
AoI-Driven Client Scheduling for Federated
Learning: A Lagrangian Index Approach

Manyou Ma∗, Vincent W.S. Wong∗, and Robert Schober†
∗Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

†Institute for Digital Communications, Friedrich-Alexander-University, Erlangen, Germany
email: {manyoum, vincentw}@ece.ubc.ca, robert.schober@fau.de

Abstract—Federated learning (FL) is a distributed learning
framework where clients jointly train a global model without
sharing their local datasets. In randomized client sampling, a
subset of clients are uniformly chosen to participate in training
in each communication round of FL. Recent research has shown
that by jointly considering the age of information (AoI) and
channel state information (CSI) of each client, the convergence
of FL can be improved. In this paper, we formulate a joint
AoI and CSI-based client scheduling problem as a constrained
Markov decision process. We propose a low-complexity and
scalable algorithm based on the Lagrangian index approach.
Simulation results show that the proposed Lagrangian index-
based approach achieves near-optimal performance. For FL tasks
with the CIFAR-10 dataset, our results show that the proposed
algorithm can speed up the convergence of FL by 40%, by
reducing the duration of uplink transmission, when compared
with two state-of-the-art FL algorithms.

I. INTRODUCTION

Federated learning (FL) [1] is a distributed learning frame-
work, where multiple mobile clients are orchestrated by a
parameter server (PS) to train a deep learning (DL) model. For
the federated averaging (FedAvg) algorithm proposed in [1],
multiple clients are connected to the PS through wireless links.
The training phase of FL involves multiple communication
rounds. At the beginning of each communication round, the
PS broadcasts the updated DL model and schedules a subset
of clients to participate in training (step ① in Fig. 1). The
scheduled clients perform gradient-based learning using their
local datasets (step ② in Fig. 1) and transmit the updated model
back to the PS (step ③ in Fig. 1). Finally, the PS aggregates the
received model updates by averaging them (step ④ in Fig. 1).

Client scheduling is crucial for the convergence of FL. Some
of the previous works on FL (e.g., [1], [2]) use randomized
client scheduling. In [1], a subset of clients are selected
uniformly at random from the set of clients in each com-
munication round. In [2], the authors proposed an unbiased
multinomial distribution (MD) sampling scheme, where the
probability of a client being scheduled is proportional to
the size of its local dataset. Recent works have shown that
incorporating channel-aware scheduling in FL can reduce
the duration of uplink transmission in each communication
round, which in turn improves convergence. In [3], the authors
proposed a Lyapunov optimization-based scheduling algorithm
which selects the clients based on their instantaneous channel
state information (CSI). In [4], the authors proposed a client
association and resource allocation scheme based on CSI and

Fig. 1: (a) Illustration of a federated learning (FL) system with one parameter
server (PS) and four clients. In communication round t, two clients are sched-
uled to participate in FL training. The solid arrows represent the downlink
broadcasting of the model parameters. The red dashed lines represent the
wireless channels of the clients. (b) Plots of the evolution of two clients’ age
of information (AoI).

the local data distribution. Due to the temporal and spatial
correlation of wireless channels, greedy scheduling based on
CSI only may lead to a subset of users being repeatedly
scheduled exclusively, which can degrade the convergence
performance of FL [5]. In [6], the authors proposed to use
the age of update as a metric to accelerate FL training.

In this paper, we investigate the joint age of information
(AoI) [7] and CSI-based client scheduling problem. Due to
the temporal dependencies of the decisions made in different
time instants, optimization problems employing AoI as part
of the objective function or resource constraints are sequential
decision problems, which are often formulated as constrained
Markov decision processes (CMDPs). When the number of
clients is large, the computational complexity for determining
the optimal CMDP policy becomes high. Therefore, some
recent works have proposed scalable suboptimal scheduling
algorithms (e.g., [8]) based on the Whittle index approach [9],
which has been proven to be asymptotically optimal when
the number of clients approach infinity and the percentage of
scheduled clients remains constant. However, only a special
class of problems (known as Whittle indexable) can be solved
by the Whittle index approach. Even for a problem that can
be proven to be Whittle indexable, deriving the Whittle index
is still hard, and is often impossible for practical problems
with large state space. To address this issue, in this paper,
we propose a Lagrangian index-based approach [10] for
client scheduling in FL systems. The proposed Lagrangian
index-based approach was proven to be asymptotically op-
timal, enjoys similar scalability as the Whittle index-based



approach [10], and does not require the underlying CMDP
problem to satisfy any special property. The contributions of
this paper are as follows:

• We formulate the joint CSI and AoI optimization prob-
lem as a CMDP and propose an asymptotically optimal
solution based on the Lagrangian index.

• For problems with a long time horizon, we propose a low-
complexity stationary Lagrangian index algorithm based
on an infinite-horizon approximation.

• Simulation results show that both the Lagrangian index
scheduling algorithm and its infinite-horizon approxima-
tion achieve near-optimal performance.

• We evaluate the proposed Lagrangian index-based algo-
rithm in large-scale FL experiments. Simulation results
show that the proposed algorithm outperforms the Fed-
Avg [1] and MD sampling [2] algorithms by 40% in
terms of the average uplink transmission time, achieving
a better convergence performance.

Notations: We use C to denote the set of complex numbers
and Z+ to denote the set of non-negative integers. We use E[·]
to denote the expectation of a random variable.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a system with a PS and N clients, cf. Fig. 1.
The set of clients is denoted by N = {1, 2, . . . , N}. Each
client has its own local dataset. We consider a time-slotted
system with a finite time horizon, where the set of communi-
cation rounds is denoted by T = {1, 2, . . . , T}.

1) Scheduling Decision Vector: In communication round
t ∈ T , let ut = (u1

t , . . . , u
N
t ) denote the scheduling decision

vector determined by the PS, where

C1: un
t ∈ Un

∆
= {0, 1}, n ∈ N , t ∈ T . (1)

Client n participates in training and sends its updated network
parameters to the PS in communication round t when un

t is
equal to one. The PS has limited capacity and can aggregate
parameters of the neural network from at most M clients
in each communication round. Thus, the scheduling decision
vector has to be chosen from the following feasible set

C2: ut ∈ U ∆
=

{
ut ∈ {0, 1}N |

N∑
n=1

un
t ≤ M

}
, t ∈ T .

Constraint C2 is also referred to as the linking constraint.
2) Duration of Uplink Transmission in Each Communica-

tion Round: In FL, after local training in communication
round t ∈ T , each scheduled client n ∈ {j | uj

t = 1, j ∈ N}
needs to send its updated network parameters to the PS.
Similar to [3], in this paper, we consider time-division multiple
access (TDMA), where the scheduled clients perform uplink
transmission sequentially using a fixed transmit power. The
time it takes for client n to send its updated parameters
successfully to the PS depends on the CSI between the client
and the PS. In communication round t, let hn

t ∈ C denote
the instantaneous CSI between client n and the PS. Given the

system bandwidth W and transmit power Pn of client n, its
instantaneous transmission rate can be expressed as

r(hn
t ) = W log2

(
1 + |hn

t |2Pn/σ
2
n

)
, n ∈ N , t ∈ T , (2)

where σ2
n denotes the received noise power of client n. We

discretize the possible values of hn
t into a finite set Hn =

{hn,1, . . . , hn,max}, n ∈ N , and define the CSI vector ht =
(h1

t , . . . , h
N
t ), t ∈ T , where hn

t ∈ Hn. Let ζ denote the packet
size (in bits) needed to transmit the updated model parameters
to the PS. In an FL system, the updates from all clients have
the same size ζ. The time it takes for scheduled client n to
send its updated model parameters to the PS is given by

y(hn
t ) = ζ/r(hn

t ), n ∈ N , t ∈ T . (3)

The duration of uplink transmission in communication round
t ∈ T is equal to τ(ht,ut) =

∑N
n=1 y(h

n
t )u

n
t .

B. Problem Formulation

In this subsection, we formulate the joint CSI and AoI
optimization problem as a finite-horizon CMDP.

1) Decision Epochs and Actions: We consider a finite-
horizon CMDP where each decision epoch corresponds to
a communication round. We use the set of communication
rounds T = {1, . . . , T} as the set of decision epochs of the
CMDP. In decision epoch t ∈ T , the action vector corresponds
to a feasible scheduling decision for all the N clients. That is,
the action vector is ut ∈ U , where the feasible action set U is
defined by constraint C2.

2) States: In decision epoch t, let ant denote the AoI of
client n ∈ N , which represents the number of communication
rounds that have elapsed since client n sent its updated model
to the PS. To obtain a finite state space, we set an upper
limit Amax for the AoI. That is, we set ant = Amax for any
client n that has not updated its model for more than Amax

communication rounds. We have ant ∈ A = {1, 2, . . . , Amax}.
Let at = (a1t , . . . , a

N
t ) denote the AoI vector in decision epoch

t. The state vector in decision epoch t can be represented as
st = (at,ht) ∈ S ∆

=
∏

n∈N (A×Hn), t ∈ T .
3) State Transition Probability: Given ant and un

t , the AoI
of client n in the next decision epoch, ant+1, is a deterministic
value, which is given by

P(ant+1 | ant , un
t ) = 1(ant+1 = 1)1(un

t = 1)

+ 1(ant+1 = min (Amax, a
n
t + 1))1(un

t = 0),
(4)

for all n ∈ N , t ∈ T , where 1 denotes the indicator function.
The first term on the right-hand side corresponds to the case
when client n is selected to participate in training in decision
epoch t, whereas the second term accounts for the alternative
case. We consider a wireless channel that evolves according to
a stochastic random process. At the beginning of each decision
epoch t, the CSI of client n, hn

t , is revealed to the PS. We
consider the case where hn

t ∈ Hn is distributed according to
probability P(hn

t ), n ∈ N , t ∈ T .
4) Client Scheduling Policy: A client scheduling policy π is

defined as a mapping from state space S and the set of decision
epochs T to action space U . Let (sπ1 , . . . , s

π
T ) denote the state



evolution under policy π, where sπt = (aπt ,ht), t ∈ T . Let
(uπ

1 , . . . ,u
π
T ) denote the action taken under policy π, where

uπ
t = (u1,π

t , . . . , uN,π
t ), t ∈ T . In decision epoch t ∈ T , given

state vector st ∈ S, the PS chooses an action πt(st) = uπ
t .

Let Π denote the set of all deterministic policies that satisfy
constraint C2. Thus, π ∈ Π if and only if uπ

t ∈ U , ∀t ∈ T .
5) Cost Function: Let kn ∈ Z+ denote the number of data

samples in the local dataset of client n ∈ N . Let K denote
the total number of data samples from all the clients, i.e.,
K =

∑N
n=1 k

n. In decision epoch t, we use the following cost
function that jointly considers the weighted aggregate AoI and
the uplink transmission time τ(ht,ut)

c(st,ut) =
∑
n∈N

[
Nkn

K
ant + ξy(hn

t )u
n
t

]
, (5)

where ξ is a non-negative weight parameter. In (5), the weight
coefficient Nkn

K places a higher weight on clients with more
data samples, which encourages these clients to be scheduled
more frequently, in order to reduce their AoI.

6) CMDP Problem Formulation: The optimal policy π∗ is
defined as the policy that minimizes the expected total cost.
The CMDP can be formulated as follows

minimize
π

T∑
t=1

E [c(sπt ,u
π
t )] ,

subject to C2a: uπ
t ∈ U , t ∈ T .

(6)

Problem (6) is a finite-horizon CMDP, whose optimal solution
can be found in principle by solving the Bellman equation
iteratively using value iteration. However, this approach can-
not be applied to problems with a large number of clients,
due to its high computational complexity O(T |S||U|2) =
O(T (Hmax|A|)N ), where Hmax = maxn∈N |Hn|.

III. LOW-COMPLEXITY SOLUTION TO PROBLEM (6)

In this section, we propose a low-complexity asymptotically
optimal algorithm for problem (6) based on the Lagrangian
index [10]. For problems with long time-horizon, we develop
an infinite-horizon approximation of the proposed algorithm
in order to further reduce the computational complexity.

A. Lagrangian Index Algorithm

It has been shown in [10] that by relaxing the linking
constraint C2a so that it holds on average, problem (6) can be
decomposed into N client-specific CMDP problems. In this
subsection, we will adopt this approach, and obtain an upper
bound for the solution to problem (6).

1) Relaxation of the Linking Constraint: Let Φ denote the
class of (possibly randomized) policies that satisfy the linking
constraint C2a in expectation. Note that Φ is different from
the class of policies Π ⊂ Φ that satisfy the linking constraint
C2a in each decision epoch. Given a policy ϕ, we have ϕ ∈ Φ
if and only if

C1a: uϕ
t ∈ {0, 1}N and C2b: E

[∑
n∈N

un,ϕ
t

]
≤ M, t ∈ T .

The expectation in constraint C2b is taken with respect to the
stochasticity of state sϕt and policy ϕ. After relaxing constraint
C2a so that it holds in expectation, problem (6) becomes

minimize
ϕ∈Φ

T∑
t=1

E
[
c(sϕt ,u

ϕ
t )
]
. (7)

Since any policy that satisfies constraint C2a also satisfies
constraints C1a and C2b, the optimal value of problem (7)
is a lower bound of the optimal value of problem (6).

2) Optimal Solution to Problem (7) via linear programming
(LP): Let us define the local state of client n ∈ N in decision
epoch t ∈ T as snt = (ant , h

n
t ) ∈ Sn

∆
= A×Hn. Let Φn denote

the class of policies with scheduling decision un
t = ϕn

t (s
n
t )

for client n in state snt ∈ Sn, n ∈ N , t ∈ T , and satisfy
un
t ∈ {0, 1}, t ∈ T . In this way, a policy ϕ =

∏
n∈N ϕn ∈∏

n∈N Φn ⊂ Φ can be constructed by combining the policies
of all N clients, where ut = ϕt(st) = (ϕ1

t (s
1
t ), · · · , ϕN

t (sNt )),
t ∈ T . In the following, we adopt the LP approach for
obtaining the optimal solution to problem (7), by first finding
the optimal policies for the N client-specific CMDPs. For the
client-specific CMDP n ∈ N , we use the expected fraction
of time that client n sojourns in state snt and selects action
un
t , for all snt ∈ Sn, un

t ∈ Un, n ∈ N , t ∈ T , as the
optimization variables. Given policies ϕn ∈ Φn, n ∈ N , and
ϕ =

∏
n∈N ϕn, we define νn,ϕt (snt , u

n
t ) as the probability that

client n is in state snt and selects action un
t in decision epoch

t. We have

νn,ϕt (snt , u
n
t ) = E

[
1(sn,ϕt = snt , u

n,ϕ
t = un

t )
]
, (8)

where sn,ϕt and un,ϕ
t denote client n’s state and action taken in

decision epoch t under policy ϕ. We define the cost function
related to client n in decision epoch t as

cn(snt , u
n
t ) =

Nkn

K
ant + ξy(hn

t )u
n
t , n ∈ N , t ∈ T . (9)

Now, problem (7) can be reformulated to the following LP [10]

minimize
ν
n,ϕ
t (snt ,u

n
t ),

snt ∈Sn,u
n
t ∈Un,

n∈N ,t∈T

∑
t∈T

∑
n∈N

∑
snt ∈Sn

∑
un
t ∈Un

cn(snt , u
n
t )ν

n,ϕ
t (snt , u

n
t )

subject to C2c:
∑
n∈N

∑
snt ∈Sn

νn,ϕt (snt , 1) ≤ M, t ∈ T , (10)

C3:
∑

un
t ∈Un

νn,ϕt (snt , u
n
t ) =

∑
snt−1∈Sn

∑
un
t−1∈Un

P(snt | snt−1, u
n
t−1)

× νn,ϕt−1(s
n
t−1, u

n
t−1), snt ∈ Sn, n ∈ N , t ∈ T \ {1},

C4:
∑

un
1 ∈Un

νn,ϕ1 (sn1 , u
n
1 ) = 1, sn1 ∈ Sn, n ∈ N ,

C5: νn,ϕt (snt , u
n
t ) ≥ 0, snt ∈ Sn, unt ∈ Un, n ∈ N , t ∈ T .

The objective function of problem (10) corresponds to the
expected total cost. The left-hand side of constraint C2c
corresponds to the expected number of clients that are sched-
uled to participate in FL in decision epoch t ∈ T . Thus,
constraints C2b and C2c are equivalent. Constraints C3 and C4
are the flow conservation conditions that ensure the solution



satisfies the state transition probability (4). Constraint C5
ensures that the optimization variables, which are probabilities
of events, are non-negative. Given the optimal solution to
problem (10) νn,ϕ

∗

t (snt , u
n
t ), we can design a randomized

policy ϕ∗ =
∏

n∈N ϕn,∗, where ϕn,∗
t (snt ) is a random variable

with probability distribution

P(ϕn,∗t (snt ) = unt ) =


ν
n,ϕ∗
t (snt ,u

n
t )

ν
n,ϕ∗
t (snt )

, if unt ∈ Un and snt ∈ Vnt ,
1
2
, if unt ∈ Un and snt ∈ Sn \ Vnt ,

0, otherwise,

where νn,ϕ
∗

t (snt )
∆
=

∑
un
t ∈Un

νn,ϕ
∗

t (snt , u
n
t ). The set Vn

t ={
snt ∈ Sn | νn,ϕ

∗

t (snt ) > 0
}

represents the states that are likely
being visited under the randomized policy ϕn,∗

t (snt ). In [10],
it was shown that client scheduling policy ϕ∗ is the optimal
solution to problem (7).

3) Lagrangian Index-based Feasible Solution: Although
policy ϕ∗ achieves the optimal solution to problem (7), it may
not be a feasible solution to problem (6) since constraint C2a
may not always be satisfied. In [10], the authors proposed a
low-complexity asymptotically-optimal feasible heuristic so-
lution to problem (6) called the Lagrangian index scheduling
policy. We now introduce the steps for finding the Lagrangian
index by first solving the dual problem of problem (7). Let
λ = (λ1, λ2, . . . , λT ) ⪰ 0 denote the vector of Lagrange
multipliers corresponding to constraint C2b. Then, the dual
problem of problem (7) can be expressed as

maximize
λ⪰0

minimize
ψ∈Φ′

T∑
t=1

{
E
[
c(sψt ,u

ψ
t )
]

+ λt

(
N∑
n=1

E[un,ψt ]−M

)}
,

(11)

where Φ′ denotes the class of policies that satisfy constraint
C1a. Given the optimal Lagrange multiplier vector λ∗ =
(λ∗

1, . . . , λ
∗
T ), the optimal value of problem (11) can be found

recursively by backward induction [10]1. To this end, we first
initialize Lλ∗

T+1(sT+1) = 0, for sT+1 ∈ S, and then recursively
compute

Lλ∗
t (st) = min

ut∈U

{
c(st,ut) + E

[
Lλ∗
t+1(st+1) | st,ut

]
+ λ∗

t

( N∑
n=1

unt −M
)}

, t ∈ T , st ∈ S.

Here, we use the following short-hand notation

E [f(st+1) | s,u]
∆
=

∑
s′∈S

f(s′)P(st+1 = s′ | st = s,ut = u),

where f(·) is any function of st+1. Given the optimal Lagrange
multiplier vector λ∗ and the initial state s1, Lλ∗

1 (s1) is the
optimal value of problem (11). Furthermore, given λ∗, Lλ∗

t (s)
can be expressed as follows

Lλ∗
t (st) = −

T∑
i=t

λ∗
iM +

N∑
n=1

V n,λ∗

t (snt ),

1Since constraints C2b and C2c are equivalent, λ∗ can be found by solving
the dual problem of problem (10), for the dual variables associated with
constraint C2c.

for all st ∈ S, t ∈ T , where V n,λ∗

t (snt ) denotes the value
function of the client-specific MDP. It can similarly be derived
using backward induction, by first initializing V n,λ∗

T+1 (snT+1) =

0, for snT+1 ∈ Sn, n ∈ N . Then, V n,λ∗

t (snt ), s
n
t ∈ Sn, are

found iteratively for t = T, T − 1, . . . , 1, by calculating

V n,λ∗

t (snt ) = min
un
t ∈Un

{
cn(snt , u

n
t )

+ E
[
V n,λ∗

t+1 (snt+1) | snt , unt
]
+ λ∗

tu
n
t

}
.

(12)

The value functions of the client-specific MDPs can be
utilized to derive the Lagrangian index for each client.

Definition 1 (Lagrangian Index). In decision epoch t ∈ T ,
the Lagrangian index for client n in state snt is defined as

int (s
n
t ) =

(
cn(snt , 1) + E

[
V n,λ∗

t+1 (snt+1) | snt , 1
])

−
(
cn(snt , 0) + E

[
V n,λ∗

t+1 (snt+1) | snt , 0
])

, snt ∈ Sn, n ∈ N .

We now introduce the Lagrangian index scheduling policy.

Definition 2 (Lagrangian Index Scheduling). Under the La-
grangian index scheduling policy, in decision epoch t ∈ T ,
given the Lagrangian indices int (s

n
t ), n ∈ N , the M clients

with the smallest non-positive Lagrangian indices are sched-
uled to participate in FL. In the case where multiple clients
have the same Lagrangian indices, policy ϕ∗ is utilized to
break the tie. Let π̃ ∈ Π denote the Lagrangian index policy.
In each decision epoch, we have

π̃t(st) = argmin
ut∈U

∑
n∈N

un
t i

n
t (s

n
t ). (13)

Since constraint C2a is satisfied, the optimal solution of
problem (13) is a feasible solution to CMDP problem (6). It
can be proven that by increasing the number of clients in the
FL system, while a fixed percentage of clients are scheduled in
each decision epoch, the Lagrangian index-based scheduling
policy achieves asymptotically optimal performance [10].

B. Infinite-horizon Approximation of the Lagrangian Index

Some of the FL tasks may have a long time-horizon
T , which will increase the dimensionality of problem (10),
making it more computationally complex to solve. In this sub-
section, we propose a stationary Lagrangian index scheduling
algorithm, which has a lower complexity for problems with
long time-horizon. It can be interpreted as an infinite-horizon
approximation of the original Lagrangian index scheduling
approach. Given a stationary policy ϕ̄, let us define the
probability that client n ∈ N is in state sn and selects action
un in any decision epoch t ∈ T as

µn,ϕ̄(sn, un) = E
[
1(sn,ϕ̄t = sn, un,ϕ̄

t = un)
]
. (14)

The equivalent LP for problem (10) becomes

minimize
µn,ϕ̄(sn,un),

sn∈Sn,u
n∈Un,

n∈N

∑
n∈N

∑
sn∈Sn

∑
un∈Un

cn(sn, un)µn,ϕ̄(sn, un) (15)

subject to C2d:
∑
n∈N

∑
sn∈Sn

µn,ϕ̄(sn, 1) ≤ M,



C3a:
∑

un∈Un

µn,ϕ̄(sn, un) =
∑

snt−1∈Sn

∑
un
t−1∈Un

P(sn | snt−1, u
n
t−1)

× µn,ϕ̄(snt−1, u
n
t−1), sn ∈ Sn, n ∈ N ,

C4a:
∑

sn∈Sn

∑
un∈Un

µn,ϕ̄(sn, un) = 1, n ∈ N ,

C5a: µn,ϕ̄(sn, un) ≥ 0, sn ∈ Sn, un ∈ Un, n ∈ N .

Problem (15) has a computational complexity of
O((NHmax|A|)2.5 log(NHmax|A|/δ)), where δ denotes
the relative accuracy of the solver [11]. Let λ∗

inf denote the
optimal Lagrange multiplier related to constraint C2d, which
can be found by solving the dual problem of problem (15).
Let V n,λ∗

inf(sn) denote the infinite-horizon average-cost value
function of state sn of the client-specific MDP, given λ∗

inf.
V n,λ∗

inf(sn) can be obtained using the relative value iteration
algorithm (RVIA) [12, Proposition 5.3.2], by first initializing
V

n,λ∗
inf

0 (sn) = 0, sn ∈ Sn, n ∈ N and then iteratively
calculating, for all j = 1, 2, . . .

V
n,λ∗

inf
j (sn) = min

un∈Un

{
cn(sn, un) + λ∗

infu
n

+ E
[
V

n,λ∗
inf

j−1 (snnext) | sn, un
]
− V

n,λ∗
inf

j (snref)
}
,

(16)

for all sn ∈ Sn, n ∈ N , where snref is a fixed reference
state. Since RVIA is guaranteed to converge [12], we let
V n,λ∗

inf(sn) = lim
j→∞

V
n,λ∗

inf
j (sn). We subsequently define the

stationary Lagrangian index in Definition 3 and its correspond-
ing scheduling policy in Definition 4.

Definition 3 (Stationary Lagrangian Index). The stationary
Lagrangian index for client n in state sn ∈ Sn is defined as

ininf(s
n) =

(
cn(sn, 1) + E

[
V n,λ∗

inf(snnext) | sn, 1
])

−
(
cn(sn, 0) + E

[
V n,λ∗

inf(snnext) | sn, 0
])

, n ∈ N .
(17)

Definition 4 (Stationary Lagrangian Index Scheduling). Under
the stationary Lagrangian index scheduling policy, in each de-
cision epoch, given the stationary Lagrangian indices ininf(s

n),
n ∈ N , the M clients with the smallest non-positive stationary
Lagrangian indices are scheduled to participate in FL. Let
π̃inf ∈ Π denote the stationary Lagrangian index scheduling
policy. Given current state s ∈ S, in each decision epoch,

π̃inf(s) = argmin
u∈U

∑
n∈N

unininf(s
n). (18)

Compared with problem (13), we can obtain a stationary
policy for each state s ∈ S from (18). This allows us to
solve problems with long time-horizon since the dimension
of problem (15) does not increase with T . We will refer
to this algorithm as the stationary Lagrangian index-based
client scheduling algorithm. The key steps in the planning and
deployment stages are presented in Algorithm 1.

IV. PERFORMANCE EVALUATION AND COMPARISON

We consider a communications scenario where the set of
N users are uniformly distributed within a ring with inner
radius Li = 10 m and outer radius Lo = 1.5 km. The PS

Algorithm 1 Stationary Lagrangian Index-based Client
Scheduling Algorithm
1: Planning Stage:
2: Solve the dual problem of problem (15) to obtain λ∗

inf.

3: Initialization: Titer, V
n,λ∗

inf
0 (sn) := 0, for all sn ∈ Sn, n ∈ N .

4: for n = 1 to N do
5: Set j := 0.
6: while j ≤ Titer do
7: Calculate V

n,λ∗
inf

j (sn), for all sn ∈ Sn, from (16).
8: Set j := j + 1.
9: end while

10: Compute and store the stationary Lagrangian index ininf(s
n) from (17),

for all sn ∈ Sn.
11: end for
12: Deployment Stage:
13: Set t := 1
14: while t ≤ T do
15: for n = 1 to N do
16: Observe snt := (ant , h

n
t )

17: Retrieve the stored stationary Lagrangian index ininf(s
n
t ).

18: end for
19: Obtain ut by solving problem (18).
20: Set t := t+ 1.
21: end while

is located at the centre of the ring. The system bandwidth
W is equal to 50 MHz. The transmit power of each client
Pn is set to 28 dBm, and the noise variance σ2

n is set to
−97 dBm. We consider a channel model where the pathloss
for client n ∈ N can be expressed as 128.1 + 37.6 log10(l

n),
and ln denotes the distance between client n and the PS in
kilometers [4]. We assume Rayleigh fading when computing
the instantaneous channel gain of each client. We discretize
the CSI into |Hn| = H̄ levels, for all n ∈ N , based on its
empirical cumulative distribution function. For the stationary
Lagrangian indices, we set Titer to be 1,000. We consider
the CIFAR-10 dataset consisting of photos of 10 classes of
objects. The number of samples owned by the set of clients
N follows a Zipf distribution with parameter κ. That is, the
number of samples owned by client n is kn =

⌈
n−κK∑
i∈N i−κ

⌉
,

n ∈ N , where κ represents the degree of difference between
the amount of data owned by different clients. Among the
kn samples owned by client n, the composition of classes
follows a Dirichlet distribution with parameter α. Let xn

1 , . . . ,
xn
10 denote the number of samples from the 10 classes of the

dataset owned by client n. We have P(xn) ∝
∏10

i=1(x
n
i )

α−1,
and

∑10
i=1 x

n
i = kn, n ∈ N . Each client performs 50

stochastic gradient descent steps before sending the updated
model back to the PS. We consider a convolutional neural
network (CNN) with three convolutional layers, two fully-
connected layers, and a dropout layer, The size of the neural
network ζ is equal to 159.8 kB. The simulation code was
programmed in Python 3.8 using PyTorch.

In Fig. 2, we compare the performance of the proposed
finite-horizon Lagrangian index-based algorithm and the pro-
posed infinite-horizon approximation stationary Lagrangian
index-based algorithm. In Fig. 2(a), we compare the Lagrange
multiplier vector λ∗ = (λ∗

1, . . . , λ
∗
T ) obtained from the dual

problem of problem (10) and the Lagrange multiplier λ∗
inf

from the dual problem of problem (15). The results show that
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Fig. 2: Performance comparison between the proposed Lagrangian index-
based algorithm (finite-horizon) and the proposed stationary Lagrangian
index-based algorithm (infinite-horizon approximation) in an FL system with
H̄ = 3, T = 30, κ = 0, ξ = 200, and Amax = 30. (a) The Lagrange
multiplier vector λ∗ obtained from the dual problem of problem (10), and
λ∗

inf obtained from the dual problem of problem (15), where N = 25 and
M = 5. (b) The expected total cost obtained by the two algorithms and the
lower bound.

λ∗
t differs from λ∗

inf only significantly at the beginning and
close to the end of the entire time-horizon. This justifies the
choice of using the infinite-horizon approximation. The lower
bound for the optimal value of problem (6) is obtained by
the optimal solution to problem (7), i.e., policy ϕ∗. We vary
the number of clients N in Fig. 2(b), and consider the case
where one fifth of the clients are scheduled to participate in FL
in each communication round. Each experiment was repeated
1,000 times with different random seeds. The expected total
cost obtained using the finite-horizon and infinite-horizon
approximation algorithms are compared. They show similar
performance. These results show that both approaches achieve
near optimal performance.

Next, we deploy the proposed algorithm in a large-scale FL
system with 100 clients. The infinite-horizon approximation of
the Lagrangian index is adopted. In Fig. 3, we show the perfor-
mance of the proposed algorithm in terms of two metrics. The
average duration of one communication round corresponds
to τ(ht,ut). Similar to [3], we assume that the duration of a
communication round can be approximated by the total uplink
transmission time of all clients that are scheduled to participate
in FL. The testing accuracy refers to the mean accuracy of all
clients on the testing dataset. We compare the results obtained
by the proposed algorithm with the FedAvg [1] and the MD
sampling algorithms [2]2. The results in Fig. 3(a) show that the
proposed algorithm can reduce the average duration of each
communication round by up to 40%, when compared with the
baseline algorithms. This is due to the inclusion of the duration
of the uplink transmission time in the objective function.
Consequently, the testing accuracy of the proposed algorithm
converges faster compared with the baseline algorithms, as
shown in Fig. 3(b). Therefore, the proposed algorithm can
accelerate the convergence in FL training.

V. CONCLUSION

In this paper, we designed a joint AoI and CSI optimization
framework to address the client scheduling problem in FL.
We formulated the client scheduling problem as a CMDP and
proposed a low-complexity Lagrangian index solution. The

2Since [6] considered frequency division multiple access whereas we
consider TDMA in this paper, a direct comparison with [6] may not be fair.
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Fig. 3: Comparison of (a) the average duration of each communication round,
and (b) the testing accuracy between the proposed Lagrangian index approach
and the FedAvg [1] and MD sampling [2] algorithms. We set N = 100,
M = 10, κ = 0.2, α = 0.1, H̄ = 5, Amax = 50, and ξ = 200.

proposed Lagrangian index-based approach has the potential
to be applied to other optimization problems with AoI as
part of the objective function or constraints. Simulation results
showed that the proposed algorithm achieves near-optimal per-
formance. It can reduce the duration of the uplink transmission
time in FL training by up to 40%, when compared with two
baseline algorithms. In this way, the convergence speed of
the testing accuracy during FL training is improved. In the
journal extension [13] of this work, we consider the case where
the clients’ local datasets are not independent and identically
distributed (non-i.i.d.) and the diversity information can be
inferred from the representative gradients of all clients.
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