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Abstract—In this paper, we focus on the problem of joint
load scheduling and generation management to better match
supply and demand. We formulate an optimization problem to
jointly minimize the generation cost and discomfort cost of the
users subject to the voltage and power balance equations for
the equivalent circuit of the power system. The optimal power
flow (OPF) equations are solved using semidefinite programming
(SDP) relaxation technique. In our system model, we assume that
users can exploit renewable energy resources (RERs). RERs are
random in nature and may cause voltage variations in different
nodes of the system. To minimize the risk of having high voltage
values, a barrier term is added to the objective function. This
term is calculated based on the concept of conditional value-at-
risk (CVaR). Simulation results show that compared to the case
where there is no control over the load, our proposed algorithm
reduces the generation cost by better matching the generation and
demand. Moreover, the proposed algorithm reduces the voltage
variations at different nodes of the system.

I. INTRODUCTION

The increasing electricity demand requirements of the users

and the emergence of new types of demand such as plug-in

hybrid electric vehicles make it difficult for transmission and

distribution network operators to preserve the reliability and

efficiency of the power grid [1]. The process of installing new

transmission and bulk generation infrastructure is lengthy and

expensive. To tackle these problems and to balance generation

and demand, the use of distributed generators (DGs) attracts

more attention. DGs are located close to the demand. They

bypass the congested transmission network and alleviate the

need to install new transmission infrastructure. Moreover, DGs

can provide environmental benefits by utilizing sustainable

renewable energy resources (RERs) [2]–[4]. RERs such as

solar and wind are non-dispatchable, since they are random in

nature. In systems with high penetration of RERs, the amount

of generation may exceed the demand. The reverse power flow

from the DGs back to the substation can cause the voltage

rise problem, which is a major challenge in integrating a large

number of DGs in the distribution network [5]–[8].

To cope with the undesirable variations of voltage due to the

random nature of RERs, different voltage regulation programs

have been proposed in the literature [9]–[14]. The advances

of power electronics make it possible for inverters, which act

as an interface between the photovoltaic (PV) units and the

grid, to provide ancillary services. Examples of such services

include reactive power compensation or operating at unity

power factor and curtailing part of active power generation

[15]. The authors in [15] studied an optimal power flow (OPF)

problem such that a prior risk level of PV generation surplus

will not exceed a certain threshold. They adopted the concept

of conditional value-at-risk (CVaR) to capture the risk of

having over-voltages. In addition to minimizing the risk of

having high voltage values, different objectives are considered

for the OPF problem. Examples include minimizing power

distribution losses and the cost of providing energy [16].

Moreover, the sufficient conditions to ensure the existence of

a global optimum for the OPF problem in ac grids and ac-

dc grids are examined in [17] and [18], respectively. Most

of the prior works focus on determining the operation point

of the generators to reduce costs. Despite its importance, the

possibility of adopting demand response (DR) programs to

shape the load pattern of the users in order to provide voltage

regulation services has not been well-investigated. Among

different techniques considered for DR [19]–[24], we focus

on direct load control where the distributed network operator

(DNO) can directly communicate with the users to change

their power consumption and better match supply and demand.

In this paper, we consider the problems of unit commitment

(i.e., determining the active and reactive power generations of

DGs) and load scheduling of the users. Thereby, the voltage

and power balance equations of the equivalent circuit of the

power network are taken into account. We note that the random

nature of RERs may result in voltage rise problem. The

concept of CVaR is used to capture the risk associated with

the DGs surplus power exceeding a certain threshold. The

contributions of this paper are summarized as follows:

• We adopt a semidefinite programming (SDP) relaxation

technique to solve an OPF problem with the objective of

minimizing the generation cost and the discomfort cost

of the users.

• We schedule the power consumption of the users to better

match supply and demand. A quadratic cost function is

exploited to quantify the discomfort level of the users

when the DNO changes the power consumption of the

users from their desired level.

• We use the concept of CVaR to minimize the risk of

having a large reverse power flow.

• Simulation results show that the generation cost is re-

duced by better matching supply and demand. The volt-

age variations are reduced at different nodes of the grid.

II. SYSTEM MODEL

We consider a smart power system with the set of buses

or nodes N , and the set of lines L ⊆ N × N . We divide

the intended operation cycle into T , |T | time slots, where

T , {1, . . . , T }. Let i2 = −1. We denote SD
n,t , PD

n,t+ iQD
n,t

as the complex power of the load connected to bus n ∈ N
at time slot t ∈ T . Let SG

n,t , PG
n,t + iQG

n,t denote the

complex power generated by the DG connected to bus n ∈ N



at time slot t. Snm,t , Pnm,t + iQnm,t is the complex

power that flows through line (n,m) ∈ L at time slot t. V n
t

is defined as the complex voltage of bus n at time slot t,
and Vt , (V 1

t , . . . , V
N
t ). Each transmission line is replaced

by its equivalent Π model [25]. Let ynn and ynm denote

the admittance of the bus n to the ground, and the mutual

admittance between buses n and m, respectively. ȳnm denotes

the shunt admittance of bus n associated with the Π model

of the line (n,m). The admittance matrix of the system is

represented by Y . Similar to [17], we define e1, . . . , eN as

the standard basis vectors in R
N , and the following matrices

are defined for each n ∈ N and (n,m) ∈ L:

Yn , ene
T
nY, (1a)

Ynm , (ȳnm + ynm)ene
T
n − (ynm)ene

T
m, (1b)

Yn ,
1

2

[

Re{Yn + Y T
n } Im{Y T

n − Yn}
Im{Yn − Y T

n } Re{Yn + Y T
n }

]

, (1c)

Ynm ,
1

2

[

Re{Ynm + Y T
nm} Im{Y T

nm − Ynm}
Im{Ynm − Y T

nm} Re{Ynm + Y T
nm}

]

, (1d)

Ȳn , −1

2

[

Im{Yn + Y T
n } Re{Yn − Y T

n }
Re{Y T

n − Yn} Im{Yn + Y T
n }

]

, (1e)

Ȳnm , −1

2

[

Im{Ynm+Y T
nm} Re{Ynm−Y T

nm}
Re{Y T

nm−Ynm} Im{Ynm+Y T
nm}

]

, (1f)

Mn ,

[

ene
T
n 0

0 ene
T
n

]

, (1g)

Xt , [Re{Vt}T, Im{Vt}T]T, (1h)

Wt , XtX
T
t , (1i)

rank(Wt) = 1, (1j)

where T is the transpose operation. The voltage value and the

complex power injected to each bus can be represented by the

matrices defined in (1). That is, the following relations hold

for every n ∈ N , (n,m) ∈ L, and t ∈ T [17].

PG
n,t − PD

n,t = Tr{YnWt}, (2a)

QG
n,t −QD

n,t = Tr{ȲnWt}, (2b)

Pnm,t = Tr{Yn,mWt}, (2c)

|Snm,t|2 = Tr{YnmWt}2 + Tr{ȲnmWt}2, (2d)

|V n
t |2 = Tr{MnWt}. (2e)

For the underlaying circuit of the power system, the voltage

and power values are subject to the power balance equations

and physical constraints at all time slots [17]. We have

PG,min
n,t − PD

n,t ≤ Tr{YnWt} ≤ PG,max
n,t − PD

n,t, (3a)

QG,min
n,t −QD

n,t ≤ Tr{ȲnWt} ≤ QG,max
n,t −QD

n,t, (3b)

Tr{YnmWt} ≤ Pmax
nm , (3c)

(V min
n )2 ≤ Tr{MnWt} ≤ (V max

n )2, (3d)

Tr{YnmWt}2 + Tr{ȲnmWt}2 ≤ (Smax
nm)2, (3e)

where PG,min
n,t , PG,max

n,t , QG,min
n,t , and QG,max

n,t are the lower

bound and the upper bound for the generated active and

reactive power at bus n, respectively. V min
n and V max

n denote

the lower bound and upper bound on the acceptable range

of voltage values for bus n, respectively. Smax
nm and Pmax

nm

determine the maximum apparent power and the maximum

active power that can flow through line (n,m), respectively.

We assume that all the load subscribers in the network are

equipped with an energy consumption controller (ECC) unit

to control the user’s power consumption. It receives control

signals from the DNO. That is, based on an agreement, the

DNO can remotely control the operation of some appliances

of the users. We use PD,min
n,t , PD,max

n,t , QD,min
n,t , and QD,max

n,t

to denote the minimum and maximum acceptable values for

the active and reactive power of the load connected to bus n,

respectively. Let En denote the total energy requirement of

the load connected to bus n. We have

PD,min
n,t ≤PD

n,t ≤ PD,max
n,t , (4a)

QD,min
n,t ≤QD

n,t ≤ QD,max
n,t , (4b)

0 ≤En ≤ ∑

t∈T
PD
n,t. (4c)

For the generator connected to bus n, we consider a cost

function Cn(P
G
n,t) indicating the cost of generating electricity

at power level PG
n,t at time slot t. We assume that the

cost function is increasing and strictly convex in the offered

energy. We consider a quadratic cost function Cn(P
G
n,t) =

an(P
G
n,t)

2+bn(P
G
n,t)+cn, where an, bn, cn are pre-determined

coefficients. Substituting (2a) into Cn(P
G
n,t), we obtain

Cn(Wt, P
D
n,t) = an(Tr{YnWt}+ PD

n,t)
2

+ bn(Tr{YnWt}+ PD
n,t) + cn. (5)

For the load connected at bus n, Ln,t denotes the desired

level of power consumption at time slot t. Ln,t can either be

inferred from the historical data or be determined by the users

in a day-ahead basis. Therefore, any deviation from the Ln,t

as a result of load scheduling will incur a cost to the load. We

adopt Hn,t(P
D
n,t) to model the dissatisfaction cost of the load

connected to bus n at time slot t. In the following, we assume

a quadratic dissatisfaction cost function as

Hn,t(P
D
n,t) = θn,t(P

D
n,t − Ln,t)

2, (6)

where θn,t is a non-negative constant.

III. PROBLEM FORMULATION

The DNO has to determine the output generation of DGs

while taking into account the uncertainty about the generation.

The unforeseen variation of the output generation from RERs

can cause significant changes to the voltage level of the buses.

It is difficult to maintain the voltages in their acceptable range,

and there are scenarios in which the OPF problem may become

infeasible. In this section, we first formulate the OPF problem

ignoring the possible infeasibility problem. We then explain

how to tackle the possible infeasibility.

We formulate the OPF problem as a relaxed SDP problem

by relaxing the constraint (1j). For n ∈ N and t ∈ T , we have

minimize
Wt, S

D
n,t,

λn,t, γn,t,
t ∈ T , n ∈ N

∑

t∈T

∑

n∈N

λn,t + γn,t (7a)



subject to constraints (3), (4), (7b)

Cn(Wt, P
D
n,t) ≤ λn,t, (7c)

Hn,t(P
D
n,t) ≤ γn,t, (7d)

where λn,t and γn,t are auxiliary variables associated with

each node n at time slot t. By adopting Schur’s complement

formula [26], constraint (3e) can be rewritten as




(Smax
nm)2 Tr{YnmWt}Tr{ȲnmWt}

Tr{YnmWt} −1 0
Tr{ȲnmWt} 0 −1



 � 0, (8)

where � is the matrix inequality sign in the positive semidef-

inite sense. Constraints (7c) and (7d) can be rewritten as
[

bnδn,t − λn,t + cn
√
anδn,t√

anδn,t −1

]

� 0, (9a)

[

−2Ln,tP
D
n,t + L2

n,t − γn,t/θn,t PD
n,t

PD
n,t −1

]

� 0, (9b)

where δn,t , Tr{YnWt}+ PD
n,t. Therefore, problem (7) can

be reformulated as

minimize
Wt, S

D
n,t,

λn,t, γn,t,

t ∈ T , n ∈ N

∑

t∈T

∑

n∈N

λn,t + γn,t (10a)

subject to constraints (3a)− (3d), (4), (8), (9). (10b)

To tackle the possible infeasibility problem of (10), one

option is to add a barrier term to the objective of (10) which

penalizes any voltage deviation from its nominal value, and re-

lax the constraint (3d). Examples of such barrier functions in-

clude value at risk (VaR) and conditional value at risk (CVaR).

Equation (2a) implies that fluctuations in power generation

at bus n can lead to changes in matrix Wt. Therefore, the

voltage variation can be indirectly related to the fluctuations

in the RERs’ power generation. We now use CVaR to deal

with the uncertainty related to generation level from the RERs.

Let R(PG
t , P̂t) denote a real-valued function that captures

the possible excess power generation from its presumed value

[27], where P̂t , (P̂1,t, . . . , P̂N,t)P
G
t , (PG

1,t, . . . , P
G
N,t)

is the vector of presumed values of the output power

generation obtained from solving the OPF and P
G
t ,

(PG
1,t, . . . , P

G
N,t)P̂t , (P̂1,t, . . . , P̂N,t) is the vector of the ac-

tual power generation at all the buses. We define R(·) as

R(PG
t , P̂t) =

∑

n∈N

[

PG
n,t − P̂n,t

]+

, (11)

where [·]+ , max{·, 0}. The cumulative distribution function

for the random variable R(·) is defined as

Ψ(P̂t, α) , Pr{R(PG
t , P̂t) ≤ α}. (12)

Based on (12), for the probability level β ∈ (0, 1), the

corresponding VaR, αβ , is defined as the minimum threshold α
for which the probability of voltage deviation from its nominal

value being less than α is at least β. That is,

αβ(P̂t) , min{α : Ψ(P̂t, α) ≥ β}. (13)

Furthermore, the CVaR is defined as the expected value of

the surplus function R(·) when only the generating powers

that are greater than or equal to αβ are considered. That is,

φβ(P̂t) = E{R(PG
t , P̂t) : R(PG

t , P̂t) ≥ αβ(P̂t)}, (14)

where E{·} denotes the expectation with respect to uncertain

generation output. It has been shown that the CVaR can also

be represented as [27]: φβ(P̂t) = min
α∈R

Γβ(α, P̂t), where

Γβ(α, P̂t) , α+
1

1−β

∫

[

R(PG
t , P̂t)− α

]+

ρ(PG
t )dP

G
t , (15)

and ρ(PG
t ) is the probability density function of random vector

P
G
t . CVaR is convex in P̂t, and for any threshold α, it is

always greater than or equal to the VaR. Thus, minimizing

the CVaR results in having a low VaR as well. It is possible

to estimate the CVaR by adopting sample average technique.

This is useful especially in situations where it is difficult

to obtain a closed-form solution for ρ(PG
t ). Samples of the

random variable P
G
t can be observed from the real system.

Considering the set K , {1, . . . ,K} of K samples of the

random vector PG
t , the Γβ(·) in (15) can be approximated as

Γ̂β(α, P̂t) = α+
1

K(1−β)

∑

k∈K

[

R(PG,k
t , P̂t)− α

]+

, (16)

where P
G,k
t denotes the kth sample of random vector P

G
t .

It has been shown in [27] that minimizing φβ(P̂t) over all

possible values of P̂t is equivalent to minimize Γβ(α, P̂t)
over all possible values of α and P̂t . That is,

min
P̂t∈RN

φβ(P̂t) = min
α∈R, P̂t∈RN

Γβ(α, P̂t). (17)

We formulate the problem of minimizing the joint gener-

ation and dissatisfaction costs while taking into account the

uncertainty about the generation as

minimize
Wt, S

D
n,t, λn,t,

γn,t, α, P̂t,
t ∈ T , n ∈ N

∑

t∈T

∑

n∈N

(

λn,t + γn,t
)

+ ηtΓ̂β(α, P̂t) (18a)

subject to constraints (3a)− (3c), (4), (8), (9), (18b)

where ηt is a weight coefficient. The included CVaR objective

Γ̂β(α, P̂t) is as (16) and reflects the risk of having high

values of voltage deviations. To reformulate (18) as a standard

semidefinite program, auxiliary vector µt ∈ R
K is introduced

to upper bound the projection term Γ̂β(α, P̂t). The vector of

auxiliary variables u
k
t ∈ R

N are introduced for each sample

k of random vector P
G,k
t . Problem (18) can be rewritten as

minimize
Wt, S

D
n,t, λn,t,

γn,t, α, P̂t,

µt,u
k
t , k ∈ K,

t ∈ T , n ∈ N

∑

t∈T

∑

n∈N

(

λn,t+γn,t
)

+ ηtα+
ηt

K(1− β)
1

T
Kµt

(19a)

subject to constraint (18b), (19b)

1
T
Nu

k
t ≤ α+ µk

t , (19c)

PG,k
n,t − P̂ k

n,t ≤ uk
n,t. (19d)



The solution of problem (19), W
opt
t and SD,opt

n,t , can be used to

determine the operating point of the generators as in (2a) and

(2b). The assumptions made in [17] to determine the rank of

W
opt
t for ac OPF problem are valid for problem (19) as well.

Therefore, W
opt
t is at most rank two for practical ac grids

such as the IEEE test systems. Algorithm 1 explains how to

determine the vector of bus voltages from W
opt
t .

Algorithm 1: Algorithm which determines the voltage of buses.

1: Solve problem (19).
2: if W

opt
t

is rank one with eigenvalue r and eigenvector ν

3: Calculate X
opt
t

=
√

rν.
4: else if W

opt
t

is rank two with two nonzero eigenvalues r1 and
r2 and corresponding eigenvectors ν1 and ν2

5: Calculate rank one matrix Ŵ
opt
t

= (r1 + r2)ν1ν
T
2 .

6: Calculate eigenvalue r̂ and eigenvector ν̂ of Ŵ
opt
t

.

7: Calculate X
opt
t

=
√

r̂ν̂.

8: end if

IV. PERFORMANCE EVALUATION

We present simulation results and assess the performance

of our proposed load control algorithm. In our simulation

setting, the operation period is divided into 3 time slots

representing on-peak hours, off-peak hours, and mid-peak

hours. The IEEE 30-bus distribution network is considered

as a test case. The values of line impedance are derived from

[28]. Some of the buses in the network are equipped with

RERs. The Monte Carlo samples P
G,k
t are obtained based on

a normal distribution. We consider a flexible load connected

to each bus. We assume that the DNO is able to control the

load. The desired load level in each bus, i.e., Ln,t, is obtained

from [28]. The DNO ensures that the total energy requirements

of the users are met at the end of the operation period. The

generation capacity of the DGs varies between 5 MW and

60 MW. The generation cost parameters are set to an=0.01,

bn=0, and cn=0. The loads connected to different buses may

require power up to 20 MW. θn,t in (6) is set to 0.5. CVX

is used to solve the OPF problem. To estimate the CVaR,

we use the sample average technique. K = 100 samples of

power generation vector P
G,k
t are considered to approximate

the CVaR in (14). β in (15) is set to 0.9. To have a baseline

to compare with, we consider a system in which the loads

connected to the buses of the system are not flexible. In this

system, the DGs have to generate more power to meet the

demand on peak hours. Thus, the generation cost increases.

The chance of the voltage rise problem also increases.

Fig. 1 depicts simulation results for the total generation

cost of the system for different levels of load flexibility. Load

flexibility is defined as the percentage of the desired level of

load in each time slot that can be reduced or increased. That

is, χn,t , ∆PD
n,t/P

D
n,t×100%, where ∆PD

n,t is the amount of

power demand that can be adjusted. We note that even with

different levels of χn,t users will receive their total energy

requirements. By increasing χn,t, the DNO can better match

supply and demand. The generation cost reduces as the DNO

can shift more load from peak hours to off-peak hours.
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Fig. 1. Generation cost for different levels of load flexibility.
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Fig. 2. Voltage variance for different values of ηt parameter.

In order to minimize the risk of having high values of

voltage deviations, the term (16) is added to the objective

function. To better understand the effect of weight coefficient

ηt in (18), we focus on the expected voltage values for differ-

ent values of parameter ηt. We consider the expected square

of the voltage deviation from its desired value as a measure

to evaluate the severity of voltage variations. Our proposed

load control algorithm reduces the expected variations of the

voltage by jointly controlling the output generation and the

load level at different buses of the system. As illustrated in

Fig. 2, by increasing the parameter ηt, the voltage variations

are reduced as more weights are put on minimizing the risk

of having high voltage values.

V. CONCLUSION

In this paper, we formulated an optimization problem to

minimize the generation cost and the discomfort cost subject

to power flow constraints for the equivalent circuit of the

power system. We adopted an SDP relaxation technique to

solve the OPF problem. Moreover, the risk of having high

voltage values was also minimized by including a barrier term

based on CVaR to the objective function. Simulation results

showed that our proposed algorithm reduces the generation

cost and better eliminates the mismatch between the supply

and demand. The proposed algorithm can also mitigate the

voltage variations at different nodes of the power network.



REFERENCES

[1] “IEEE guide for smart grid interoperability of energy technology and
information technology operation with the electric power system (EPS),
end-use applications, and loads,” IEEE Std 2030-2011, pp. 1–126, Oct.
2011.

[2] J. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson,
S. Jemei, M. P. Comech, R. Granadino, and J. I. Frau, “Distributed
generation: Toward a new energy paradigm,” IEEE Industrial Electronics

Magazine, vol. 4, no. 1, pp. 52–64, Mar. 2010.

[3] M. He, S. Murugesan, and J. Zhang, “A multi-timescale scheduling
approach for stochastic reliability in smart grids with wind generation
and opportunistic demand,” IEEE Trans. on Smart Grid, vol. 4, no. 1,
pp. 521–529, Mar. 2013.

[4] K. Nunna and S. Doolla, “Demand response in smart distribution system
with multiple microgrids,” IEEE Trans. on Smart Grid, vol. 3, no. 4,
pp. 1641–1649, Dec. 2012.

[5] P. M. S. Carvalho, P. F. Correia, and L. A. F. M. Ferreira, “Distributed
reactive power generation control for voltage rise mitigation in distri-
bution networks,” IEEE Trans. on Power Systems, vol. 23, no. 2, pp.
766–772, May 2008.

[6] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic,
“Summary of distributed resources impact on power delivery systems,”
IEEE Trans. on Power Delivery, vol. 23, no. 3, pp. 1636–1644, Jul.
2008.

[7] R. Tonkoski, D. Turcotte, and T. El-Fouly, “Impact of high PV penetra-
tion on voltage profiles in residential neighborhoods,” IEEE Trans. on

Sustainable Energy, vol. 3, no. 3, pp. 518–527, May 2012.

[8] E. Yao, P. Samadi, V. W. S. Wong, and R. Schober, “Residential demand
side management under high penetration of rooftop photovoltaic units,”
accepted for publication in IEEE Trans. on Smart Grid, 2015.

[9] A. F. Vizoso, L. Piegari, and P. Tricoli, “A photovoltaic power unit
providing ancillary services for smart distribution networks,” in Proc. of

Int. Conf. Renewable Energies Power Quality, Las Palmas, Spain, Apr.
2010.

[10] D. Craciun and D. Geibel, “Evaluation of ancillary services provision
capabilities from distributed energy supply,” in Prof. of Int.’l Conf. and

Exhibition on Electricity Distribution (CIRED), Stockholm, Sweden,
Jun. 2013.

[11] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options for control
of reactive power by distributed photovoltaic generators,” Proc. of the

IEEE, vol. 99, no. 6, pp. 1063–1073, Jun. 2011.

[12] P. Jahangiri and D. C. Aliprantis, “Distributed Volt/VAR control by PV
inverters,” IEEE Trans. on Power Systems, vol. 28, no. 3, pp. 3429–3439,
Aug. 2013.

[13] S. Bolognani and S. Zampieri, “A distributed control strategy for reactive
power compensation in smart microgrids,” IEEE Trans. on Automatic

Control, vol. 58, no. 11, pp. 2818–2833, Nov. 2013.

[14] A. Samadi, R. Eriksson, L. Söder, B. G. Rawn, and J. C. Boemer,
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