
Residential Load Profile Clustering via
Deep Convolutional Autoencoder

Seunghyoung Ryu∗, Hyungeun Choi∗, Hyoseop Lee†, Hongseok Kim∗ and Vincent W.S. Wong‡
∗Department of Electronic Engineering, Sogang University, Seoul, Korea

†Encored Technologies, Inc., Seoul, Korea
‡Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

Email : {shryu, hyungeun, hongseok}@sogang.ac.kr∗, hslee@encoredtech.com†, vincentw@ece.ubc.ca‡

Abstract—In energy data analytics, load profile clustering is
essential for various smart grid applications such as demand
response, load forecasting, and tariff design. Most of the con-
ventional clustering techniques are based on a representative
time domain load profile within a certain period, and the daily
and seasonal variations are not well captured. In this paper, we
propose a deep learning based customer load profile clustering
framework that jointly captures daily and seasonal variations.
By leveraging convolutional autoencoder (CAE), the yearly load
profile in the time domain is converted into a representative
vector in the smaller dimensional encoded space. The clusters
are then determined based on the vectors encoded by the CAE.
We apply the proposed framework to 1,405 households’ yearly
load profiles and verify that the trained CAE can encode those
load profiles into approximately 100 times smaller dimensional
space. The encoded load profiles can be decoded by the CAE
with a negligible loss between 1–3%. The clustered load images
can visualize both daily and seasonal variations, and clustering
in the encoded space speeds up the clustering process by almost
three orders of magnitude.

I. INTRODUCTION

Recent developments in the smart grid have a significant
impact on the power systems. Smart meters and advanced
metering infrastructure (AMI) are rapidly being deployed these
days. According to the United States Energy Information Ad-
ministration, 70.8 million smart meters were installed in 2016,
and 88% of them are in the residential area [1]. The European
Commission requires the European Union member countries
to have at least 80% of consumers equipped with smart meters
by 2020 [2]. With a large number of smart meters, utilities can
now monitor low/medium voltage loads including residential
and commercial buildings with finer granularity, e.g., 15-
minutes interval. Analyzing a large volume of data generated
by smart meters is crucial to better understand the consumption
pattern of electricity customers, and support applications such
as demand side management. Specifically, clustering plays an
important role in such data analytics.

In the literature, clustering is mostly performed using the
daily load profiles. For example, the work of [3] compared
K-means clustering, hierarchical clustering, and follow-the-
leader clustering with representative daily load profiles. To
capture the variability of daily load profiles, the concept
of entropy, which quantifies the cluster variation within one
year, is applied in [4]. In [5], four seasonal load profiles per
household are derived and clustered by K-means clustering

with home owner survey data. In [6], a two-stage load profile
clustering combined with fast wavelet transform and g-means
clustering is introduced. Multi-resolutional clustering of load
profiles in spectral domain is introduced in [7].

Most of the existing works focus on clustering with one or
a few representative load profiles, e.g., a collection of average
load profiles within a predetermined time period. However, it
is not clear whether customers can be characterized with a
few time-averaging representative load profiles. Kwac et al.
in [4] reported that even though two customers may have
the same average load profiles, the raw daily load profiles
can vary significantly. To cluster load profiles while con-
sidering both year-round daily and seasonal variations, one
approach is to cluster customers with year-round raw load
data directly. However, it may not be efficient due to the
large portion of redundant load profiles induced by periodic
human behavior. Furthermore, when it is applied to clustering
a large group of customers, the computation complexity can
be significant. To reduce the complexity, in [8], only 5% of
randomly selected hourly electricity consumption from yearly
load data is used for clustering customers. Another approach
is to use several selected representative daily load profiles.
However, it is challenging to derive the representative load
profiles and determine how many representatives are sufficient
to characterize a customer.

To address the above challenges, in this paper, we propose a
novel framework of clustering customers based on the encoded
load profile using deep learning. Deep learning has been
applied to smart grid applications, e.g., load forecasting [9],
system monitoring [10], and clustering [11]. The proposed
clustering framework mainly consists of the encoding stage
and a clustering stage. In the encoding stage, yearly load
data is encoded through convolutional autoencoder (CAE),
while preserving the characteristics of electricity consumption
pattern. Then, in the clustering stage, the encoded data is being
clustered by using K-means clustering. We summarize our
main contributions as follows:
• We propose a novel framework of deep learning-based

load profile clustering that fully exploits the year-round
hourly load data to capture both daily and seasonal
patterns. The proposed CAE-based load profile clustering
is verified by real data from 1,405 nationwide residential
customers.

• By using the proposed CAE, a year-round load profile in
8,640 dimensional space is converted into a vector in 100
dimensional encoded space. This vector can be decoded
to recover the original yearly load profile with only 1–3%
of reconstruction error.

• With the significant dimension reduction by CAE, the
required memory space and computational time in clus-
tering is also reduced in proportion, thus making the
proposed technique suitable for big data analysis in
smart grid applications. Clustering in the encoded space
requires only 1/500 computational time compared to
clustering in the original space.

The rest of this paper is organized as follows. We present an
overview of the proposed framework in Section II. Section III
describes the structural design of CAE. In Section IV, we
present the CAE-based clustering results with real data and
verify the effectiveness of the proposed framework. Finally,
we conclude the paper in Section V.

II. THE PROPOSED CAE-BASED LOAD PROFILE
CLUSTERING FRAMEWORK

The overall framework of the proposed CAE-based load
profile clustering is illustrated in Fig. 1. The framework can
be divided into three main steps: data preprocessing, CAE
encoding, and clustering. In the data preprocessing step, we
collect target customers’ load data from an established meter-
ing database. Then, the collected load data undergoes several
substages of data cleansing, normalization, augmentation, and
transformation to provide proper input for training CAE. In
the encoding step, CAE is trained with the preprocessed data.
Once the structure of CAE is determined, load data is encoded
by CAE. In the clustering stage, the encoded data is clustered
by K-means clustering. In order to validate the goodness of the
clustering results, validation indices are calculated to select a
proper value of K. Finally, we analyze the load data associated
with the clustering results, and the results can be utilized
for smart grid applications. In the following subsection, we
describe the proposed framework in detail.

A. Data Preprocessing for Convolutional Autoencoder

Due to the periodic behavior of human, time-series electric-
ity load data has daily and weekly periodicity. Our objective
is to learn and extract periodic and seasonal characteristics of
load data by fully utilizing load data of one year through CAE.
We consider the 2-dimensional load image which is used in
convolutional neural network (CNN).

1) Data cleansing: The real data we used in this paper
is collected as part of a demand response pilot program for
small-scale customers in South Korea. The dataset includes
household customers’ hourly load data from smart meters.
Note that the typical housing type in South Korea is apartment
complex and there is relatively small difference in per house
maximum load. Moreover, no electric vehicles are included in
this pilot program. Among the households dispersed all around
the country, we extract 1,405 households that have full records
from March 1, 2016 to February 23, 2017 (i.e., 360 days).

��������	

���	�������

��������	���	�	

�����	��������

��������	��	����������	�������

�������	�����������	�����

����	�����	������

�����	

���������

���	���������	��	���

�������

���	���

��������������	���
��

 ������!�����

���	���������������	���������

���	"����	��������������

����������	
�����

�����
	���

�	�	��
�� ��
�	�
��

����	��
�
	���	����
��

���������

#$�����	����������

�����������	��

%���������	"������

���	&��'��	

�

Fig. 1. The framework of CAE-based load profile clustering.

The abnormal data (missing values and unreasonably excessive
consumption) is replaced by the average consumption of
highly correlated time intervals. We select the number of days
to be 360 because it is the largest number of days in a year
while having small prime numbers (2, 3, 5) that can be used
as strides in the convolutional layers of CAE. In addition,
by starting from March 1, load data covers all four seasons
and each season occupies a region of load image in order.
Consequently, a yearly load profile xn for household n is
{xnt } with |xn| = 8,640, where t represents an hour index
from March 1, 2016 to February 23, 2017.

2) Normalization: After the data cleansing stage, the data
is normalized for better training as typically done in deep
learning [9]. There are several ways in normalizing the data.
In this paper, minmax normalization is adopted per household
to focus on the patterns of load variations of individual
households. The normalized yearly load profile ln = {lnt } is

lnt =
xnt −min(xn)

max(xn)−min(xn)
, (1)

which is between zero and one. By normalization, patterns of
load variations can better be captured.

3) Data augmentation and load image transformation: For
better training of CAE, we enlarge the size of the data by gen-
erating virtual households load data set of l̂n = {l̂nt }, where l̂nt
follows the Gaussian distribution N

(
lnt , (0.05× lnt)2

)
. Then,

the load data ln and l̂n are transformed into 2-dimensional
load images. The time index t of ltn is converted to (d, h),
which is a pair of date index d = bt/24c and an hour index
h = mod(t, 24). From 1-dimensional load profile ln, a 2-
dimensional load image for household n is given by

Ln = (lnd,h) ∈ R360×24. (2)

B. Convolutional Autoencoder

An autoencoder is an artificial neural network trained to
encode a set of data into a lower dimension. When the
input data, denoted by x, is fed into the autoencoder, it is
nonlinearly transformed into an encoded vector, denoted by
z, while passing through multiple fully-connected layers in
encoder. Next, from the encoded vector z, the output data x′ is
reconstructed through the decoder. In training, the autoencoder
updates the weights in order to minimize the reconstruction
error ||x− x′||2 by using the back propagation algorithm.

CAE is an autoencoder in which nonlinear transformation is
obtained by CNN. A feature map is produced by taking con-
volution operation between the input (or the previous feature)
matrix and the learnable filter. The convolution operator * for
matrices A and B is defined as [12]

A(i, j)*B(i, j) =

∞∑
τ1=−∞

∞∑
τ2=−∞

A(i− τ1, j − τ2)B(τ1, τ2),

where i and j are the row and column indices, respectively.
Thus, a feature map is also a matrix. The pixel of a feature
map is a measure of activation for a given filter.

1) Convolutional layer operation: The operation in the
convolutional layer is obtained by replacing A and B with
the corresponding filter and feature map, respectively. Let the
k-th feature map of the l-th layer be Fkl ∈ Rwl×hl , and the
corresponding filter be Wk

k′ ∈ Rw′l×h′l that convolutes with
the k′-th feature map of the previous layer Fk

′

l−1, where wl
and hl (w′l and h′l) represent the width and the height of the
feature map (of the filter) in layer l, respectively. Then, Fkl is
obtained by

Fkl (i, j) = σ
(dl−1∑
k′=1

Wk
k′(i, j)*Fk

′

l−1(i, j) + bk

)
, (3)

where dl−1 is the depth, i.e., the number feature maps, in the
l − 1 layer. Note that the activation function σ is included in
(3), and leaky ReLU is used as a nonlinear activation function.
By having multiple filters, CNN learns various combinations
of features in each convolutional layer.

2) Reducing and expanding the size of feature map: Since
the vector lies in reduced dimension, we need to consider
how to reduce and expand the size of the feature map. For
reducing operation in the encoder, we exploit the convolution
with strides, where the size of the feature map shrinks by
the values of strides. For expanding operation in the decoder,
by considering the mirrored structure of CAE, we apply the
transposed convolutional layers which restores filter values
after enlarging the feature map according to the given strides.
In addition, we match up the size of filter with strides to avoid
the checker board artifacts induced by overlapping.

III. CONVOLUTIONAL AUTOENCODER DESIGN

In this section, we compare various CAEs with differ-
ent model complexity and select the final CAE structure
in terms of the root means square error (RMSE) between
the original and reconstructed data. After studying various

����� ����	
 ����	�

������

������

��������	
 ��	� ��	� ����	� ����	�

Fig. 2. The proposed structure of convolutional autoencoder. Conv 1, 2, FC
1, 2, 3 and Conv 3, 4 represent convolutional layers, fully connected layers
and transposed convolutional layers, respectively.

model structures, we select two convolutional layers and two
fully connected layers in the encoder and use a symmetrical
structure in the decoder with tied weights as illustrated in
Fig. 2. Note that the hatched box in Fig. 2 is the layer that
outputs the encoded vector z. In addition, row and column
strides in convolutional layer are set to (3, 2), which are the
divisors of height and width of load image. We set the number
of neurons in the middle layer of CAE as 100 so that one year
data is compressed to roughly four day-long data, i.e., just
1% of the original dimension. The dimension of the encoded
data, however, can vary according to user’s choice (e.g, 10
days, 40 days), and there is a trade-off between the dimension,
reconstruction error, and the size of CAE.

After setting the basic structure as above, we compare
RMSE of CAEs with varying numbers of weights. The config-
urations of the encoder part in CAE, model complexity (the
number of weights and biases in the encoder), and RMSE
of 1,405 households are shown in Table I. By modifying the
numbers of filters and neurons in the second convolutional
layer and the third fully connected layer, we have CAEs with
different model complexities. Due to space limitation, only
three of them are shown in Table I. The results show that
RMSE decreases in the number of parameters, i.e., 0.072,
0.028, 0.016. The number of parameters increases roughly
10 times compared with the upper row, and the RMSE is
inverse proportional to the model complexity. Fig. 3 shows the
original load images of six randomly selected households and
their reconstructions along with configurations in Table I. The
horizontal and vertical axes of load image represent 24 hours
and 360 days, respectively. As can be seen, the load image can
be effectively reconstructed from the 100 dimensional encoded
data. The reconstructed images in the second row are roughly
similar to the original images whereas the images in Figs. 3
(c) and (d) are restored more accurately. Although the RMSE
in Fig. 3 (d) is lower than the one in Fig. 3 (c), there is little
visual difference.

Based on the result of Table I and Fig. 3, the final structure
used in the clustering process is selected to be B by con-
sidering the tradeoff between RMSE and model complexity.
The number of filters are 128 and 64 in the two convolutional
layers, and the number of neurons are 500 and 100 in two
fully connected layers in the encoder. In training CAE, we
use Tensorflow [13], and the weights are updated with Adam
optimizer [14]. The final CAE is trained with 150 epochs,

TABLE I
COMPARING RMSES ACCORDING TO DIFFERENT CAE STRUCTURES AFTER TRAINING.

Subject

Layers

Model
Complexity

Average
Cost

(RMSE)

Input Convolutional Fully Connected
1st 2nd 3rd 4th

Input Output Size
Size (The Number of Filters @ Filter Size)

Varying
Model

Complexity
360× 24

120× 12× 128
(128 @ 3× 2)

40× 6× 16 125 100 505,925 (A) 0.072
(16 @ 3× 2)
40× 6× 64 500 100 7,780,712 (B) 0.028
(64 @ 3× 2)
40× 6× 256 1,000 100 61,738,860 (C) 0.016
(256 @ 3× 2)

(a) The original load image.

(b) Reconstructed load image (16× 125, RMSE = 0.072).

(c) Reconstructed load image (64×500, RMSE = 0.028). This is our choice.

(d) Reconstructed load image (256× 1000, RMSE = 0.016).

Fig. 3. Comparison between the original load images and their reconstructions
with different model parameters and RMSEs. The numbers in parenthesis are
the number of filters and neurons in the second and the third layers.

which is also a knee point of RMSE vs. epoch plot. The RMSE
of the final model is 0.02793. Since we use the normalized
data for CAE, this RMSE can be considered as 2.79% loss of
information in the reconstruction.

IV. CAE-BASED CLUSTERING AND EXPERIMENTS

A. CAE-based Clustering

After the encoding stage, we cluster the encoded data
{zn ∈ R100, n = 1, . . . , N} by K-means clustering, which
assigns N observations into K clusters to minimize the sum
of squared Euclidean distances to centroid of assigned cluster.
Given zn, n = 1, . . . , N, and K, the K-means clustering is
an NP-hard optimization problem, and iterative algorithms
(e.g., Lloyd [15], and Hartigan-Wong algorithms [16]) are
commonly employed.

Two important parts of clustering are how to measure
the goodness of clustering results and how to determine
the proper number of clusters K. Load profile clustering is
an unsupervised learning problem, and there are no explicit

TABLE II
CALCULATION OF CVI IN DIFFERENT CASES.

Case Clustering Validation

1 original space original space
2 encoded feature space original space
3 encoded feature space encoded feature space

classes of electricity customers. In principle, clustering should
maximize the inter-cluster distances and minimize the intra-
cluster distances. To quantify the goodness of clustering, we
exploit four popular clustering validation indices (CVIs) [17]:
Dunn index, Calinski-Harabasz index, Davies-Bouldin index,
and SD index. Note that different validation indices come
from different definitions of inter and intra-cluster distances.
In the selection of K, we calculate each validation index
with varying K and choose the proper K according to its
selection rule. One may use other clustering techniques such
as partitioning around medoids, hierarchical clustering, or self-
organizing map within our framework.

B. Verification of CAE-based Clustering

After the clustering stage, validation needs to be performed
to verify the effectiveness of the clustering in the encoded
space by investigating CVIs. We compare the CVIs of the
proposed clustering in the encoded space R100 with the one
in the original space R8,640. As clustering can be performed
in both spaces, the calculation of CVIs and the selection of
K can also be determined in both spaces. Hence, we compare
CVIs for three different cases. As shown in Table II, both
clustering and validation are performed in R8,640 for Case 1.
In Case 2, customers are clustered in R100, but CVIs are
calculated in R8,640. In Case 3, both clustering and validations
are performed in R100.

If the encoding and clustering are well performed with the
proposed framework, we can expect (a) the raw values of CVIs
of Cases 1 and 2 to be similar, and (b) the relative variational
patterns in K are similar for Cases 2 and 3, considering they
are measured in different spaces. The former and the latter
support the validity of clustering in the encoded space and
the compatibility of hyperparameter selection in the encoded
space, respectively.

4 8 12 16 20 24 28

Number of Clusters

0.1

0.15

0.2

0.25
C

V
I

Case 1

Case 2

Case 3

(a) Dunn (max).

4 8 12 16 20 24 28

Number of Clusters

0

20

40

60

80

100

120

C
V

I

Case 1

Case 2

Case 3

(b) Calinski-Harabasz (max).

4 8 12 16 20 24 28

Number of Clusters

0

2

4

6

C
V

I

Case 1

Case 2

Case 3

(c) Davies-Bouldin (min).

4 8 12 16 20 24 28

Number of Clusters

0

0.5

1

1.5

2

2.5

C
V

I

Case 1

Case 2

Case 3

(d) SD (min).
Fig. 4. Four CVIs and the selection of the number of clusters K. The
parenthesis (max or min) indicates the selection rule for good clustering.

TABLE III
VERIFICATION OF CAE-BASED CLUSTERING

Value Dunn Calinski- Davies- SDHarabasz Bouldin

R1,2 0.25 0.04 0.31 0.33
R2,3 0.76 0.94 0.92 0.81

Fig. 4 shows the results of those three cases with different
CVIs. As shown in Figs. 4 (a)-(d), the CVI curves of Cases 1
and 2 fluctuate closely irrespective of the indices, and the
variational patterns of Cases 2 and 3 in K are similar to each
other, i.e., when Case 2 has a peak shape at certain K, CVI
of Case 3 also has a peak shape, and vice versa.

To quantify the aforementioned characteristics, we use the
following metrics, and the results are shown in Table III,

R1,2 =
1
27

∑30
k=4 |v1k − v2k|

max(v1)−min(v1)
, (4)

R2,3 = corr(∆v2,∆v3), (5)

where vj = {vjk}, ∆vj = {vjk+1 − v
j
k}, and vjk corresponds

to the CVI of Case j with the number of clusters k.
To support the validity and compatibility of the proposed

clustering framework, low values of R1,2 (less than 1) is
desired, whereas R2,3 which is the Pearson’s correlation
coefficient between ∆v2 and ∆v3 should be close to 1 ,
and both can be easily seen in Table III. According to these
observations, CAE-based clustering in the encoded space can
be a good substitute for the clustering in the original high
dimensional space.

C. Computational Advantages of CAE-based Clustering

Clustering in the encoded space has substantial advantage
in computational time. If the dimension of data d and the
number of clusters K are fixed, the optimal solution of K-
means clustering can be obtained in O(NdK+1) [18]. For

Fig. 5. Load images of cluster centers (the average of cluster members) from
Cluster 1 (top-left) to Cluster 11 (bottom-right).

iterative algorithm, the running time of Lloyd algorithm is
O(NKdi), where i is the number of iterations [19]. Recall that
in our case N = 1,405 and d = 8,640 in the original space.
On the other hand, the dimension of the encoded data reduces
to d′ = 100, and thus the computational time with the same N
and K decreases dramatically. In our experiment with Intel(R)
Core(TM) i7-3770 CPU @ 3.40 GHz, the computational time
of K-means clustering with K = 11 in the original space
takes 27.6 seconds for Lloyd algorithm and 15.8 seconds
for Hartigan-Wong algorithm on average of five attempts.
On the other hand, clustering in the encoded space takes
millisecond order; only 0.06 and 0.03 second, respectively,
for each algorithm. Therefore, the empirical clustering speed
in the encoded space is 500 times faster than in the original
space while preserving the clustering performance In addition
to the advantage in computational time, clustering in the
proposed framework occupies smaller memory than traditional
clustering due to the reduced dimension. Thus, it is possible
to cluster a large number of households with limited memory
size, which makes our work suitable for big data applications.

D. Observations from CAE-based Clustering

For the detailed analysis of load profiles, we examine the
clustering results with properly selected K based on CVIs
of Case 3. According to the selection rules, K is set to 11
because the minimum Davies-Bouldin index value and high
Dunn index value occurs at K = 11. Fig. 5 visualizes the load
images of each cluster center. Overall, there are two bright
vertical lines and one horizontal line. For example, vertical
lines in Cluster 10 are noticeable; the thin line on the left and
the broad line on the right imply the morning peak before
going to work and the evening peak after work, respectively,
which is consistent with the well-known facts of two peaks in
a day. The horizontal line clearly appears in Cluster 4 while
in other clusters such as Clusters 1, 3 and 7, only a narrow
segment during evening is observed. For an exceptional case of
Cluster 11, there is only one thick vertical line, which implies
that households in Cluster 11 use their electricity constantly
from late morning to evening.

Fig. 6 illustrates five distinctive clusters and their members.
As can be seen, the samples in the same cluster have similar
patterns. For example, members in Clusters 1 and 4 seem to
use more electricity in summer. The difference between two
clusters is daily pattern in summer; in the case of Cluster 1, the
electricity consumption is concentrated during night whereas

(a) Cluster 1

(b) Cluster 4

(c) Cluster 8

(d) Cluster 10

(e) Cluster 11

Fig. 6. Illustration of the centers and samples of distinctive clusters. The
first column illustrates cluster centers and the remaining columns are random
samples in each cluster.

electricity consumption in daytime is also high in Cluster 4.
In Cluster 8, the overall color tone of samples is the same
with dark blue, indicating small variations of electricity usage
throughout the day and year. Seasonal variations of Clusters 10
and 11 are indistinguishable, but the characteristic of daily
pattern is distinctive.

V. CONCLUSION

This paper proposed a novel framework of load profile clus-
tering based on deep convolutional autoencoder. By utilizing
CAE, the yearly load data in a high dimensional space (R8,640)
can be effectively encoded to a vector in R100, i.e., 1–3%
of information loss and 1.15% of original dimension. Next,
encoded load profiles are clustered by K-means clustering.
The effectiveness of proposed clustering is verified by four
CVIs, which confirm that clustering and its validation can both
be performed in the encoded space. The advantages of CAE
based clustering are two-fold. First, the computational time of
clustering is reduced by three orders of magnitude, e.g., 500
times, when we applied Lloyd algorithm and Hartigan-Wong
algorithm. Second, the reduced dimension also contributes to
saving memory space during clustering by approximately 100
times. Thus the proposed framework is suitable smart meters
data analytics in smart grid applications.

The proposed clustering framework can be further extended
in several directions. We are currently working on comparing
the proposed CAE to other dimension reduction methods,
e.g., principle component analysis and singular value de-
composition. In addition, additional research is required on

the applications of the proposed CAE based clustering. For
example, CAE can be used as a prototype or pre-trained
network of CNN applications such as forecasting models.
Tariff offers can also be designed based on the proposed
framework.

ACKNOWLEDGMENT

This work was supported by the Korea Institute of En-
ergy Technology Evaluation and Planning (KETEP) and the
Ministry of Trade, industry & Energy (MOTIE) of Korea
(20161210200410) and by the Weather See-at Technology De-
velopment Program of Korea Meteorological Institute (KIMPA
2015-4070).

REFERENCES

[1] “How many smart meters are installed in the United States, and who
has them?” [Online]. Available: https://www.eia.gov/tools/faqs/faq.php?
id=108&t=3

[2] S. Zhou and M. A. Brown, “Smart meter deployment in Europe: A
comparative case study on the impacts of national policy schemes,”
Journal of Cleaner Production, vol. 144, pp. 22–32, Feb. 2017.

[3] G. Chicco, “Overview and performance assessment of the clustering
methods for electrical load pattern grouping,” Energy, vol. 42, no. 1,
pp. 68–80, Jun. 2012.

[4] J. Kwac, J. Flora, and R. Rajagopal, “Household energy consumption
segmentation using hourly data,” IEEE Trans. on Smart Grid, vol. 5,
no. 1, pp. 420–430, Jan. 2014.

[5] J. D. Rhodes, W. J. Cole, C. R. Upshaw, T. F. Edgar, and M. E. Webber,
“Clustering analysis of residential electricity demand profiles,” Applied
Energy, vol. 135, pp. 461–471, Dec. 2014.

[6] K. Mets, F. Depuydt, and C. Develder, “Two-stage load pattern clustering
using fast wavelet transformation,” IEEE Trans. on Smart Grid, vol. 7,
no. 5, pp. 2250–2259, Sep. 2016.

[7] R. Li, F. Li, and N. D. Smith, “Multi-resolution load profile clustering
for smart metering data,” IEEE Trans. on Power Systems, vol. 31, no. 6,
pp. 4473–4482, Nov. 2016.

[8] T. Räsänen, D. Voukantsis, H. Niska, K. Karatzas, and M. Kolehmainen,
“Data-based method for creating electricity use load profiles using
large amount of customer-specific hourly measured electricity use data,”
Applied Energy, vol. 87, no. 11, pp. 3538–3545, Nov. 2010.

[9] S. Ryu, J. Noh, and H. Kim, “Deep neural network based demand side
short term load forecasting,” Energies, vol. 10, no. 1, pp. 1–20, Jan.
2017.

[10] L. Wang, Z. Zhang, J. Xu, and R. Liu, “Wind turbine blade breakage
monitoring with deep autoencoders,” IEEE Trans. on Smart Grid, vol. 9,
no. 4, pp. 2824–2833, Jul. 2016.

[11] E. D. Varga, S. F. Beretka, C. Noce, and G. Sapienza, “Robust real-time
load profile encoding and classification framework for efficient power
systems operation,” IEEE Trans. on Power Systems, vol. 30, no. 4, pp.
1897–1904, Jul. 2015.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning.” in Proc. of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Nov. 2016.

[14] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of Int’l Conf. on Learning Representations (ICLR), May. 2015.

[15] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. on Infor-
mation Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.

[16] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-means
clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[17] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and
Applications. CRC Press, 2013.

[18] M. Inaba, N. Katoh, and H. Imai, “Applications of weighted Voronoi
diagrams and randomization to variance-based K-clustering,” in Proc.
of ACM Symposium on Computational Geometry, Jun. 1994.

[19] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

