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Abstract—A common assumption in the existing literature
on energy consumption scheduling in smart grid is that users
are aware in advance of their daily energy consumption needs.
Therefore, most existing studies along this line of research have
been inherently deterministic, e.g., see [1]–[3]. However, this
assumption may not hold in practice. In particular, the energy
consumption scheduling (ECS) devices may face load uncertainty.
If a user is equipped with a behind-the-meter renewable gener-
ator, then the optimal operation of ECS devices becomes even
more challenging due to combined load and supply uncertainties.
Therefore, in this paper, we formulate a stochastic optimization

problem to operate an ECS device in a residential unit that
is equipped with a behind-the-meter renewable generator and
a local battery bank. In our problem formulation, we consider
different sets of must-run and controllable appliances. Our design
only requires knowledge of some estimates of the users’ future
demand. To reduce computational complexity, we approximate
the expected load in the upcoming time slots by adopting the
certainty equivalent approximation technique. Simulation results
show that the proposed energy consumption scheduling algorithm
can tackle the uncertainties in load and supply and it can benefit
both users and the utility companies.

I. INTRODUCTION

Concerns about environmental issues and the need to reduce
greenhouse gas emissions have attracted considerable attention
to renewable energy resources (RERs) [4]–[6], storage devices
[7]–[10], and various demand side management (DSM) pro-
grams. Among different techniques considered for DSM, smart
pricing is known to be an effective means to encourage users
to consume wisely and efficiently.

For a price-based DSM program to be effective, users must
be equipped with automated control units to make price-based
control decisions. Some difficulties due to an enhanced price
responsiveness of the users have already been studied, e.g. in
[11], [12]. For example, load synchronization is a common
problem and refers to the concentration of a large portion of
energy consumption in low-price hours. Load synchronization
can be prevented by using pricing tariffs with inclining block
rates (IBRs), where the marginal price increases with the
total consumed power [13]. Considering the intermittent nature
of RERs, the level of success of different DSM programs
depends on the flexibility of the users’ loads to match supply
and demand. The mismatch between supply and demand can
also be eliminated by using energy storage devices such as
batteries, flywheels, compressed air, and water tanks [7], [8].

Considering the increasing penetration of intermittent RERs,
to serve the user demand, which is also random, advanced

methods are required to match supply and demand. Despite its
importance, the joint effects of supply and load uncertainties
on DSM programs have not been studied in the smart grid
literature [14]–[19]. Therefore, in this paper, we focus on
developing a novel automated optimization-based residential
load scheduling algorithm with both load and supply uncer-
tainties. We aim at minimizing each user’s electricity payment
by optimally scheduling the operation of its appliances and the
charging and discharging rates of the storage facilities in real-
time, subject to operational constraints defined by the user. As
in [11], we adopt real-time pricing (RTP) combined with IBR
to reflect the fluctuation of the wholesale electricity prices
and to avoid load synchronization. Our contributions are as
follows:

• We propose a novel energy consumption scheduling
algorithm with load and supply uncertainties for DSM
purposes. Our algorithm is designed to minimize the
electricity payment of a residential user.

• To estimate the expected load in the future time slots,
we take into account the effect of control decisions
of the automated control unit. To reduce computational
complexity, we adopt the certainty equivalent technique.

• Simulation results show that our design can incorporate
both load and supply uncertainties, and leads to a re-
duction of the energy bills of users. Furthermore, the
proposed approach improves the overall power system
performance by reducing the peak-to-average ratio (PAR)
of the aggregate load demand. It also facilitates a more
efficient utilization of the RERs by encouraging the users
to shift their load to time slots with high renewable power
generation and thus, enables a reduction of the amount
of energy that has to be imported from the power grid.

The algorithm proposed in this paper is different from other
designs existing in the literature. For example, compared to
[18] where the uncertainty in load is addressed, here, we tackle
uncertainties in both load and supply. Furthermore, unlike [18],
we consider the case where users are equipped with storage
devices and also provide an estimate of the future load, taking
into account the fact that the load in the future time slots
does depend on the control decisions of the scheduler. Our
work is also different from the load control algorithm in [17],
as the proposed algorithm takes into account the impact of
uncertainties for scheduling the appliances.



The remainder of this paper is organized as follows. The
system model is introduced in Section II. The problem formu-
lation and algorithm description are presented in Section III.
Simulation results are provided in Section IV, and the paper
is concluded in Section V.

II. SYSTEM MODEL

In this section, we present a mathematical model for energy
consumption scheduling with RERs. We consider a residential
unit and a single energy provider. Each unit is also equipped
with a local, behind-the-meter renewable generator. This can
be a either rooftop solar panel or a small wind turbine. We
assume that each user is equipped with a smart meter which
has an energy consumption scheduling (ECS) unit capable of
controlling the household energy consumption. Furthermore,
we assume that the price values are informed by the retailer to
the end user through a digital communication infrastructure.

A. Home Appliances

Let A denote the set of all appliances of a residential unit
that participates in DSM. We assume that each appliance
a 2 A can work either as must-run or controllable. Must-
run appliances such as TV and personal computer (PC) need
to start operating immediately. The operation of must-run
appliances cannot be interrupted by the ECS unit. In contrast,
the operation of controllable appliances can be delayed or
interrupted if necessary. Plug-in electric vehicle (PEV) and
washing machine are examples of controllable appliances. We
assume that based on the demand requirements of the user,
each appliance can be set as must-run or controllable. This
setting is decided by the user and can vary from time to time.

We divide the operation cycle into T , |T | time slots,
where set T , {1, . . . , T} contains the time slot indices. To
start operation, each appliance sends an operating request to
the ECS unit. The operating request determines whether the
appliance is must-run or controllable and the specifications
of its operational requirements. Once an operating request
is submitted, the state of the appliance changes from sleep
to awake. The appliance remains awake until its operation
is finished. Different appliances may request to operate at
different time slots, and the information about the operational
requirements of the appliances is revealed gradually over time.

For controllable appliances, the deadline before which the
operation of the appliance has to be finished is denoted by βa.
We define binary variable x

a
t 2{0, 1} as the state of the power

consumption of appliance a 2 A at time slot t 2 T . We set
x

a
t = 1 if appliance a is admitted to operate at nominal power

Pa in time slot t (i.e., active), otherwise, we set xa
t = 0 (i.e.,

inactive). Let E

a
t denote the amount of energy required to

finish the operation of appliance a while the current time slot
is t. Note that given E

a
t , for each future time slot k > t > 0,

we have

E

a
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"
E

a
t − Pa
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i=t

x

a
i

#+

, (1)

where [·]+ , max{·, 0}. For each controllable appliance a, its
operation has to be finished before its deadline. That is, for
the current time slot t, we must have

Pa

βaX

k=t

x

a
k = E

a
t . (2)

B. Energy Storage Devices

To better utilize the RERs and match supply and demand,
we assume the use of a storage device such as a battery. We
define Cb as the storage capacity of the battery. We assume
that the maximum charging and discharging rates of the battery
are identical and denoted by gb. For time slot t, we define
y

b
t 2 [−gb, gb] as the charging and discharging rates of the

battery. The battery can be charged from both the RER and
the grid. We define S

b
t as the charging state of the battery at

the beginning of time slot t.

S

b
t = S

b
0 +

t−1X

k=1

y

b
k, (3)

where S

b
0 is the initial charging state of the battery. At any time

slot t, the stored energy cannot exceed the storage capacity.
Moreover, it is not possible to extract more energy from the
storage unit than what is stored, i.e.,

0  S

b
t  Cb. (4)

C. Distributed Generation

For the RER, we require an estimate of the available amount
of generated power. Different stochastic models have been
proposed to predict the power generation from RERs [20].
Here, similar to [21], we approximate the distribution of the
output power of the RERs at time slot t,  t, with a normal
distribution with mean µt and standard deviation σt, i.e.,
 t ⇠ N (µt,σ

2
t ). The values of µt and σt can be derived

from the examination of real data obtained from the system.

D. Real-time Pricing

Let lt ,
P

a2A Pax
a
t denote the total household power

consumption at time slot t. We consider a pricing function
λt(lt) which represents the price of electricity in each time
slot t as a function of the user’s power consumption in that
time slot. For combined RTP and IBR pricing tariffs, the price
function λt(lt) is defined as [11]:

λt(lt) =

⇢
mt, if 0  lt  bt,

nt, if lt > bt,
(5)

where mt, nt, and bt are known parameters, and mt  nt.

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

In this section, we consider the problem of efficient power
scheduling such that the electricity payment of the user is
minimized. The exact information about the list of appliances
that are awake in each time slot, whether they are must-run
or controllable, and the deadline by which the operation of
each appliance should be finished is revealed gradually over
time. For the current time slot t, we assume that the amount



of generated power from RERs is either known or can be
predicted precisely. Furthermore, based on the distribution
of the generated power in each time slot, it is possible to
estimate the generated power in upcoming time slots. In our
system model, an update regarding the demand requirement
of the user and the amount of generated power from RERs
is received by the ECS unit at the beginning of each time
slot, and the energy consumption schedule of each controllable
appliance and the charging and discharging rates of the battery
are adapted accordingly.

A. Problem Formulation

In each time slot t, as the demand information of the
appliances and the available power from the RERs are updated,
the operation schedule of each controllable appliance and the
charging and discharging rates of the battery are adjusted,
and the optimum power scheduling is identified in real-time
as the solution of the following optimization problem for
minimization of the expected cost from the current time slot
t onwards:

minimize
y

b
t ,x

a
t , 8 a 2 Ck,

k2Tt

E

"
TX

k=t

Lkλk

�
Lk

�
#

(6a)

subject to x

a
k 2 {0, 1}, 8 a 2 Ck, 8 k 2 Tt, (6b)

Pa

βaX
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x

a
i = E

a
k , 8 a 2 Ck, 8 k 2 Tt, (6c)

y

b
k 2 [−gb, gb], 8 k 2 Tt, (6d)

0  S

b
k  Cb, 8 k 2 Tt, (6e)

where E[·] denotes mathematical expectation, y

b
t ,

(y

b
t , . . . , y

b
T ), x

a
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a
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E

a
k is as in (1), and S

b
k is defined as in (3). Here, Mk and

Ck are the sets of all must-run and controllable appliances
that are awake at time slot k, respectively, and  k is the
amount of power generation from RERs at time slot k. Here,
we assume that the user cannot sell energy to the grid. That
is, the excess generated power from the RER is wasted. The
objective function represents the expected payment of the user
from the current time slot t up to time slot T .

B. Approximate Solution

Problem (6) in its current form is difficult to solve as it
requires the computation of the expected schedule of any
currently sleeping appliance. There are different possibilities
for the time at which sleeping appliance a may become
awake and also for the time by which its operation has to
be finished. Together, all different possibilities form the state
space of outcomes. We refer to each possible outcome as a
scenario. Considering the huge state space of outcomes, it
is very difficult to calculate the expected schedule for every

sleeping appliance. To tackle this problem, we approximate
the expected load of sleeping appliances by confining the
expectation to a limited number of scenarios. That is, to
calculate the expected schedule, instead of taking all possible
outcomes into account, we consider only a limited number of
scenarios. We define ⌦t as the set of W , |⌦t| randomly
generated scenarios from current time slot t onwards, see
Section III-C. Problem (6) can be approximated as

minimize
y

b
t ,x

a
t , 8 a 2 Ct,

x
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t , 8 a 2 St,
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subject to x

a
k 2 {0, 1}, 8 a 2 Ct, 8 k 2 Tt, (8b)

x

!,a
k 2 {0, 1}, 8 a2 St, 8 k2 Tt, 8 ! 2 ⌦t (8c)
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a

x
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(6d), (6e), (8f)

where E![·] denotes the expectation based on the set of
scenarios ⌦t, x

!,a
t , (x

!,a
t , . . . , x

!,a
T ), and x

!,a
k is the state

of power consumption of appliance a under scenario !. Ea

is defined as the total energy required to finish the operation
of appliance a 2 A. St is defined as the set of all sleeping
appliances at time slot t. For scenario !, ↵

!
a denotes the

earliest time at which the operation of appliance a can be
scheduled, and β

!
a denotes the time by which the operation of

appliance a has to be finished. Furthermore, L!
k is defined as

L

!
k ,

 X

a2Mt

Pa +

X

a2Ct

Pax
a
k +

X
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Pax
!,a
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b
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k
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For the price function in (5), since mt  nt, for a total load
lt at time slot t, the user’s payment ltλt(lt) is determined as
the maximum of the two intersecting lines:

ltλt(lt) = max
�
mtlt, ntlt+(mt−nt)bt

 
. (10)

Therefore, problem (8) can be reformulated as

minimize
y

b
t ,x

a
t , 8 a 2 Ct,

x

!,a
t , 8 a 2 St

8 ! 2 ⌦t

E!

 TX

k=t

max
⇢
mkL

!
k , nkL

!
k + (mk − nk)bk

��

(11)
subject to (8b)-(8f).

Finally, we introduce auxiliary variable ⌫k, for each time slot
k, and adopt certainty equivalent approximation technique
[22], i.e., all uncertainties are fixed in their expected value.
The certainty equivalent approximation technique is adopted
to move the expectation, E![·], inside the max{} operator.



Thus, we can re-write problem (11) as

minimize
y

b
t ,x

a
t , 8 a 2 Ct,

x

!,a
t , 8 a 2 St,

! 2 ⌦t, ⌫t

TX

k=t

⌫k (12)

subject to (8b)-(8f),
mk E![L

!
k ]  ⌫k, 8 k 2 Tt,

nk E![L
!
k ] + (mk − nk)bk  ⌫k, 8 k 2 Tt,

where ⌫t , (⌫t, . . . , ⌫T ), E!{L!
k } is the expected load at time

slot k based on the limited number of scenarios which can be
calculated as

E!

�
L
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=

1

W

X
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L

!
k , (13)

Problem (12) is a mixed-binary linear program and can be
solved efficiently by using MOSEK [23]. The solution of op-
timization problem (12) determines the appropriate scheduling
of the controllable appliances as well as the charging and
discharging rates of the battery. However, for controllable
appliances and the battery, only the operation schedule of
the current time slot t is executed, and the schedule of
the future time slots t + 1, . . . , T may change when the
optimization problem is solved again in the next time slot as
new information about the future load and power generation
from RERs becomes available.

C. Scenario Selection

In our system model, we assume that the demand infor-
mation of the appliances and the amount of power generation
from RERs are not known ahead of time. However, we assume
that some statistical information is available. That is, the
probability with which each appliance becomes awake at each
time slot t, p

a
t , is known at the beginning of the operation

cycle [18]. Such information can be calculated, for example,
based on the sleep and awake history of each appliance. In
our model, each appliance can become awake only once. If an
appliance becomes awake more often, we can simply introduce
virtual appliances to deal with this issue. Therefore, we have

TX

t=1

p

a
t + p

a
0 = 1, (14)

where p

a
0 denotes the probability that appliance a does not

become awake at any time within the period [1, T ]. We define
p

a
⌧,t as the probability that appliance a becomes awake in time

slot ⌧ > t given that it has not become awake until time slot
t. Based on Bayes’ rule, pa⌧,t can be calculated as

p

a
⌧,t , P(∆a

⌧ = 1 |∆a
1 = 0, . . . ,∆

a
t = 0)

=

p

a
⌧PT

k=t+1 p
a
k + p

a
0

, (15)

where ∆a
t is a random variable that is equal to one if appliance

a becomes awake in time slot t, and equal to zero otherwise.
Furthermore, we assume that given appliance a becomes

Algorithm 1 : Energy scheduling algorithm executed at the
beginning of each time slot t.

1: Determine generated power of RERs.
2: Receive admission requests and update Mt and Ct.
3: Update E

a
t according to (1).

4: Activate must-run appliances (start / continue operation).
5: Update p

a
⌧,t according to (15).

6: For each a 2 St, and for each scenario !, determine ↵

!
a ,

β

!
a , and  !

k as discussed in Section III-C.
7: Solve problem (12) to activate / deactivate controllable

appliances and charge / discharge battery.

awake at time slot ⌧ , the probability with which its deadline
is set as k > ⌧ , qak,⌧ , is known. That is,

q

a
k,⌧ , P(✓ak = 1 |∆a

⌧ = 1), (16)

where ✓

a
k is a random variable that is equal to one if the

operating deadline of appliance a is k > ⌧ , and equal to
zero otherwise. We note that the feasible operational interval
for each appliance, i.e., the difference between the time slot
at which appliance a becomes awake and the time slot by
which its operation has to be finished, determines whether
the intended appliance is set as must-run or controllable.
At the current time slot t, to calculate E![L

!
k ], we need to

determine different scenarios starting from time slot t. For
this purpose, for each currently sleeping appliance a 2 St,
the probabilities p

a
⌧,t are calculated as in (15). Based on the

calculated probabilities p

a
⌧,t, the time slot at which appliance

a 2 St will become awake for different scenarios ! 2 ⌦t,
↵

!
a , is determined. Next, for each scenario !, by conditioning

on the time slot at which appliance a 2 St becomes awake,
⌧ = ↵

!
a , the probability distribution qk,⌧ is adopted to

determine the deadline by which the operation of appliance
a 2 St has to be finished β

!
a . Moreover, for each scenario

!, the amount of generated power from RERs,  !
k , is derived

based on normal distribution N (µk,σ
2
k) for each time slot k.

D. Algorithm Description

In this section, we explain the different steps of the proposed
energy consumption scheduling algorithm, i.e., Algorithm 1,
executed by the ECS unit. At the beginning of each time slot
t, the amount of power generation from RERs is determined,
c.f. Line 1. In the operation control phase, all admission
requests are received. Based on the specifications of the
requests, each appliance is labeled as either must-run or
controllable, and the sets Mt and Ct are updated accordingly,
c.f. Line 2. Next, the remaining energy requirement of each
awake appliance is determined according to (1), c.f. Line
3. The operation of must-run appliance a 2 Mt is started
immediately and will continue in the upcoming time slots
until the end of its operation at the requested power Pa, c.f.
Line 4. To calculate the schedule of controllable appliances
and the battery, the expected load in the upcoming time slots
has to be estimated. We approximate the expected load by
adopting the certainty equivalent approximation technique and



by confining the expectation to a limited number of scenarios,
see Section III-B. For this purpose, the probability by which
each currently sleeping appliance a 2 St will become awake
is updated according to (15), c.f. Line 5. For each scenario,
the time at which each appliance a 2 St will become
awake is determined based on the probability distribution p

a
⌧,t.

Considering the time slot at which each appliance becomes
awake and the probability distribution q

a
k,⌧ , the deadline for

the operation of each appliance is determined as discussed
in Section III-C. Next, the amount of power generation from
RERs is estimated, c.f. Line 6. Finally, the schedule of power
consumption of each controllable appliance and the state of
charging and discharging of the battery are determined by
solving optimization problem (12), c.f. Line 7.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results and assess the
performance of our proposed energy consumption scheduling
algorithm. We run each simulation 100 times with different
patterns for the times at which the appliances become awake,
and present the average results. Unless stated otherwise, the
simulation setting is as follows. We assume that the RTP
method combined with IBR is adopted as in (5). We as-
sume mt = 4 cents/kWh, and it increases to 6 cents/kWh
and 8 cents/kWh during [12:00, 15:00] and [19:00, 24:00],
respectively. nt is selected as 8 cents/kWh, and it increases
to 12 cents/kWh and 10 cents/kWh during [19:00, 24:00] and
[24:00, 7:00], respectively. We consider a single household
with various must-run and controllable appliances. Control-
lable appliances include: Electric stove (Ea = 4.5 kWh,
Pa = 1.5 kW), clothes dryer (Ea = 1 kWh, Pa = 0.5 kW),
dishwasher (Ea =2 kWh, Pa =1 kW), heater (Ea =4 kWh,
Pa = 1 kW), pool pump (Ea = 4 kWh, Pa = 2 kW), PEV
(Ea = 10 kWh, Pa = 2.5 kW). Must-run appliances include:
Lighting (Ea = 3 kWh, Pa = 0.5 kW), TV (Ea = 1 kWh,
Pa =0.25 kW), PC (Ea =1.5 kWh, Pa =0.25 kW), ironing
appliance (Ea = 2 kWh, Pa = 1 kW), hair dryer (Ea = 1

kWh, Pa = 1 kW), and others (Ea = 6 kWh, Pa = 1.5

kW). The time slot at which each appliance becomes awake
is selected randomly from a pre-determined time interval, e.g.
[6:00, 14:00] for electric stove and [16:00, 24:00] for PEV.
We assume that the user is equipped with a battery and a
renewable generator. We assume the maximum charging and
discharging rate of the battery is gb = 2 kW and its capacity
is Cb = 5 kWh. The output of the RER at different time slots
is modeled as normal random variables with different means
and standard deviations. For example, we assume that during
[8:00, 12:00] the average generated power from the RER is
µt = 2 kW and its standard deviation is σt = 1 kW.

To have a baseline to compare with, we consider a system
without ECS deployment, where each appliance a is assumed
to start operation right after it becomes awake. The battery is
charged whenever there is more generated power than demand
and discharged otherwise. Similar to [18], we consider a
system in which the effect of supply uncertainty is ignored and
only the effect of load uncertainty is taken into account. As an

TABLE I
AVERAGE PAYMENT OF THE USER AND PAR FOR DIFFERENT SYSTEMS.

Average payment PAR
Without ECS deployment $3.12 3.02

Algorithm in [18] $2.80 2.70

Proposed algorithm $2.47 2.41

With complete information $2.27 2.11
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Fig. 1. Average payment of the users for different values of storage capacity.

upper bound, we also consider a system in which the complete
information about the demand requirements of the user and
the power generation at different time slots is available at the
beginning of the operation period. In our simulation model,
we set bt = 3.5 kW in (5) for all time slots.

Simulation results for the average payment of the user and
the average PAR for the proposed residential load control
algorithm, the system without ECS deployment, the system
in which the effects of supply uncertainty is ignored, and the
system in which complete demand and generation information
is available ahead of time are summarized in Table I. The
results in Table I show that, to reduce electricity payment, the
ECS unit shifts the load to time slots with lower prices and
the time slots with high expected power generation from RER.
The high price penalty for exceeding the bt threshold prevents
load synchronization as discussed in Section I. Exploiting the
use of the ECS unit reduces the average daily payment of the
user from $3.12 to $2.47 compared to the system without
ECS deployment. By estimating the generation from RER
and shifting the load to time slot with high expected power
generation, our proposed algorithm reduces the electricity
payment of the user compared to the algorithm in [18]. Our
proposed algorithm helps to reduce the average PAR of the
system from 3.02 to 2.41 (20.2% reduction) compared to the
system without ECS deployment.

We also examine how changes of the battery’s capacity
affect the performance of the system. Simulation results for the
average daily payment of the user and the average PAR of the
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Fig. 2. Average PAR of the system for different values of storage capacity.

system for different values of parameter Cb are illustrated in
Figs. 1 and 2, respectively. The results show that our proposed
algorithm improves the performance of the system compared
to the algorithm proposed in [18] for all values of Cb, since the
effect of supply uncertainty is taken into account. Increasing
the capacity of the battery reduces the energy expenses of
the user by better utilization of the RER and shifting the
load to time slots with high RER power output. However, by
increasing the battery’s capacity and increasing the flexibility
of the load, the PAR of the system will increase as a large
amount of energy is consumed during low price time slots to
charge the battery. This energy will be released during high
price time slots to cover the demand requirements of the user.

V. CONCLUSIONS

In this paper, we proposed an energy consumption schedul-
ing algorithm for DSM in the presence of both load and supply
uncertainty. We formulated the problem as an optimization
problem to minimize the electricity payment of the user.
In our system model, the user is equipped with a storage
device. We employed RTP combined with IBRs to balance
residential load to achieve a low PAR. Simulation results
showed that our proposed algorithm reduces the energy cost of
users, encouraging them to participate in DSM. The proposed
algorithm helps to better utilize the RERs by encouraging the
users to shift their load to time slots with high renewable power
generation, and reducing the PAR of the system. The latter
provides an incentive for utilities to support implementing the
proposed DSM algorithm.

REFERENCES

[1] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on
utility maximization in power networks,” in Proc. of IEEE Power and
Energy Society General Meeting, Detroit, MI, Jul. 2011.

[2] T. Hubert and S. Grijalva, “Realizing smart grid benefits requires energy
optimization algorithms at residential level,” in Proc. of IEEE Innovative
Smart Grid Technologies, Anaheim, CA, Jan. 2011.

[3] M. Pedrasa, T. Spooner, and I. MacGill, “Coordinated scheduling of
residential distributed energy resources to optimize smart home energy
services,” IEEE Trans. on Smart Grid, vol. 1, no. 2, pp. 134–143, Sept.
2010.

[4] M. He, S. Murugesan, and J. Zhang, “A multi-timescale scheduling
approach for stochastic reliability in smart grids with wind generation
and opportunistic demand,” IEEE Trans. on Smart Grid, vol. 4, no. 1,
pp. 521–529, Mar. 2013.

[5] K. Nunna and S. Doolla, “Demand response in smart distribution system
with multiple microgrids,” IEEE Trans. on Smart Grid, vol. 3, no. 4,
pp. 1641–1649, Dec. 2012.

[6] J. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson,
S. Jemei, M. P. Comech, R. Granadino, and J. I. Frau, “Distributed
generation: Toward a new energy paradigm,” IEEE Industrial Electronics
Magazine, vol. 4, no. 1, pp. 52–64, Mar. 2010.

[7] S. Bahramirad, W. Reder, and A. Khodaei, “Reliability-constrained
optimal sizing of energy storage system in a microgird,” IEEE Trans.
on Smart Grid, vol. 3, no. 4, pp. 2056–2062, Dec. 2012.

[8] Z. Xu, X. Guan, Q. S. Jia, J. Wu, D. Wang, and S. Chen, “Performance
analysis and comparison on energy storage devices for smart building
energy management,” IEEE Trans. on Smart Grid, vol. 3, no. 4, pp.
2136–2147, Dec. 2012.

[9] A. M. Leite da Silva, L. C. Nascimento, M. A. da Rosa, D. Issicaba, and
J. Lopes, “Distributed energy resources impact on distribution system
reliability under load transfer restrictions,” IEEE Trans. on Smart Grid,
vol. 3, no. 4, pp. 2048–2055, Dec. 2012.

[10] K. Wang, F. Ciucu, C. Lin, and S. H. Low, “A stochastic power network
calculus for integrating renewable energy sources into the power grid,”
IEEE J. on Selected Areas in Comm., vol. 30, no. 6, pp. 1037–1048,
Jul. 2012.

[11] A. H. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load
control with price prediction in real-time electricity pricing environ-
ments,” IEEE Trans. on Smart Grid, vol. 1, no. 2, pp. 120–133, Sept.
2010.

[12] P. Samadi, A. H. Mohsenian-Rad, R. Schober, and V. W. S. Wong,
“Advanced demand side management for the future smart grid using
mechanism design,” IEEE Trans. on Smart Grid, vol. 3, no. 3, pp. 1170–
1180, Sept. 2012.

[13] P. Reiss and M. White, “Household electricity demand, revisited,”
Review of Economic Studies, vol. 72, no. 3, pp. 853–883, July 2005.

[14] A. H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober,
and A. Leon-Garcia, “Autonomous demand-side management based
on game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Trans. on Smart Grid, vol. 1, no. 3, pp. 320–331, Dec. 2010.

[15] P. Samadi, R. Schober, and V. W. S. Wong, “Optimal energy consump-
tion scheduling using mechanism design for the future smart grid,” in
Proc. of IEEE Int’l. Conf. on Smart Grid Communications, Brussels,
Belgium, Oct. 2011.

[16] C. Chen, K. G. Nagananda, G. Xiong, S. Kishore, and L. V. Synder,
“A communication-based appliance scheduling scheme for consumer
-premise energy management systems,” IEEE Trans. on Smart Grid,
vol. 4, no. 1, pp. 56–65, Mar. 2013.

[17] S. Salinas, M. Li, and P. Li, “Multi-objective optimal energy consump-
tion scheduling in smart grids,” IEEE Trans. on Smart Grid, vol. 4,
no. 1, pp. 341–348, Mar. 2013.

[18] P. Samadi, A. H. Mohsenian-Rad, V. W. S. Wong, and R. Schober, “Tack-
ling the load uncertainty challenges for energy consumption scheduling
in smart grid,” IEEE Trans. on Smart Grid, vol. 4, no. 2, pp. 1007–1016,
Jun. 2013.

[19] G. Xiong, C. Chen, S. Kishore, and A. Yener, “Smart (in-home) power
scheduling for demand response on the smart grid,” in Proc. of IEEE PES
Innovative Smart Grid Technologies Conf., Anaheim, CA, Jan. 2011.

[20] A. Shamshad, M. A. Bawadi, W. M. A. Wan Hussin, T. A. Majid, and
S. A. M. Sanusi, “First and second order Markov chain models for
synthetic generation of wind speed times series,” Energy, vol. 30, no. 5,
pp. 693–708, Apr. 2005.

[21] J. Choi, J. Lim, and K. Y. Lee, “DSM considered probabilistic reliability
evaluation and an information system for power systems including wind
turbine generators,” IEEE Trans. on Smart Grid, vol. 4, no. 1, pp. 425–
432, Mar. 2013.

[22] D. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific Belmont, MA, 2005.

[23] “MOSEK,” http://www.mosek.com, 2013.


