
Adaptive Bandwidth Allocation in Multiuser MIMO
THz Systems with Graph-Transformer Networks

Ali Mehrabian and Vincent W.S. Wong
Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

email: {alimehrabian619, vincentw}@ece.ubc.ca

Abstract—Terahertz (THz) wireless systems aim to support
content-rich applications with ultra-high data rate. Due to high
molecular absorption, THz signals experience severe path loss.
Adaptive sub-band bandwidth (ASB) allocation can mitigate
absorption attenuation by allocating THz sub-bands with variable
bandwidth to the users. However, in ASB allocation, since the
bandwidth of sub-bands may not be known a priori, accurate
channel estimation is challenging. To overcome this issue, in this
paper, we propose a heterogeneous graph-transformer network
(HGTN) to bypass the channel estimation phase. We formulate
a sum-rate maximization problem with quality-of-service (QoS)
constraints in a multiuser multiple-input multiple-output (MU-
MIMO) THz system to optimize the precoding and ASB alloca-
tion. The proposed HGTN parameterizes the mapping from input
features (e.g., location information, users’ minimum data rate)
to the optimized system parameters via unsupervised learning.
The proposed HGTN can be applied to systems with different
number of users once it is trained. Simulation results show that
our proposed HGTN achieves a higher system sum-rate with
faster convergence when compared with the unsupervised deep
neural network learning algorithm.

I. INTRODUCTION

With the advancement of the sixth-generation (6G) systems,

terahertz (THz) communication is envisioned as a promising

solution to provide users with ultra-high throughput [1]. While

the current fifth-generation (5G) systems can use millimeter-

wave technology in the 30 − 300 gigahertz (GHz) frequency

range, the THz band spectrum range (0.1 − 10 THz) enables

much higher data rate ranging from tens of gigabits to terabits

per second and lower latency [2]. These advantages create a

unique opportunity to advance the progress of many emerging

applications, such as autonomous driving and extended reality.

However, THz technology introduces previously unexplored

challenges, which require novel approaches to address them.

For THz signals, in addition to the spreading loss and the

higher channel sparsity, atmospheric absorption can signifi-

cantly affect the propagation channel for users, which can lead

to performance degradation. Specific frequencies in the THz

band with the highest absorption of electromagnetic radiation

are called molecular absorption coefficient peaks. They divide

the THz spectrum into multiple ultra-wide THz transmission

windows (TWs) [3]. The spectrum range of each TW is further

divided into a set of sub-bands for allocation to the users. Due

to the frequency-selective nature of THz signals, absorption

loss variations within the sub-bands are high in different

regions. As a result, new techniques need to be explored for

THz spectrum management.

Recently, adaptive sub-band bandwidth (ASB) allocation

has been proposed, in which the bandwidth allocated to each

sub-band can be different. This approach can improve the

spectral efficiency and mitigate the absorption loss. In [4],

[5], joint sub-band assignment, ASB allocation, and power

control is investigated in multi-connectivity THz systems. The

authors considered single TW in [4] and multiple TWs in [5]

to solve a sum-rate maximization problem using successive

convex approximation. However, the joint use of multiple-

input multiple-output (MIMO) technique and ASB allocation

has not been investigated in [4], [5]. MIMO enables a large

number of antennas to obtain a high directional gain and form

narrow beams to separate users in the spatial domain [6]. As

a result, precoding design in multiuser MIMO (MU-MIMO)

THz systems would be beneficial to alleviate the absorption

attenuation.

In THz systems, accurate channel estimation is a major

issue. Pilot signal transmission in the THz band incurs a

significant amount of system overhead due to a long training

sequence transmission [7]. Moreover, in ASB allocation, the

bandwidth within each sub-band is unknown in advance. This

makes it challenging to determine the optimal duration and

number of the pilot signals in the training sequence to capture

the high variations of THz channel response for accurate

channel estimation. In this paper, we aim to address the

following question: How should the base station (BS) optimize
the adaptive bandwidth allocation and precoding in order to
achieve a high system sum-rate without channel estimation?

Recent works considered data-driven approaches to tackle

the challenges of channel estimation. Since the channels in

many wireless systems are largely functions of distance-

dependent path loss [8], other available system information

can be used to bypass the channel estimation phase. In

particular, location information is utilized as input of deep

neural networks (DNNs) for wireless link scheduling [8] and

user association [9]. To determine the transmit power and

ASB allocation in multiuser THz systems, the authors in [10]

applied an unsupervised DNN using the distances between

users and BS. However, DNNs do not comprehensively model

the interaction between BS and users and require re-training

for networks with different number of users.

To address the aforementioned issues, in this paper, we

study ASB allocation with sub-band frequency reuse in a MU-

MIMO THz system. We formulate an optimization problem for

sum-rate maximization subject to the quality-of-service (QoS)



constraints by optimizing the precoding and ASB allocation.

Obtaining the optimal solution of the formulated nonconvex

problem with coupled optimization variables is challenging.

Moreover, due to the high molecular absorption of the THz

channel as well as the unknown bandwidth of THz sub-

bands for ASB allocation, accurate channel estimation is

challenging. To this end, we propose a heterogeneous graph-

transformer network (HGTN) learning algorithm to solve the

problem by bypassing the channel estimation phase. The main

contributions of this paper are as follows:

• Heterogeneous Graph Representation: We model the

MU-MIMO THz system as a heterogeneous graph by

defining the BS and users as two types of nodes. The

input features of the node types include the location

information and users’ minimum data rate. We model

the transmission links between nodes as graph edges.

The graph structure is determined based on the distance

information between the nodes.

• HGTN Distinct Advantages: Our proposed HGTN can

parameterize the mapping between the input features and

system parameters using the information of graph nodes

as well as structural information. Our end-to-end learning

algorithm can bypass the channel estimation phase. It

directly maps the input to the optimized system param-

eters via unsupervised training. Moreover, the parameter

dimension of our learning algorithm is scalable. Once

the network is trained, it can be applied in systems with

different number of users.

• Performance Evaluation: For a MU-MIMO THz system

with six users, simulation results show that our proposed

HGTN can achieve a system sum-rate that is 9.98%

higher than that of unsupervised DNN learning algorithm

[10]. Moreover, our proposed HGTN has faster training

convergence compared to the baseline. We also show the

performance gains obtained from using MIMO and ASB

for improving the sum-rate in multiuser THz systems.

The remainder of this paper is organized as follows. The

system model and problem formulation for MU-MIMO THz

systems are described in Section II. In Section III, we present

our proposed HGTN learning algorithm. Simulation results are

presented in Section IV. Conclusions are given in Section V.

Notations: In this paper, we use R and C to denote the set

of real and complex numbers, respectively. We use boldface

upper-case letters (e.g., X) to denote two-dimensional matrices

or multi-dimensional tensors and boldface lower-case letters

(e.g., x) to denote vectors. IN represents an N ×N identity

matrix. (·)T and (·)H denote the transpose and conjugate

transpose of a vector or matrix, respectively. exp(·) denotes the

exponential function. j represents the imaginary unit satisfying

j2 = −1. [·] denotes the concatenate operation. tr(·) and det(·)
denote the trace and determinant of a matrix, respectively. ‖·‖
and ‖·‖F denote the norm of a vector and the Frobenius norm

of a matrix, respectively. We denote the rectified linear unit

function as ReLU(x) = max(x, 0). We denote the sigmoid

function as σ(x) = 1
1+exp(−x) .
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Fig. 1. Illustration of the molecular absorption coefficient kabs(f) and sub-
band bandwidth allocation in a THz TW.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink MU-MIMO THz system, where

the system has one BS to serve U users. Let U = {1, . . . , U}
denote the set of users. The BS is equipped with a uniform

linear array (ULA) which has Nt antennas for THz signal

transmission [2]. Each user is equipped with an Nr-element

ULA antenna. As illustrated in Fig. 1, THz signals experience

lower molecular absorption loss in a THz TW. In this paper, we

consider non-overlapping ASB allocation in a TW, as shown

in Fig. 1. Let S = {1, 2, . . . , S} denote the set of sub-bands,

where S is the total number of sub-bands. Let vectors b =
(b1, . . . , bS) and f = (f1, . . . , fS) denote the bandwidth of the

sub-bands and their central frequencies, respectively. Let bmax

denote the maximum bandwidth of each sub-band. We have

the following constraint for the bandwidth of each sub-band:

C1 : 0 ≤ bs ≤ bmax, s ∈ S. (1)

Let fstart and fend denote the start and end points of the

spectrum region for bandwidth allocation, respectively. We

consider bg as the fixed guard band that separates the sub-

bands to mitigate the inter-band interference [4], [5]. Let

btot = fend−fstart denote the bandwidth of the spectrum region

for allocation. We have the following constraint for the total

available bandwidth:

C2 :
∑
s∈S

bs = btot − (S − 1)bg. (2)

The central frequency of sub-band s ∈ S can be represented

as follows:

fs = fstart + (s− 1)bg +

s−1∑
i=1

bi +
bs
2
, s ∈ S. (3)

The signal transmission in the THz band tends to be highly

directional and non-line-of-sight components are negligible

[2]. As a result, we consider the line-of-sight (LoS) frequency-

selective model for the communication channels. Let dBu

denote the distance between user u ∈ U and BS. Let

HBu ∈ C
Nr×Nt denote the BS-to-user u channel gains. They

can be represented as follows:

HBu(d, f) =
√
GuGBα (dBu, f)

au
(
δABu, φ

A
Bu

)
aHB

(
δDBu, φ

D
Bu

)
,

(4)



where Gu and GB denote the antenna gains for user u and

BS, respectively.
(
δABu, φ

A
Bu

)
are the azimuth and elevation

angles of arrival for receiving signals and
(
δDBu, φ

D
Bu

)
denote

the azimuth and elevation angles of departure for transmitted

signals in BS-to-user u transmissions, respectively. Moreover,

au ∈ C
Nr and aB ∈ C

Nt denote the array steering vectors

for user u and BS, respectively. For x ∈ {1, . . . , Nr} and

y ∈ {1, . . . , Nt}, each element of the array steering vectors

with angles (δ, φ) can be calculated as follows:

au[x] =
1√
Nr

exp
(
j2π

εuser
λ

(x− 1) cos(δ) sin(φ)
)
, (5a)

aB [y] =
1√
Nt

exp
(
j2π

εBS

λ
(y − 1) cos(δ) sin(φ)

)
, (5b)

where εuser and εBS are antenna element spacing for a user

and BS, respectively, and λ is the wavelength. The path loss

factor α(d, f) ∈ R with distance d between transmitter and

receiver at frequency f can be calculated by α (d, f) =(
c

4πfd

)
exp

(
− 1

2kabs(f)d
)

, where c is the speed of light,

and kabs(f) is the molecular absorption coefficient which can

be calculated by using the information from the HITRAN

database [11], as illustrated in Fig. 1.

A. Achievable Data Rate
For the allocation of THz sub-bands to the users, we

consider sub-band frequency reuse for users and the effect of

intra-band interference. The achievable data rate (in bits/sec)

for user u ∈ U using sub-band s ∈ S can be represented as

[5]:

ru,s =

∫ fs+bs/2

fs−bs/2

log2 det

⎡
⎣INr

+ Γu,s

(
N0bsINr +

U∑
i=1,i �=u

Γi,s

)−1

⎤
⎦ df,

(6)

where N0 denotes the noise spectral density and fs can

be calculated by (3). The term Γu,s ∈ C
Nr×Nr for

user u using sub-band s can be determined by Γu,s =
HBu(dBu, f)pu,sp

H
u,sH

H
Bu(dBu, f), where pu,s ∈ C

Nt is the

precoding vector for user u using sub-band s. We denote

Pu ∈ C
S×Nt as the precoding matrix for user u by consider-

ing all sub-bands and P = [P1, . . . ,Pu, . . . ,PU ] ∈ C
U×S×Nt

as the precoder tensor at the BS, respectively. Since the rank

of channel gain matrix HBu is equal to one, we consider a

single data stream for signal transmission. The transmit power

constraint is as follows:

C3 :
∑
u∈U

∑
s∈S

||pu,s||22≤ Pmax, (7)

where Pmax denotes the maximum transmit power of the BS.

To guarantee that the minimum data rate requirement of user

u is satisfied, we have the following per-user QoS constraint:

C4 :
∑
s∈S

ru,s ≥ ru,min, u ∈ U , (8)

where ru,min is the minimum required data rate of user u.

B. Problem Formulation

In this paper, we consider sum-rate maximization to jointly

optimize the precoding matrices and THz sub-bands band-

width allocation. We formulate the sum-rate maximization

problem for a MU-MIMO THz system as follows:

maximize
{P, b}

∑
u∈U

∑
s∈S

ru,s

subject to constraints C1 − C4.

(9)

Obtaining the optimal solution of formulated problem (9)

is challenging due to the following reasons. First, problem

(9) is nonconvex and the optimization variables are coupled.

Second, calculating the objective function is difficult because

the limits of the integration for determining ru,s depend on the

optimization variable b. Moreover, it is difficult to calculate

the molecular absorption coefficient kabs(f) since there is

no closed-form expression in terms of f for all spectrum

regions in the THz band. As a result, there is no closed-form

expression for ru,s in (6) as a function of sub-band bandwidth

b, which makes it difficult to solve the problem by using

conventional optimization techniques. To this end, we propose

a learning-based HGTN algorithm to solve problem (9).

III. HGTN LEARNING ALGORITHM

We first model the MU-MIMO THz system as a hetero-

geneous graph. Then, we develop an unsupervised HGTN

learning algorithm to solve problem (9).

A. Graph Representation and Neighbour Feature Aggregation

We model the system as an undirected heterogeneous graph

G = {V , E ,Ψ}. The graph consists of U +1 nodes, where the

BS is represented by node vB , and the U users are represented

by nodes from v1 to vU . Let V = {vB , v1, . . . , vU} denote

the set of nodes. We denote Ψ = {ψB , ψU} as the set of

node types, where ψB and ψU represent the BS and user node

types, respectively. Let E = {emn | vm, vn ∈ V} denote the

set of edge weights, where emn ∈ R denotes the edge weight

between nodes vm and vn ∈ V . We consider a weighted cross-

type connectivity matrix [12] and model the transmission links

as graph edges between the graph nodes. To construct the

weighted graph, we consider the distances between the graph

nodes since the channel gain is a function of distance based on

(4). Let A ∈ R
1×U denote the cross-type connectivity matrix

between BS and user node types. For user node vu ∈ V , the

elements in the matrix between BS and users node types are

A [1 , u] = eBu = 1
dBu

. We apply the softmax function to

normalize the cross-type connectivity matrix as follows:

Â[1, u] = softmax(A[1, u]) =
exp (A[1, u])∑U
i=1 exp (A[1, i])

. (10)

Moreover, each node type of the graph has a feature matrix.

We use the location information of graph nodes and the users’

minimum data rate to construct the feature matrices. To define

the locations of nodes, we consider a three-dimensional (3-D)

Cartesian coordinate system. Let gu and gB ∈ R
3 denote the

geographical locations of user u ∈ U and BS, respectively. Let
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Fig. 2. The overall architecture of the proposed HGTN with heterogeneous graph G(V, E,Ψ) as input and system parameters {P,b} as output.

XψU
∈ R

U×4 and XψB
∈ R

1×3 denote the feature matrices

of user and BS node types, respectively. For each user node

vu ∈ V and BS node vB ∈ V , we define the feature matrices as

XψU
[u, :] =

[
gT
u , ru,min

]
and XψB

[1, :] = [gT
B ], respectively.

Motivated by [13], we propose a neighbour feature aggre-

gation module, which uses the cross-type connectivity matrix

to aggregate the feature information of user and BS node

types. This weighted-mean feature aggregation module takes

into account the structural information. We perform feature

aggregation for user and BS node types as X̂ψU
= ÂTXψB

and X̂ψB
= ÂXψU

, respectively. Then, we encode the

obtained features into one representation to define the ag-

gregated feature vectors for user node vu ∈ V and BS

node vB ∈ V as xagg
u,ψU

=
(
[X̂ψU

,XψU
][u, :]

)T

∈ R
7

and xagg
B,ψB

=
(
[X̂ψB

,XψB
][1, :]

)T

∈ R
7, respectively. Our

proposed neighbour feature aggregation module is performed

only once in the pre-training step and can be applied to large-

scale graphs with low computational complexity.

B. Feature Projection and Transformer-based Aggregation
Since a heterogeneous graph has multiple node types, nodes

can have feature information vectors with different dimensions

and different contents (e.g., location information, users’ min-

imum data rate). To this end, we apply a type-specific linear

transformation for each node type to project the aggregated

features into the same latent space. For the user node vu ∈ V
and BS node vB ∈ V , we have:

xFP
u,ψU

= WUx
agg
u,ψU

+oU , xFP
B,ψB

= WBx
agg
B,ψB

+oB , (11)

where WU ,WB ∈ R
ZFP×7, and oU ,oB ∈ R

ZFP are the

learnable projection weights for user and BS node types,

respectively, and ZFP is a constant dimension.
To capture the mutual information of different node

types, we leverage the self-attention mechanism [14]. In

heterogeneous graphs, different nodes have different impacts

on the feature information of other nodes. As a result,

by using the self-attention mechanism, we assign different

weights to different projected feature vectors. We first con-

catenate the projected feature vectors as matrix XFP =[
xFP
1,ψU

, . . . ,xFP
U,ψU

,xFP
B,ψB

]T
∈ R

(U+1)×ZFP . Then, for the

projected feature vector xFP
m =

(
XFP [m, :]

)T
of each node

vm ∈ V , we have:

qm = WQx
FP
m , km = WKxFP

m , vm = WV x
FP
m , (12a)

αmn =
exp

(
qT
mkn

)
∑

vt∈V exp (qT
mkt)

, vm, vn ∈ V, (12b)

xTA
m = β

∑
vn∈V

αmnvn + xFP
m , vm ∈ V, (12c)

where WQ,WK ∈ R
ZTA×ZFP , WV ∈ R

ZFP×ZFP , and

β ∈ R are the learnable parameters, and ZTA is a constant

dimension. Based on the obtained values, for each user node

vu ∈ V , and BS node vB ∈ V , we construct embedding vectors

xTA
u,ψU

= xTA
u and xTA

B,ψB
= xTA

U+1, respectively. To obtain the

target system parameters, the embeddings are used as input

for the type-specific DNNs.

C. Type-Specific DNNs and Loss Function Design

In the final step, we propose two type-specific DNNs to

determine the optimized system parameters for each node

type while guaranteeing the constraints in problem (9). As

illustrated in Fig. 2, the neural networks fU (·;WU , DU ) and

fB (·;WB , DB) are responsible for determining the precoding

matrices and ASB allocation for user and BS node types,

respectively. The last and the second last arguments of the

neural networks denote the number of layers and the set of

parameters for each neural network, respectively.

For the optimal precoding matrices, all the learnable param-

eters in the set WU are initialized as complex values. We first

feed the embedding vector xTA
u,ψU

of user node vu ∈ V to the

network with output vector pfU
u = fU

(
xTA
u,ψU

;WU , DU

)
∈

C
SNt . To satisfy the transmit power constraint C3, the output

matrix PfU =
[
pfU
1 , . . . ,pfU

U

]T
∈ C

U×SNt is fed through the

activation function P̂ =
√
PmaxP

fU /‖PfU ‖F . Finally, based

on the normalized values p̂u = (P̂[u, :])T for each user, we

construct the precoding matrix as follows:

Pu = [p̂u[1 : S], p̂u[S + 1 : 2S], . . . ,

p̂u[S(Nt − 1) + 1 : SNt]], u ∈ U . (13)

During the learning procedure, all the user nodes share

the same weights for feature projection, transformer-based

aggregation module, as well as the same neural network

architecture. As a result, once the proposed HGTN is trained,

it can be applied to systems with different number of users.

For the optimal ASB allocation, the embedding vector

xTA
B,ψB

of BS node vB ∈ V is fed to the network with

output vector bfB = fB

(
xTA
B,ψB

;WB , DB

)
∈ R

S . Next, to



satisfy constraints C1 and C2, we first normalize each element

of the output vector bfB as b̂[s] = σ(bfB [s])(btot − (S −
1)bg)/

∑
s′∈S σ(bfB [s′]). Finally, to determine the sub-band

bandwidth vector b, we feed each element of the normalized

vector b̂ to the activation function b[s] = bmax−ReLU(bmax−
b̂[s]), which ensures that each element is less than or equal to

bmax. During the learning procedure, constraint C1 is satisfied.

The learning algorithm is trained in a way in order to fully

utilize the available bandwidth to guarantee constraint C2.

We denote the set of all network parameters as Φ =
{WU ,oU ,WB ,oB ,WQ,WK ,WV , β,WU ,WB}. The QoS

constraint C4 is added to the objective function in problem

(9) as a penalty term. To train the proposed HGTN, we adopt

mini-batch gradient descent and define the loss function for

each training epoch as follows:

Lk(P,b;Φ) =
1

B

B∑
i=1

(
−

∑
u∈U

∑
s∈S

ru,s(i) (14)

+ ζk
∑
u∈U

ReLU
(
ru,min −

∑
s∈S

ru,s(i)
))

, k = 1, . . . ,K,

where Lk(·) is the loss function of the k-th training epoch,

B and K denote the size of the mini-batch and the number

of epochs, and ru,s(i) is the data rate of user u ∈ U using

sub-band s ∈ S for the i-th mini-batch sample. Moreover, the

penalizing coefficient ζk ≥ 0 is updated as follows:

ζk+1 = ReLU

(
ζk +

1

B

B∑
i=1

∑
u∈U

(
ru,min(i)−

∑
s∈S

ru,s(i)
))

.

(15)

The proposed HGTN is trained to minimize loss function

(14) using Adam optimizer [15] in an unsupervised manner.

Note that the channel model in (4) is only for generating

training samples. Once the network has been trained at the

BS, the locations and the users’ minimum data rate are fed

to the network to obtain the system parameters. The proposed

HGTN learning algorithm is summarized in Algorithm 1.

IV. PERFORMANCE EVALUATION

We simulate a MU-MIMO THz system where the (x, y, z)-
coordinates of the BS location in meters is (25,−20,−5).
Six users are randomly and uniformly distributed within a

rectangular area [0, 15] × [0, 25] in the (x, y)-plane with

z = −10. The ULA of the BS and ULA for each user are

configured parallel to the (y, z)-plane. As illustrated in Fig.

1, we consider the absorption coefficient values based on the

HITRAN database [11] for the standard atmosphere with a

water vapor density of 1.5 g/m3 and 15◦C temperature. Based

on the system setting and simulation parameters in Table I, we

generate 15,000 samples, where 12,000 samples are used for

training, and the remaining 3,000 samples are used for testing.

To implement the neural networks, we use the PyTorch library

and Adam optimizer [15]. The initial learning rate is set to

10−4. The constant dimensions ZFP and ZTA are 1024 and

256, respectively. We consider the fully connected networks in

the final step with two layers, and the hidden dimension unit

Algorithm 1 Proposed HGTN Learning Algorithm

1: Input: Graph G(V, E ,Ψ), feature matrices {XΨU ,XΨB}, ini-
tialize network parameters Φ, mini-batch size B, number of
training epochs K, initialize penalizing coefficient ζ0.

2: Perform pre-training neighbor feature aggregation.
3: Unsupervised Training:
4: for each epoch do
5: Project the input features into the same latent space using (11).
6: Capture the mutual information of the node types and combine

them by performing transformer-based aggregation using (12).
7: Calculate the loss function (14) by passing the embedding

values of each node type to the designed DNNs fU (·), fB(·).
8: Update Φ to minimize (14) using Adam optimizer [15].
9: Update penalizing coefficient using (15).

10: end for
11: Training Output Trained network with parameters Φ
12: Testing Phase:
13: Use the trained network with parameters Φ to solve problem (9).
14: Testing Output System parameters {P,b}.

TABLE I
LIST OF SIMULATION PARAMETERS

Parameters Value Parameters Value
S 5 fstart − fend 0.38− 0.4 THz

bmax, bg 4, 0.75 GHz [5] N0 −174 dBm/Hz [10]
Pmax 30 dBm ru,min 13 Gbps
Nt 12 Nr 2

GB , Gu 25, 15 dBi εuser, εBS 0.15 μm

is similar to the output dimension for each network. The mini-

batch size B and the number of training epochs K are set to

256 and 250, respectively. The initial penalizing coefficient ζ0
is equal to 12× 109. For performance comparison, we extend

the unsupervised DNN learning algorithm in [10] for the MU-

MIMO THz system to jointly optimize the precoding matrices

and ASB allocation in problem (9).

We first investigate the convergence of our proposed HGTN.

We show the system sum-rate of the HGTN and the baseline

versus the number of training epochs in Fig. 3(a). Results

show that our proposed HGTN learning algorithm has faster

convergence. It provides a system sum-rate that is 9.98%

higher than that of unsupervised DNN learning algorithm.

Fig. 3(b) shows that the penalizing coefficient ζk in (15)

converges to zero after 50 iterations, which implies that the

QoS constraint C4 is satisfied.

To examine the impact of MIMO signal transmission, we

plot the system sum-rate versus the number of antennas at the

BS, Nt, in Fig. 4. We observe that increasing Nt improves

the sum-rate for all the learning algorithms. This indicates

that optimal precoding design can provide users with high

data rates in THz systems. Moreover, Fig. 4 shows that the

performance improvement of the MU-MIMO THz system with

the proposed HGTN over the baseline scheme increases with

the value of Nt. In particular, when Nt is equal to 16, the

proposed HGTN achieves a system sum-rate that is 11.64%
higher than that of DNN learning algorithm.

Finally, to study the impact of ASB allocation, we com-

pare the system sum-rate by varying the maximum sub-band

bandwidth bmax. We also consider equal sub-band bandwidth

(ESB) allocation with HGTN, in which sub-bands have equal
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Fig. 3. (a) Convergence of the proposed HGTN and DNN learning algorithms.
(b) Convergence of the penalizing coefficient ζk for the QoS constraint C4.

bandwidth (i.e., 3.4 GHz) and the precoding matrices are

optimized by our proposed HGTN. In Fig. 5, by increasing

bmax, the system sum-rate for HGTN and DNN learning

algorithms is improved. This is because larger bmax offers more

flexibility for ASB allocation. Our proposed HGTN achieves

an 8.96% higher system sum-rate compared to ESB allocation

with HGTN. Additionally, by increasing bmax, our proposed

HGTN shows better performance compared to the DNN in

terms of system sum-rate. In particular, when bmax is equal to

4.5 GHz, the proposed HGTN achieves a 7.54% higher system

sum-rate compared to the DNN learning algorithm.

V. CONCLUSION

In this paper, we investigated the sum-rate maximization

problem in MU-MIMO THz systems. We studied the joint

optimization of precoding and ASB allocation. Since the

THz sub-band bandwidth is not known beforehand in ASB

allocation, accurate channel estimation is challenging. To

overcome this issue, we proposed an unsupervised HGTN

learning algorithm to solve the problem by bypassing the

channel estimation phase. Through simulations, we showed

that our proposed HGTN achieves a higher system sum-rate

with faster convergence compared to the unsupervised DNN

learning algorithm. We also demonstrated the system sum-

rate improvements obtained from using MIMO and ASB in

multiuser THz systems. In the journal version [16] of this

work, we study ASB allocation in reconfigurable intelligent

surface (RIS)-aided MU-MIMO THz systems.
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