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Abstract—Efficient allocation of resources (i.e., physical re-
source blocks (PRBs), transmit power) for remote radio heads
(RRHs) in the fifth generation (5G) cloud radio access network
(C-RAN) is crucial for the mobile network operators (MNOs) to
support different use cases with diverse quality of service (QoS)
requirements. In this paper, we study the resource allocation
of enhanced mobile broadband (eMBB) and ultra-reliable low-
latency communications (URLLC) network slices in a 5G C-
RAN. We formulate the resource allocation problem as a mixed-
integer nonlinear program. We address the isolation between
eMBB and URLLC network slices and the uncertainty in the
traffic load by using the chance constraint. We consider short
packet transmission to enable URLLC data transmission with
low latency and high reliability. We propose an algorithm based
on penalized successive convex approximation to determine a
suboptimal solution of the formulated problem. The proposed
algorithm has a polynomial time complexity. Simulation results
show that the proposed algorithm on average achieves 30%

higher throughput when compared with a baseline scheme that
only optimizes the transmit power of users.

I. INTRODUCTION

The fifth generation (5G) wireless systems aim to sup-

port different use cases such as enhanced mobile broadband

(eMBB), massive machine-type communication (mMTC),

and ultra-reliable low-latency communications (URLLC) with

various quality of service (QoS) requirements in terms of

data rate, reliability, and latency. Mobile network operators

(MNOs) can use network slicing in cloud radio access net-

works (C-RANs) to virtualize the network resources (e.g.,

physical resource blocks (PRBs), transmit power) in the shared

physical network. Given the limited resources in the remote

radio heads (RRHs), an efficient resource allocation among

network slices is crucial to jointly maximize the aggregate

system throughput subject to the users’ QoS requirements [1].

There are major challenges in allocating RRH resources

among different network slices. First, the MNO has uncer-

tainty in the traffic load and the arrival rate of the users’

traffic. Second, the MNO needs to consider the trade-off

between maximizing the utility (e.g., aggregate throughput)

and allocating sufficient RRH resources per slice to guarantee

isolation between slices. Moreover, the MNO should take into

account the interference between the RRHs when allocating

the same PRBs to the users within a given coverage area.

Recently, the coexistence of eMBB and URLLC traffic

in a shared C-RAN infrastructure has received considerable

attention. To meet the QoS requirements of such traffic, two

types of scheduling algorithms have been proposed in the

literature: punctured scheduling and orthogonal scheduling

[2]. In the punctured scheduling approach, the eMBB traffic

is suspended when the URLLC packets are being sent. Thus,

the radio resources for the eMBB traffic are reallocated to the

URLLC users to meet their stringent latency requirements.

Pandey et al. [3] applied the punctured scheduling approach

and proposed a dynamic resource allocation algorithm to

maximize the aggregate data rate of the eMBB users, while

maintaining the low latency for the URLLC users. Alsenwi

et al. [4] proposed a risk-sensitive punctured scheduling

approach by reallocating the radio resources for the eMBB

users with high data rate to the URLLC users.

In the punctured scheduling approach, the decoding per-

formance for punctured eMBB packets degrades. To address

this shortcoming, radio resources are reserved for eMBB and

URLLC services in the orthogonal scheduling approach. Ma

et al. [5] considered network slicing in a downlink orthogonal

frequency division multiple access (OFDMA) based network

to maximize the spectral efficiency. Hua et al. [6] applied

deep reinforcement learning to design an online resource

allocation algorithm. Lee et al. [7] proposed a bi-level network

slicing framework, where an admission control is used in

the first level and resource allocation among the admitted

users is performed in the second level. Although the pro-

posed approaches in [5]–[7] can be applied to allocate RRH

resources among different slices to meet the required QoS

of the users, they do not consider isolation between network

slices and short data packet transmission for URLLC traffic.

The proposed algorithms in [5], [6] are designed for one cell,

which cannot be directly used in a network with multiple

RRHs. Moreover, the work in [7] considered deterministic

traffic load and interference for RRHs, which may not be

applicable to systems with stochastic traffic.

In this paper, we study the radio resource allocation prob-

lem in an OFDMA-based C-RAN with multiple RRHs. We

develop a radio resource allocation algorithm for eMBB and

URLLC traffic by taking into account the uncertainty in

the traffic load, isolation between network slices, and the

interference between RRHs. The main contributions of this

paper are as follows:

• Traffic Load Uncertainty: We capture the uncertainty in

the arrival rate and packet size of the users’ traffic load in

the eMBB and URLLC slices as a chance constraint. The

tunable parameter in the chance constraint enables us to

allocate sufficient resources to meet the aggregate traffic



load and guarantee isolation between network slices.

• URLLC QoS Requirements: We model the traffic of the

URLLC users with finite blocklength data rate. It enables

us to consider short packet transmission to address the

low latency requirement of the URLLC users.

• Algorithm Design: We take into account the interference

of the neighboring RRHs and formulate the joint PRBs

and transmit power allocation among network slices as

a mixed-integer nonlinear program. We apply the pe-

nalized successive convex approximation technique and

develop an algorithm with polynomial time complexity

that converges to a suboptimal solution of the formulated

resource allocation problem.

• Performance Evaluation: We perform simulations with

multiple RRHs serving eMBB and URLLC slices. Re-

sults show that the proposed algorithm achieves 30%
higher aggregate throughput when compared with a base-

line scheme, where the PRBs are allocated randomly

and the MNO optimizes the transmit power. When only

eMBB traffic is considered, our proposed algorithm also

provides a higher aggregate throughput than another

recently proposed algorithm [7].

The remainder of this paper is organized as follows. The

system model is described in Section II. The details of our

proposed resource allocation algorithm is presented in Section

III. In Section IV, we evaluate the performance of the proposed

algorithm. Section V concludes the paper.

II. SYSTEM MODEL

Consider a C-RAN shown in Fig. 1 that consists of H

RRHs, one baseband unit (BBU), and U users. Let H =
{1, . . . , H} denote the set of RRHs and U = {1, . . . , U}
denote the set of users. We assume that user association is

given. Hence, we denote the set of users associated with

RRH h ∈ H by Uh ⊆ U . The RRHs are connected to

the BBU via the fronthaul links. Similar to [7], we assume

shared spectrum mode where all RRHs can access the same

set K = {1, . . . ,K} of K PRBs. Since a large portion of

the network traffic is constituted by the downlink traffic [8],

we focus on resource allocation in downlink direction in this

paper. Let S = {1, . . . , S} denote the set of network slices.

We divide the set of slices into the set SeMBB ⊆ S of eMBB

slice type and the set SURLLC ⊆ S of URLLC slice type.

Each user belongs to one network slice based on its required

services. Let Us ⊆ U denote the set of users associated with

slice s ∈ S. Each network slice s guarantees the QoS of the

admitted users in set Us. We define set Us,h = Us ∩ Uh to be

the set of Us,h users in slice s that are served by RRH h.

A. QoS Constraints of the Users

The RRH resources (i.e., PRBs, transmit power) are shared

between the users within the coverage area. We use the binary

decision variable mu,k to indicate whether PRB k ∈ K is

allocated to user u ∈ U (mu,k = 1) or not (mu,k = 0).

We use the continuous decision variable pu,k to denote the

transmit power from RRH h ∈ H to its serving user u ∈ Uh

Fig. 1. Illustration of a C-RAN. The MNO allocates the RRHs’ resources
(i.e., PRBs, transmit power) to the users in each slice.

using PRB k. We denote the maximum transmit power of

RRH h ∈ H by Pmax
h . We have

∑

u∈Uh

∑

k∈K

mu,k pu,k ≤ Pmax
h , h ∈ H, (1a)

pu,k ≥ 0, u ∈ Uh, h ∈ H, k ∈ K, (1b)

mu,k ∈ {0, 1}, u ∈ Uh, h ∈ H, k ∈ K. (1c)

Each PRB k ∈ K can be allocated to at most one user

within the coverage area of RRH h. We have
∑

u∈Uh

mu,k ≤ 1, h ∈ H, k ∈ K. (2)

The PRB k ∈ K can be allocated to the users in different

RRHs. Hence, a user in RRH h using PRB k can experience

interference from other RRHs in set H\{h}. We consider an

upper bound Imax
s for the acceptable interference experienced

by the users in slice s ∈ S. The value of parameter Imax
s is

determined according to the QoS requirements of the users in

slice s. Let gu,h,k ∈ C denote channel gain between user u

and RRH h on PRB k. For user u ∈ Us,h in network slice

s ∈ S served by RRH h ∈ H using PRB k ∈ K, we have

mu,k

∑

h′∈H\{h}

∑

u′∈Uh′

|gu,h′,k|
2 mu′,k pu′,k ≤ Imax

s . (3)

The signal-to-noise plus interference ratio (SINR) experi-

enced by user u ∈ Uh served by RRH h ∈ H using PRB

k ∈ K is as follows:

Γu,k=
|gu,h,k|

2 pu,k∑
h′∈H\{h}

∑
u′∈Uh′

|gu,h′,k|2 mu′,k pu′,k+σ2
, (4)

where σ2 is the variance of the additive white Gaussian noise.

Next we obtain the users’ data rate in eMBB and URLLC

slices. Let C(Γu,k) = B log2(1 + Γu,k) denote the Shannon

capacity of the communication channel between user u ∈ Uh

and RRH h ∈ H on PRB k ∈ K, where B is the bandwidth

of PRB k. The data rate for user u ∈ Us,h in eMBB slice

s ∈ SeMBB served by RRH h ∈ H using PRB k ∈ K is as

follows:

ru,k = C(Γu,k). (5)



Due to the finite blocklength N b
u in URLLC traffic, the

Shannon capacity cannot be used to obtain the data rate for

the URLLC users. We consider short packet transmission for

URLLC users. Hence, the data rate for user u ∈ Us,h in slice

s ∈ SURLLC served by RRH h ∈ H using PRB k ∈ K can be

approximated as follows [9]:

ru,k = C(Γu,k)−D(Γu,k), (6a)

where

D(Γu,k) = B log2 eQ
−1(ǫb

u)

√
Vu,k

N b
u

. (6b)

In (6b), Vu,k =
Γu,k

1+Γu,k
represents the channel dispersion,

Q−1(·) is the inverse of the Gaussian Q-function, and ǫb
u

denotes the transmission error probability.

We characterize the traffic load of user u ∈ U as a random

variable Lu = XuΛu, where Xu and Λu represent the packet

size (in bits) and the packet arrival rate (in packets per second),

respectively. To guarantee the QoS of user u in slice s, the

probability that the traffic load exceeds the allocated total data

rate for user u should be less than or equal to the maximum

tolerable probability ǫs of failure on supporting the traffic load,

where 0 < ǫs < 1. We have

Pr
(
Lu >

∑

k∈K

mu,k ru,k

)
≤ ǫs, u ∈ Us, s ∈ S. (7)

As recommended by the Third Generation Partnership

Project (3GPP) specification, a range of realistic traffic types

for eMBB and URLLC slices can be captured by tuning the

parameters of file transfer protocol (FTP)-based models [10].

In this paper, we model the traffic patterns from eMBB and

URLLC users as the FTP model 3 in [11]. In particular, for

each user u, the packet size Xu is a constant and the packet

arrival rate Λu follows the Poisson distribution with parameter

λu. Let FΛu
(·) denote the cumulative distribution function

(CDF) of the packet arrival rate for user u. When Λu follows

the Poisson distribution, we can express FΛu
(·) in terms of

incomplete gamma functions [12]. By performing some alge-

braic manipulations, we can express inequality (7) as:
∑

k∈K

mu,k ru,k ≥ XuF
−1
Λu

(1− ǫs), u ∈ Us, s ∈ S, (8)

where F−1
Λu

(·) is the inverse of CDF FΛu
(·).

B. Network Slices Isolation and Problem Formulation

To provide isolation between network slices, the MNO

needs to guarantee the minimum required RRH resources (i.e.,

PRBs, transmit power) for all the users u ∈ Us,h in slice s ∈ S
served by RRH h ∈ H based on their aggregate traffic load.

Let δs denote the maximum tolerable probability of failure on

supporting the aggregate traffic load of all the users in slice

s ∈ S and RRH h ∈ H. We have

Pr
( ∑

u∈Us,h

Lu >
∑

u∈Us,h

∑

k∈K

mu,k ru,k

)
≤ δs. (9)

By tuning parameter δs, MNO can guarantee more resources

for the users in slice s. In order to simplify further calcula-

tions, we use Xs,h to denote the average packet size of all

the users u ∈ Us,h in slice s ∈ S served by RRH h ∈ H.

Let Λs,h denote the data arrival rate for the aggregate load of

the users in slice s served by RRH h. Since Λs,h is the sum

of independent Poisson random variables, it is also a Poisson

random variable with parameter
∑

u∈Us,h
λu. By performing

some algebraic manipulations, inequality (9) for slice s ∈ S
and RRH h ∈ H can be expressed as follows:

∑

u∈Us,h

∑

k∈K

mu,k ru,k ≥ Xs,hF
−1
Λs,h

(1− δs) . (10)

We assign a priority factor αs to each slice s ∈ S, where

0 ≤ αs ≤ 1 and
∑

s∈S αs = 1. The value of αs is determined

based on the service level agreement between the slice owner

and the MNO [13]. Furthermore, we introduce another priority

factor βu for user u in each slice s ∈ S, where 0 ≤ βu ≤ 1
and

∑
u∈Us

βu = 1. The C-RAN resource allocation problem

can be formulated as follows:

maximize
mu,k, pu,k,

u∈U , k∈K

∑

s∈S

∑

u∈Us

∑

k∈K

αsβu mu,k ru,k (11)

subject to constraints (1a)−(3), (8), and (10).

Problem (11) is a mixed-integer nonlinear program, which is

NP-hard and difficult to solve. In the next section, we propose

an algorithm with a polynomial time complexity to determine

a suboptimal solution to problem (11).

III. PROPOSED ALGORITHM

In this section, we apply a penalized successive convex

approximation approach to determine a suboptimal solution

of problem (11). For user u ∈ U and PRB k ∈ K, we define

an auxiliary variable p̃u,k as follows:

p̃u,k = mu,k pu,k, u ∈ U , k ∈ K. (12)

We can express constraints (1a) and (3) in terms of the

auxiliary variables p̃u,k, u ∈ U , k ∈ K. Considering this, we

can rewrite (3) in the following equivalent form:
∑

h′∈H\{h}

∑

u′∈Uh′

|gu,h′,k|
2 p̃u′,k ≤ mu,kI

max
s + (1−mu,k)M,

(13)

where M is a sufficiently large number. Furthermore, we can

rewrite the objective function as well as constraints (8) and

(10) in problem (11) using the following properties:

mu,kru,k = C(mu,kΓu,k), u ∈ Us, s ∈ SeMBB, k ∈ K, (14a)

mu,kru,k = C(mu,kΓu,k)−D(mu,kΓu,k), u ∈ Us, (14b)

s ∈ SURLLC, k ∈ K.

We introduce the following inequalities in the constraints

set to decompose the product terms in (12) using the big-M

approach [14]:

p̃u,k ≤ Mmu,k, u ∈ U , k ∈ K, (15a)

p̃u,k ≤ pu,k, u ∈ U , k ∈ K, (15b)



p̃u,k ≥ pu,k − (1−mu,k)M , u ∈ U , k ∈ K, (15c)

p̃u,k ≥ 0, u ∈ U , k ∈ K. (15d)

Next, we relax the nonconvex constraint (1c) in the form

of difference of two convex functions. We have
∑

u∈U

∑

k∈K

mu,k −
∑

u∈U

∑

k∈K

(mu,k)
2 ≤ 0, (16a)

0 ≤ mu,k ≤ 1, u ∈ U , k ∈ K. (16b)

To address the nonlinear structure of Γu,k and constraints

(8) and (10) in problem (11), we introduce auxiliary variables

Zu,k, u ∈ Uh, h ∈ H, k ∈ K, such that:

0 ≤ Zu,k ≤
|gu,h,k|

2 p̃u,k∑
h′∈H\{h}

∑
u′∈Uh′

|gu,h′,k|2 p̃u′,k + σ2
. (17)

We include inequality (17) in the constraints set and express

functions C(·) and D(·) in terms of variables Zu,k, u ∈ Uh,

h ∈ H, k ∈ K. We can show that C(Zu,k) and D(Zu,k)
are monotonic concave functions when ǫbu is less than 0.5
for all the URLLC users. Therefore, constraint (17) holds

with equality in the optimal solution, i.e., Zu,k = mu,kΓu,k.

Constraint (17) is nonconvex. We rewrite (17) as follows:
( ∑

h′∈H\{h}

∑

u′∈Uh′

|gu,h′,k|
2p̃u′,k + σ2

)
Zu,k ≤ |gu,h,k|

2 p̃u,k,

u ∈ Uh, h ∈ H, k ∈ K. (18)

We use equality f1(x)f2(x) =
1
2 ((f1(x)+ f2(x))

2− f1(x)
2−

f2(x)
2) to express the left-hand side of (18) as a difference

of two convex functions [15]. The objective function and

constraints of problem (11) are transformed into a convex

function or a difference of two convex functions. Finally, we

define the following functions:

Ψ(mu,k) = (mu,k)
2, (19a)

Θ1(Zu,k, p̃) =
1

2

(
Zu,k +

∑

h′∈H\{h}

∑

u′∈Uh′

|gu,h′,k|
2p̃u′,k

)2

,

(19b)

Θ2(Zu,k, p̃) =
1

2

(
(Zu,k)

2+
( ∑

h′∈H\{h}

∑

u′∈Uh′

|gu,h′,k|
2p̃u′,k

)2)
,

(19c)

where vector p̃ = (p̃u,k, u ∈ Uh, h ∈ H, k ∈ K).
Algorithm 1 describes our proposed resource allocation

algorithm to solve problem (11) for the eMBB and URLLC

slices. Algorithm 1 is based on the penalized successive

convex approximation [16]. We accept violations from con-

straints (8), (10), (16a), and (18) and use a penalizing weight

coefficient ζ, which increases gradually by a factor of η. We

denote the maximum penalizing weight coefficient by ζmax.

Let i denote the iteration index. In Algorithm 1, Lines 1

to 3 describe the initialization for the maximum number of

iterations imax, the algorithm’s hyperparameters ζ(1), ζmax, and

η, as well as the decision variables m
(1)
u,k, p̃

(1)
u,k, and Z

(1)
u,k for

user u ∈ U and PRB k ∈ K in iteration i = 1.

Algorithm 1 Proposed Algorithm Based on Penalized Suc-

cessive Convex Approximation

1: Set i := 1 and initialize the maximum number of iterations imax.
2: MNO initializes hyperparameters ζ (1) and ζmax, and η.

3: MNO randomly initializes variables m
(1)

u,k, p̃
(1)

u,k, and Z
(1)

u,k, for
user u ∈ U and PRB k ∈ K.

4: Repeat
5: MNO determines the optimal solution m∗

u,k, p̃ ∗

u,k, and Z∗

u,k

of problem (21).

6: MNO updates variables m
(i+1)
u,k

:= m∗

u,k, p̃
(i+1)
u,k

:= p̃ ∗

u,k,

and Z
(i+1)
u,k

:= Z∗

u,k for user u ∈ U and PRB k ∈ K.

7: ζ(i+1) := min{η ζ(i), ζmax}.
8: Set i := i+ 1.
9: Until i = imax or mu,k, p̃u,k, and Zu,k converge.

10: MNO sets m
opt

u,k
:= m

(i)
u,k, p̃

opt

u,k
:= p̃

(i)
u,k, Z

opt

u,k
:= Z

(i)
u,k for user

u ∈ U and PRB k ∈ K.

In the loop within Lines 4 to 9, the MNO solves a convex

optimization problem iteratively. In Line 5, the MNO uses

the optimal solution m∗
u,k, p̃ ∗

u,k, and Z∗
u,k in the previous

iteration to obtain the first-order approximations D̂(Zu,k),

Ψ̂(mu,k), and Θ̂2(Zu,k, p̃) for functions D(Zu,k), Ψ(mu,k),
and Θ2(Zu,k, p̃), respectively. The violations from constraints

(8), (10), (16a), and (18) are penalized by the weighting

coefficient ζ(i). The objective function is as follows:

f obj =
∑

k∈K

(∑

s∈S

∑

u∈Us

αsβuC(Zu,k)−
∑

s∈SURLLC

∑

u∈Us

αsβuD̂(Zu,k)
)

− ζ(i)
(
τ+

∑

u∈U

∑

k∈K

τu,k+
∑

u∈U

τu+
∑

s∈S

∑

h∈H

τs,h

)
. (20)

The MNO solves the following optimization problem:

maximize
mu,k,pu,k,p̃u,k,

Zu,k,τ,τu,k,τu,τs,h,

u∈U , k∈K, s∈S, h∈H

f obj (21)

subject to constraints (1b), (2), (13), (15a)−(15d),and (16b),
∑

u∈U

∑

k∈K

mu,k −
∑

u∈U

∑

k∈K

Ψ̂(mu,k)− τ ≤ 0,

∑

k∈K

C(Zu,k) + τu ≥ XuF
−1
Λu

(1− ǫs), u ∈ Us, s ∈ SeMBB,

∑

k∈K

C(Zu,k)−
∑

k∈K

D̂(Zu,k) + τu ≥ XuF
−1
Λu

(1− ǫs),

u ∈ Us, s ∈ SURLLC,
∑

u∈Us,h

∑

k∈K

C(Zu,k) + τs,h ≥ Xs,hF
−1
Λs,h

(1− δs) ,

s ∈ SeMBB, h ∈ H,
∑

u∈Us,h

∑

k∈K

C(Zu,k)−
∑

u∈Us,h

∑

k∈K

D̂(Zu,k)

+ τs,h ≥ Xs,hF
−1
Λs,h

(1− δs) , s ∈ SURLLC, h ∈ H,
∑

u∈Uh

∑

k∈K

p̃u,k ≤ Pmax
h , h ∈ H,

Θ1(Zu,k, p̃)−Θ̂2(Zu,k, p̃) + σ2Zu,k− τu,k ≤ |gu,h,k|
2 p̃u,k,

u ∈ Uh, h ∈ H, k ∈ K,

Zu,k ≥ 0, u ∈ U , k ∈ K,



where τ , τu,k, τu, and τs,h, u ∈ U , k ∈ K, s ∈ S, h ∈ H
are the slack variables for penalizing the objective function. In

Line 6, the MNO updates m
(i)
u,k, p̃

(i)
u,k, and Z

(i)
u,k by the optimal

solution m∗
u,k, p̃ ∗

u,k, and Z∗
u,k of problem (21) for user u ∈ U

and PRB k ∈ K, respectively. The iteration index is updated

in Line 8. The stopping criterion is given in Line 9.

By choosing a small value for ζ(1) > 0 and increasing ζ(i) in

each iteration by a factor η, the optimal solution of problem

(21) will converge to a suboptimal solution of the original

resource allocation problem (11). In Line 10, the MNO obtains

the suboptimal solution m
opt

u,k, p̃
opt

u,k, and Z
opt

u,k, u ∈ U , k ∈
K of problem (11). If a feasible solution exists for problem

(11), Algorithm 1 finally obtains a solution where τ = 0;

τu,k = 0, u ∈ U , k ∈ K; τu = 0, u ∈ U ; and τs,h = 0,

s ∈ S, h ∈ H holds for problem (21). Since problem (21)

is a convex optimization problem, its optimal solution can

be obtained efficiently. Hence, Algorithm 1 converges to a

suboptimal solution of problem (11) in polynomial time [16].

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Algorithm 1

via simulations in MATLAB. We consider two network slices,

one for eMBB users and another for URLLC users. Unless

stated otherwise, the number of users associated with each

slice is set to 18. We consider six RRHs placed in a 2 × 3
grid, where the distance between two adjacent RRHs is set

to 50 m. The number of PRBs in the network is set to 25,

and the value of B is set to 360 kHz. The wireless channel is

modeled by setting the path loss exponent equal to 3.76 and

by considering the small-scale Rayleigh fading. The RRH’s

maximum transmit power Pmax
h , h ∈ H and noise power σ2

are set to 30 dBm and −114 dBm, respectively. We assume

that the average traffic loads of the eMBB and URLLC users

are 1 Mbps and 0.1 Mbps, respectively. For slice s ∈ S
and user u ∈ U , we set Imax

s = −74 dBm, αs = 0.5, and

βu = 1
18 . We set ǫs = 10−2 and δs = 10−3 for eMBB

users, and ǫs = 10−3 and δs = 10−4 for URLLC users.

We set ǫb
u = 10−6 and N b

u = 10 for the URLLC users. In

Algorithm 1, we use hyperparameters ζ(1) = 100, ζmax = 105,

and η = 5. Simulation results are obtained by averaging over

50 simulation runs. For performance comparison, we adopt a

baseline scheme with random PRB allocation. Problem (21)

is reduced to a transmit power allocation problem that can

be solved by the penalized successive convex approximation.

Also, when only eMBB users are present in the network, we

compare our proposed algorithm with the one proposed in [7].

First, we investigate the impact of the maximum acceptable

interference Imax
s on the aggregate throughput of the network.

When compared with the baseline scheme, Fig. 2 shows that

the aggregate throughput is 30% higher with Algorithm 1 on

average. Also, Fig. 2 demonstrates that the aggregate through-

put increases with Imax
s and then remains approximately

unchanged when Imax
s is larger than −85 dBm. In particular,

when Imax
s is small, the MNO has limited freedom to allocate

the same PRBs in different RRHs, since the interference

constraint (3) can hardly be satisfied. As Imax
s increases,

Fig. 2. Aggregate throughput versus the maximum acceptable interference
where our proposed algorithm is compared with the baseline scheme.

Fig. 3. Aggregate throughput versus the maximum acceptable interference
where our proposed algorithm is compared with the FBDR algorithm [7]
when only eMBB traffic is considered.

allocating the same PRBs to the users in different RRHs

becomes possible, which increases the aggregate throughput

of the network. Finally, when Imax
s is greater than −85 dBm,

the RRHs cannot impose such interference and the aggregate

network throughput remains approximately unchanged due to

the fixed allocation of PRBs and transmit power for the users.

In Fig. 3, we compare the performance of Algorithm 1

with the proposed algorithm named fixed BBU capacity and

dynamic resource allocation (FBDR) in [7], which applies an

iterative subgradient method. The proposed algorithm in [7]

assumes that only eMBB users are present in the network. For

a fair comparison, in Fig. 3, we only consider the eMBB traffic

in Algorithm 1. When compared with the proposed algorithm

in [7], Fig. 3 shows that the aggregate throughput is 4% higher

with Algorithm 1 on average. Algorithm 1 also converges

faster to a suboptimal solution. Since, in this paper, our main

focus is on the slicing of eMBB and URLLC services, in the

rest of this section, we only compare our proposed algorithm

with the baseline scheme.

Next we investigate the aggregate throughput for eMBB

and URLLC users when the priority factor αs for eMBB

slice varies from 0.1 to 0.9. Fig. 4 shows that by increasing

the priority factor αs for eMBB slice type, the aggregate

throughput for the eMBB users increases, while the aggregate



Fig. 4. Aggregate throughput versus priority factor for eMBB slice.

Fig. 5. Aggregate throughput versus the log of the maximum tolerable
probability of failure on supporting aggregate traffic load for eMBB users.

throughput for the URLLC users decreases. In particular,

assigning a higher priority to the eMBB users causes the MNO

to allocate extra PRBs and transmission power to the eMBB

users in order to maximize the network aggregate throughput.

Finally, we evaluate the performance of Algorithm 1 for

different values of δs for the eMBB slice type. We set ǫs = 0.1
and αs = 0.35 for the eMBB slice type. We set δs = 10−4,

ǫs = 10−3, and αs = 0.65 for the URLLC slice type. Fig. 5

shows the aggregate throughput for the eMBB and URLLC

users, where δs for the eMBB slice increases from 10−6

to 10−2. When δs increases for the eMBB slice type, the

aggregate throughput for the eMBB users decreases and the

aggregate throughput for the URLLC users increases. The

reason is that when δs for the eMBB slice type is small,

the MNO should reserve more resources for the eMBB users

in order to guarantee isolation between slices. Hence, the

aggregate throughput for the eMBB users is larger than that

of the URLLC users.

V. CONCLUSION

In this paper, we proposed a resource allocation algorithm

for an OFDMA-based C-RAN with multiple RRHs serving

users within eMBB and URLLC network slices. By guar-

anteeing the individual traffic load demand for each user as

the QoS constraints and the aggregate traffic load demand as

the slice isolation constraints, we formulated the allocation

of RRHs’ resources (i.e., PRBs, transmit power) as a mixed-

integer nonlinear program. The formulated problem took into

account the effect of interference between RRHs and short

packet transmission for URLLC users. To obtain a suboptimal

solution for such an NP-hard optimization problem, we de-

veloped an algorithm with polynomial time complexity based

on the penalized successive convex approximation. Through

simulations, we have shown that compared to a baseline

scheme, our proposed algorithm on average achieves 30%
higher aggregate network throughput by allocating RRHs’

resources among users associated with different RRHs and

different network slices. For future work, we plan to consider

user admission control in our system model and solve the

problem using model-free approaches when the parameters of

users’ traffic load are unknown.
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