem. Assume that K = M +N. We introduce binary
variable y0m,m 2 M and replace ym, m 2 M of WD-ILP
problem with 1 � y0m. Let z = (x1, . . . , xN , y01, . . . , y

0
M ),

the objective function of WD-ILP problem, which isP
⌧n2T vnxn +

P
m2M bmy0m +

P
m2M bm, reduces to the

objective function of the knapsack problem with profit vector
(v1, . . . , vN , b1, . . . , bM ). In addition, constraint (3b) can be
mapped to the knapsack capacity constraint assuming all
weights wk are 1. Therefore, we have constructed a reduc-
tion from the winner determination problem to the knapsack
problem, which is known to be NP-hard [16, Ch. 8]. Conse-
quently, WD-ILP problem is NP-hard and no polynomial time
algorithm can obtain the optimal solution. ⌅

Theorem 1 shows that the winner determination problem
is NP hard. This essentially prevents us to use the Vickrey-
Clarke-Groves (VCG) mechanism in our auction mechanism.
As a result, to propose a truthful auction mechanism which
is computationally efficient, we introduce an approximate
solution by adopting a novel greedy approach.

III. PROMOT
In this section, we first present our winner determination

algorithm. As mentioned in Proposition 1, to design a truthful
auction mechanism, the winner selection algorithm should
be monotone. This algorithm is obtained by relaxing the
binary variables of WD-ILP problem and introducing a greedy
mechanism. We further present the payment scheme of the
auction mechanism and prove that ProMoT achieves the main
economic properties of an auction mechanism.

A. Winner Determination Algorithm

In order to overcome the computational complexity of
the winner determination problem, we first relax the binary
variables and formulate the following problem.

WD-LP: maximize
x,y

X

⌧n2T
vnxn �

X

m2M
bmym (4a)

subject to xn 
X

m: ⌧n2Qm

ym, 8⌧n 2 T (4b)

0  xn, ym  1, 8m 2 M, ⌧n 2 T .
(4c)

Problem (4) is an LP problem. Its optimal solution, denoted by
x

⇤ and y

⇤, can be obtained in polynomial time. We introduce
a novel greedy approach to determine the winners. Greedy
mechanisms are based on a sorting method. We use the optimal
solution of WD-LP problem to sort users and then gradually
assign the tasks to them. This sorting implies that

y⇤l1 � y⇤l2 � · · · � y⇤lM ,

where lm 2 M and Ml = {lm |m = 1, . . . ,M} indicates the
index list. The optimal solution of WD-LP problem predicts
which users are most likely to increase the profit of the
platform. The larger value of y⇤m, the more contribution user m
can provide. The winner determination algorithm is illustrated



in Algorithm 1, where v=(v1, . . . , vN ) is the task valuation
vector. Algorithm A first solves WD-LP problem and sorts
the bidders based on the optimal solution of this problem as
mentioned in Steps 3 and 4, respectively. It then selects the
bidders consequently and checks whether each chosen bidder
can increase the profit and make a progress towards finishing
all tasks (Step 7). The selected bidder m wins the auction, if
0

@v (W [ {m})�
X

w2W[{m}

bw

1

A�
 
v(W)�

X

w2W
bw

!
> 0.

(5)
In this case, user m, which can perform the tasks belonging
to set Qm, will be added to the winner set W (Step 8).

Algorithm 1: Winner Determination Algorithm A
1: Input: T ,v, {(Qm, bm)}m2M
2: Initialize: W  ;
3: Solve WD-LP problem (4), obtain optimal solutions x

⇤ and y

⇤

4: Sort y⇤m in the non increasing order, form the index list Ml

5: for m = 1 to M
6: select user lm 2Ml

7: if v (W [ {lm})� v(W)� blm > 0
8: W  W [ {lm}
9: end if

10: end for

11: Output: Winning users set W

B. Payment Scheme

The payment scheme aims to ensure truthful bidding of
smartphone users. As mentioned in Section II, the critical
payment motivates the bidders to reveal their bid truthfully.
We use the concept of critical payment to propose our payment
scheme, denoted by P . Each bidder is paid an amount of
rewards which is the highest bid that the bidder can submit
to win the auction. Let M�j denote the set of smartphone
users excluding user j. We execute the winner determination
algorithm A with M�j as input to find the winner set W�j .
The critical value of bidder j is the highest value of bj such
that it can still win the auction and contribute to the profit
of the platform. Therefore, the critical payment pj is the
maximum value of bj such that the following inequality holds.

v (W)�
X

i2W\{j}

bi � bj � v (W�j)�
X

i2W�j

bi. (6)

The payment scheme is shown in Algorithm 2.

C. Economic Properties

Through the following theorems, we prove that ProMoT
achieves the main required properties of an auction mech-
anism, which are the computational efficiency, individual
rationality, and truthfulness.

Theorem 2: (Computational Efficiency) Both winner de-
termination algorithm A and payment scheme P terminate in
polynomial time.

Proof : According to Algorithm 1, the winners are determined
based on sorting the optimal solution of an LP problem. The

Algorithm 2: Payment Scheme P
1: Input: T ,v, {(Qm, bm)}m2M
2: Initialize pm  0, 8m 2M
3: Execute algorithm A with (T ,v, {(Qm, bm)}m2M) as input,

obtain W
4: for each j 2W
5: Execute algorithm A with

⇣
T ,v, {(Qm, bm)}m2M�j

⌘
as input,

obtain W�j

6: pj  
⇣
v (W)�

P
i2W\{j} bi

⌘
�

⇣
v (W�j)�

P
i2W�j

bi
⌘

7: end for

8: Output: Payment vector p = (p1, . . . , pM )

optimal solution of LP problem can be obtained in at most
O((N + M)2N) steps using the interior-point method [17,
Ch 1.2]. Therefore, the total complexity of algorithm A is
O((N + M)2N), which is polynomial in N and M . The
payment scheme is obtained by running the algorithm A for
each user. Consequently, the computational complexity of P
is O((N +M)2NM). ⌅

Theorem 3: (Individual rationality) ProMoT is individu-
ally rational.

Proof : For each smartphone user j, pj is the highest value of
bj such that inequality (6) still holds. So,

pj � bj = v (W)�
X

i2W
bi �

0

@v (W�j)�
X

i2W�j

bi

1

A .

In the above equality, the right hand side is the social welfare
when the set W ✓ M of users are selected as winners minus
the social welfare obtained from the set W�j ✓ M�j . Note
that M�j ⇢ M. According to Step 7 of Algorithm 1, if
user j cannot increase the profit, then it will lose the auction.
Therefore, this term is strictly positive if j 2 W , and we have
pj � bj > 0. ⌅

To prove the truthfulness of ProMoT, we first need to show
that the winner determination algorithm is monotone.

Lemma 1: Algorithm A is monotone.
Proof : Let b�j = (b1, . . . , bj�1, bj+1, . . . , bM ) denote the
vector of bids excluding bj , and b = (b�j , bj) is the bid
vector. We show that for all vectors b�j , y⇤j is a non in-
creasing function of bj . Let (x⇤,y⇤) and (x

0⇤,y
0⇤) denote the

optimal solutions of WD-LP problem for b = (b�j , bj) and
b

0 = (b�j , b
0
j), respectively, where b0j  bj . We denote these

problems as LP (b) and LP (b0), respectively. Since (x
0⇤,y

0⇤)
is a feasible solution for LP (b),
X

⌧n2T
vnx

⇤
n �

X

m2M
bmy⇤m �

X

⌧n2T
vnx

0⇤
n �

X

m2M
bmy

0⇤
m. (7)

Thus
X

⌧n2T
vnx

⇤
n�

X

m2M�j

bmy⇤m � bjy
⇤
j �

X

⌧n2T
vnx

0⇤
n �

X

m2M�j

bmy
0⇤
m � bjy

0⇤
j . (8)

If we define �1 ,P⌧n2T vnx
⇤
n �

P
m2M�j

bmy⇤m and �2 ,
P

⌧n2T vnx
0⇤
n �

P
m2M�j

bmy
0⇤
m, we can rewrite (8) as:



�1 � �2 � bj(y
⇤
j � y

0⇤
j ). (9)

Since (x⇤,y⇤) is a feasible solution for LP (b0),
X

⌧n2T
vnx

0⇤
n �

X

m2M
b0my

0⇤
m �

X

⌧n2T
vnx

⇤
n �

X

m2M
b0my⇤m (10)

By substituting b

0 = (b�j , b
0
j), we similarly have

�1 � �2  b0j(y
⇤
j � y

0⇤
j ). (11)

From (9) and (11), we obtain

b0j(y
⇤
j � y

0⇤
j ) � �1 � �2 � bj(y

⇤
j � y

0⇤
j ). (12)

So
(bj � b0j)(y

⇤
j � y

0⇤
j )  0. (13)

Since b0j  bj , we have y
0⇤
j � y⇤j . Algorithm A sorts the users

according to y

⇤ in a non increasing order, and each y⇤m is a
non increasing function of bm. Thus, the winner determination
algorithm is monotone. ⌅

Theorem 4: (Truthfulness) ProMoT is truthful.

Proof : According to Proposition 1, auction mechanism (A,P)
is truthful if algorithm A is monotone and P selects the critical
payment. Lemma 1 shows that algorithm A determines the
winners in a monotone manner. In addition, payment scheme
P calculates the critical values and sets them as payment. To
prove this fact, we show that if smartphone user m submits
a bid higher than pm, it will lose the auction. In this case,
according to (6), the social welfare is less than what is obtained
without participating user m. Therefore, the platform declines
the bid of user m to maximize the social welfare and we can
conclude that pm is the critical payment. ⌅

IV. PERFORMANCE EVALUATION

To evaluate the performance of ProMoT, we run both algo-
rithm A and payment scheme P for a mobile crowdsourcing
system with N tasks and M smartphone users. In order to
compare our mechanism with MSensing mechanism [8], we
use a similar simulation setup. We assume that tasks and users
are randomly distributed in a 1000 m ⇥ 1000 m region. Each
user submits a bid to perform a subset of tasks located within
a distance of r (sensing coverage radius) from it. The value of
each task vn is uniformly distributed over [1, 10]. The cost of
user m is ⇢|Qm|, where ⇢ is uniformly distributed over [1, 5].

We first evaluate the profit of the platform when there are
100 tasks announced to the smartphone users. We set the
sensing coverage radius r to 80 m and vary the number of
smartphone users M from 1000 to 5000. Fig. 3 shows the
profit, when ProMoT is compared with MSensing mechanism.
Results show that a higher profit is obtained by using ProMoT.
In addition, the profit increases when the number of smart-
phone users becomes larger. In this case, more smartphone
users compete with each other to perform the tasks. The
platform selects those users with lower cost resulting in more
profit. In Fig. 4, we fix the number of smartphone users to 1000
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Fig. 3: Profit of the platform for different number of smartphone users
competing for N = 100 tasks. The higher profit is obtained when the number
of smartphone users M becomes larger. (r = 80 m)
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Fig. 4: Profit of the platform for different number of tasks with fixed M =
1000 smartphone users. (r = 80 m)

and evaluate the profit for different number of sensing tasks.
The profit increases when the platform announces more tasks.
ProMoT outperforms MSensing, especially when the platform
announces fewer number of tasks. This is obtained due to our
novel greedy-based winner determination algorithm.

We also evaluate the profit obtained from ProMoT for
different sensing coverage radii r. The number of users
bidding to perform a specified task becomes larger, when r
increases. As shown in Fig. 5, our mechanism outperforms
MSensing especially in the case of large sensing coverage
radius. ProMoT improves the obtained profit by up to 25%
in comparison with MSensing.

We investigate another important metric of auction mecha-
nisms, which is the bidder’s satisfaction. It is defined as the
ratio between the number of winners and the total number of
bidders and calculated as

|W|
M

⇥ 100%.

Fig. 6 shows the bidders’ satisfaction for different number
of tasks. The bidders’ satisfaction increases gradually with
increasing N . According to this figure, although ProMoT
selects approximately the same number of smartphones as
MSensing does (55 smartphone users v.s. 53, when N = 300),
they provide a higher profit for the platform. This is obtained
by our different winner determination algorithm, which selects
users based on the solution of WD-LP problem.
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Fig. 5: Profit of the platform for different sensing coverage radii r. ProMoT
outperforms MSensing, especially in large sensing coverage radius. (N =
100,M = 1000)
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Fig. 6: Bidder’s satisfaction for different number of tasks N . (M = 1000, r =
80 m)

In order to investigate the trade-off between optimal and
computationally efficient approaches, we evaluate the social
welfare. We compare the optimal solution of NP-hard problem
(3) with our winner determination algorithm A. Fig. 7 shows
that algorithm A results in close-to-optimal solutions for
different number of smartphone users and tasks, while the
gap is less than 0.3%. This confirms that algorithm A selects
almost the same winners as problem (3) does.

V. CONCLUSION

In this paper, we proposed ProMoT, a truthful auction mech-
anism for mobile crowdsourcing systems. ProMoT motivates
the smartphone users to contribute to the mobile crowdsourc-
ing system by providing proper rewards to them. The goal
of the mechanism is to maximize the profit of the platform
of the mobile crowdsourcing system, while motivating smart-
phone users to participate in the auction mechanism truthfully.
ProMoT consists of a winner determination algorithm and
a payment scheme. We first proved that determining the
winners of the auction mechanism optimally is NP-hard.
To overcome the computational complexity of the winner
determination algorithm, we then introduced a greedy-based
mechanism. We further proposed a payment scheme. Both
winner determination algorithm and payment scheme have
polynomial time computation complexity. We also proved that
ProMoT achieves the individual rationality and truthfulness,
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Fig. 7: Comparing the computationaly efficient winner determination algo-
rithm A with NP-hard optimal winner determination problem. (r = 80 m)

as the main economic properties of an auction mechanism.
Through extensive simulations, we evaluated the performance
of ProMoT. Results show that ProMoT considerably increases
the profit of the platform in comparison with MSensing
mechanism [8]. For future work, we will consider the case of
multiple crowdsourcing systems with multiple platforms and
propose a double auction mechanism.
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