
An Optimal Peak Hour Content Server Cache
Update Scheduling Algorithm for 5G HetNets

Manyou Ma and Vincent W.S. Wong
Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

email: {manyoum, vincentw}@ece.ubc.ca

Abstract—Most of the existing caching schemes assume that the
pushing of popular contents from the macro base station (MBS)
to content servers (CSs) is performed during off-peak hours when
the network traffic is low. However, since popular files, such as
breaking news, may also be generated during peak hours, per-
forming CS content update during peak hours is necessary. In this
paper, we propose an optimal cache content update scheduling
algorithm for heterogeneous networks (HetNets). The decision-
making module is located in the MBS. The action set includes
performing CS content update, letting the CSs simultaneously
serve user requests, and using the MBS to directly serve user
requests. The MBS aims to maximize the total throughput of
the system within the duration of the peak hour under the
uncertainty of the arrival of new user requests and the addition
of new files. We formulate the peak hour CS cache content update
scheduling problem as a Markov decision process and propose
an optimal cache content update scheduling algorithm based on
dynamic programming. We perform simulations and compare
our proposed optimal scheduling algorithm with the periodic
update and greedy scheduling heuristics. Simulation results show
that our proposed algorithm outperforms those two heuristics
under different scenarios.

I. INTRODUCTION

The fifth generation (5G) wireless communication networks
are expected to face a significant increase in data traffic com-
pared to the volume in the current networks [1]. To address this
challenge, caching in heterogeneous networks (HetNets) [2]
has been proposed. Under the HetNet architecture, a macrocell
consists one macro base station (MBS) and multiple small-cell
base stations with storage capacity acting as content servers
(CSs). During off-peak hours, when the data traffic is low, the
MBS can push popular contents to the CSs via a wireless
backhaul. During peak hours, when the network traffic is
high, multiple CSs can simultaneously serve user requests with
lower power consumption and higher throughput.

Previous research has studied different aspects of HetNet
caching. For instance, to predict future file popularity, Blasco
and Gunduz in [3] introduced a method based on the multi-
armed bandit model, and in [4], Hou et al. applied a transfer
learning-based approach. To achieve optimal cache content
placement throughout the CSs in the network, Sadeghi et al.
in [5] introduced a reinforcement learning-based algorithm for
the CS to choose a set of files to cache based on the file
popularity time-series. Maddah-Ali and Niesen in [6] studied
the optimal cache placement problem to reduce the backhaul
rate during peak hours. To optimize the content delivery phase,
Zhou et al. in [7] studied the optimal scheduling and power

allocation problem. The aforementioned works assume that CS
content placement and update can be performed during off-
peak hours, when the data traffic in the network is low and
the cost related to updating the CSs is negligible. In [8], Ding
et al. advocated the need for performing peak hour caching,
where CS cache contents are updated during peak hours,
because popular files, such as breaking news, are inevitably
generated during peak hours. Thus, spectral resources need
to be allocated periodically for CS content update. However,
during peak hours, when the user request rate is high, efficient
use of spectral resources is crucial for maximizing the system
throughput. The periodic CS content update with a fixed period
proposed in [8] may not be the optimal solution, and the joint
design of cache content updating and user-request scheduling
is necessary. In [9], Wang et al. studied the joint design of user
scheduling and content caching in a HetNet using the CS as a
relay. However, their solution assumed service of the current
user request finishes before the next request arrives, and hence
no buffering is required. Since many user requests may be
dropped without having queues or buffers to store incoming
user requests when the system user request rate is high, their
algorithm may not be adequate for peak hour scheduling.

A peak hour CS content update strategy should consider
real-time network status, such as the number of user requests
in the network buffer, to make scheduling decisions. As
discussed in [7], the challenge of scheduling in HetNets is due
to the heterogeneous structure of the network, which involves
choosing a coupled action between the MBS and CSs. In the
peak hour CS content update problem, another challenge is
to balance between the improvement in throughput in future
time slots, brought by pushing the new file to the CSs, and
the decrease in throughput in the current time slot, since
no user request is being served. To tackle these challenges,
in this paper, we propose an optimal peak hour CS content
update scheduling algorithm that aims to maximize the total
throughput of the system during peak hours based on an
Markov decision process (MDP) framework. The contributions
of our work are as follows:

• We formulate the peak hour CS content update problem
as a finite horizon MDP. We introduce multiple queues at
the CSs and the MBS to track the user requests that can be
handled either by CSs or MBS. In this model, the arrival
rates of different queues are dependent on the scheduling
decisions, and hence are not constant. Therefore, it cannot

be solved by conventional tools from queuing theory.
• We obtain the optimal scheduling policy for the MDP

problem and propose an optimal peak hour CS content
update algorithm based on dynamic programming.

• We perform simulation studies and show that our pro-
posed algorithm achieves a higher total throughput com-
pared to two heuristics under different scenarios.

The rest of this paper is organized as follows. The system
model is presented in Section II. An MDP-based problem
formulation for finding the optimal CS content update strategy
is described in Section III. The dynamic programming-based
solution and optimal scheduling algorithm are presented in
Section IV. Performance evaluations are presented in Sec-
tion V, and Section VI concludes the paper.

II. SYSTEM MODEL

Consider a network topology with one MBS and N small
cells, where each small cell n ∈ {1, . . . , N} has one CS
and Un users. The MBS is connected to the core network
via a high-speed backhaul wired link. The CSs are connected
to the MBS via a wireless backhaul. Similar to [7], [8], we
assume that the files in the system have the same size, and the
transmission of one file can be finished within one time slot1.
During off-peak hours or specified periods within the peak
hours, those files which are likely to become popular in future
time slots are pushed to the CSs using multicasting through
the wireless backhaul. We assume error-free transmission can
be achieved, hence each CS has an identical set of cached files.
We adopt the HetNet model in [7], where the CSs have dis-
joint coverage areas. Hence, they can transmit simultaneously
during a time slot with appropriate frequency reuse schemes.
However, since the MBS’s coverage area overlaps with those
of the CSs, the MBS and CSs cannot transmit simultaneously
without causing interference. At the beginning of a time slot,
the decision making module in the MBS makes a decision
by choosing one of the following actions: (a) stay idle, (b)
MBS performs CS content update via multicasting, (c) all N
CSs simultaneously serve user requests, and (d) MBS serves
a user request. A sample network topology with N = 3,
U1 = 2, U2 = 4, and U3 = 3 is shown in Fig. 1. The four
aforementioned actions are also depicted.

We use the following scheme to model the dynamics of
file popularity when a new file is generated. Before a new
file is generated, suppose that the files requested by users in
the HetNet belong to a finite set F = {f1, f2, . . . , fF }. The
probability that a user request corresponds to file fi is denoted
by P (fi), where

∑
fi∈F P (fi) = 1. We also call P (fi) the

popularity of file fi. We introduce set X = {f1, f2, . . . , fX},
where X ≤ F , to denote the set of files that are cached at
the CSs. Let Cl denote the probability that a user request
corresponds to a file that is cached in the CS. We have

Cl =
∑
fi∈X

P (fi). (1)

1This assumption can be relaxed by dividing a large file into multiple sub-
files, where each sub-file can be sent in one time slot.

Fig. 1: An example of a HetNet with one MBS and three CSs. The four
sample actions of the MBS are also shown. The green dashed lines represent
the MBS updates the CSs via multicasting. The blue solid lines represent the
CSs simultaneously serve user requests. The yellow dotted line represents the
MBS directly serves a user request.

This quantity is also called the cache hit probability in the
literature [8], which is the portion of user requests that can
be handled by CSs locally. After a new file fg /∈ F is
generated and has popularity G = Pnew(fg), the set Fnew =
F
⋃
{fg} represents the complete set of files requested by

users. After fg is generated, we set the popularity of fi as
Pnew(fi) = P (fi)(1−G), ∀ fi ∈ F , so that

∑
fi∈Fnew

P (fi) =∑F
i=1 Pnew(fi) + G = 1. Therefore, the cache hit probability

of the HetNet before file fg is being pushed to the CSs is

Clbefore =

∑
fi∈X Pnew(fi)∑F

i=1 Pnew(fi) +G
= Cl(1−G). (2)

After file fg is pushed to the CSs, the set of cached files
becomes Xnew = X

⋃
{fg}. The cache hit probability becomes

Clafter =

∑
fi∈Xnew

Pnew(fi)∑F
i=1 Pnew(fi) +G

= Clbefore +G. (3)

We ensure that the CSs have space to store the newly generated
file, by letting the CSs to set aside enough storage space
to accommodate the maximum possible amount of newly
generated files during the finite duration of the peak hour.
In the following sections, we will use equations (2) and (3) to
model the dynamics of the cache hit probability in a HetNet2.

III. MDP PROBLEM FORMULATION

In this section, we formulate the peak hour CS content
update scheduling problem as a finite-horizon MDP. We define
the decision epochs, states, actions, state transition probabili-
ties, and the rewards corresponding to the MDP problem. In
each decision epoch, the MBS makes a decision based on its
current state, with the goal of maximizing the total throughput
for the finite duration of the network’s peak hour.

A. Decision Epochs and States

1) Decision Epochs: We use T = {0, 1, 2, . . . , T − 1} to
represent the set of decision epochs of the system. In each
decision epoch, each user requests one of the available files

2We acknowledge this only models a simplified version of file popularity
dynamics. In practice, more realistic file popularity models can also be used
in place of (2) and (3) without modifications to other parts of our algorithm.

in the system independently, following a Bernoulli random
process with rate λu. New popular files are also generated
following a Bernoulli random process with rate λf .

2) File Popularity: We use a state variable Clt to denote the
cache hit probability in decision epoch t ∈ T . We discretize Clt
into Nc levels, as multiples of 1/Nc, to achieve a discrete state
space, where Clt ∈ C = {0, 1/Nc, 2/Nc, . . . , 1}. In decision
epoch t, let Gt denote the popularity of a newly generated
file, which will be added into the system in decision epoch
t+1. Let L = {0, L1, L2, . . . , LNf} denote the set of possible
popularity of new files in the system. Gt = 0 corresponds to
the case where the newly generated file will not be requested
by any user. Therefore, we also use Gt = 0 to represent
the case where no new file has been generated since the
last content update. For example, the set L = {0, 0.1, 0.2}
represents that the newly generated file in the system can have
a popularity of either 0.1 or 0.2. Since the arrival process of
newly generated files follows a Bernoulli process with rate
λf , Gt is independent from other state variables and has the
probability distribution

P(Gt) = (1− λf)I(Gt = 0) +
λf
Nf

I(Gt ∈ L \ {0}), (4)

where I(·) denotes the indicator function. Let Cgt ∈ L denote
the popularity of the latest generated uncached popular file in
decision epoch t.

3) Queues: For each CS, we introduce a request queue to
store user requests that can be served by that CS locally. We
also introduce a queue for the MBS to store the user requests
that must be served by the MBS directly. Therefore, we have
Nq = N+1 queues in total to track user requests. Let Qlocal

n,t ∈
Q = {0, 1, . . . , Qmax} denote the queue length corresponding
to the n-th CS in decision epoch t. The user requests are
stored in a buffer with finite size Qmax. When the finite buffer
is full, the newly arrived user request will be dropped. Let
Y local
n,t ∈ Yn = {0, 1, . . . , Un} denote the number of new user

requests for the n-th CS, which is added into Qlocal
n,t at the

beginning of decision epoch t. Let QMBS
t ∈ Q denote the

queue status that corresponds to the number of user requests
of contents which have not been cached by the CSs in decision
epoch t, hence need to be served by the MBS directly. Let
Y MBS
t ∈ Y = {0, 1, . . . , U} denote the number of new user

requests for QMBS
t , where U =

∑N
n=1 Un and it represents

the total number of users in the system.
4) Overall system state: The system state space is the

countable set S = C × L2 × QN+1 × Y1 × · · · × YN × Y .
The state vector st represents the overall state of the system
in decision epoch t, where

st =
(
Clt, Gt, C

g
t , Q

local
1,t , . . . , Qlocal

N,t , Q
MBS
t ,

Y local
1,t , . . . , Y local

N,t , Y MBS
t

)
, ∀ t ∈ T .

(5)

B. Actions and State Transition Probability

1) Actions: Given the state vector st, the decision making
module at the MBS chooses an action at ∈ At(st), where
At(st) represents the available action set in decision epoch

t. We have At(st) ⊆ A = {0, 1, 2, 3}, for t ∈ T , where the
MBS stays idle when at = 0, updates the newly generated file
to the CSs when at = 1, schedules the CSs to serve the user
requests when at = 2, and serves a user request from QMBS

t

when at = 3. The available action set in decision epoch t
depends on st, where action 1 ∈ At(st) if Cgt > 0, action
2 ∈ At(st) if

∑N
n=1Q

local
n,t > 0, and action 3 ∈ At(st) if

QMBS
t > 0.
2) State Transition of Y local

n,t and Y MBS
t : We use B(·) to de-

note the probability mass function of the binomial distribution

B(K, i, λ) =

(
K

i

)
λi(1− λ)(K−i), i = 0, 1, . . . ,K. (6)

Since Clt corresponds to the portion of user requests that can
be served by the CSs locally in decision epoch t, the number
of new user requests for the n-th CS Y local

n,t follows

P(Y local
n,t+1 | Clt) = B(Un, Y

local
n,t , λuC

l
t)I(Y

local
n,t ∈ Yn). (7)

Similarly, the number of new user requests for the MBS,
Y MBS
t , can be expressed as

P(Y MBS
t+1 | Clt) = B(U, Y MBS

t , λu(1− Clt))I(Y MBS
t ∈ Y). (8)

3) State Transition of Cgt : Given state variables Gt, C
g
t

and action at, the popularity of the most recently generated
uncached file in decision epoch t+ 1 is deterministic. That is,

P(Cgt+1 | st, at) = I(at 6= 1)I(Gt = 0)I(Cgt+1 = Cgt)

+ I(at = 1)I(Gt = 0)I(Cgt+1 = 0)

+ I(Gt > 0)I(Cgt+1 = Gt).

(9)

The first term considers the case when CS content update was
not performed in decision epoch t, and no new file is generated
in decision epoch t + 1. The second term considers the case
when CS content update was performed in decision epoch t
and no new file is generated in decision epoch t + 1. The
third term considers the case when a new file is generated in
decision epoch t+1, and becomes the most recently generated
popular file that has not been cached.

4) State Transition of Clt: Given state variables Gt, Clt , C
g
t ,

and action at, the cache hit probability in decision epoch t+1
is a deterministic value. That is,

P(Clt+1 | st, at) = I(at 6= 1)I(Gt = 0)I(Clt+1 = Clt)

+ I(at 6= 1)I(Gt > 0)I
(
Clt+1 = Clt(1−Gt)

)
+ I(at = 1)I(Gt = 0)I

(
Clt+1 = Clt + Cgt

)
+ I(at = 1)I(Gt > 0)I

(
Clt+1 = (Clt + Cgt)(1−Gt)

)
.

The first term considers the case when CS content update
was not performed in decision epoch t and no new content
is generated in decision epoch t + 1. Hence, the cache hit
probability remains the same in decision epoch t. The second
term considers the case when CS content update was not
performed in decision epoch t and a new file with popularity
Gt is generated, which corresponds to equation (2). The
third term considers the case when CS content update was
performed in decision epoch t and no new file is generated,

which corresponds to equation (3). The last term considers
the case when CS content update was performed in decision
epoch t and a new file is generated in decision epoch t+ 1.

5) Queue Dynamics: In decision epoch t + 1, the newly
arrived user request Y local

n,t is first added to the request queue
at the n-th CS. If the action at = 2, then one user request is
served and the queue length is reduced by one. We have

P(Qlocal
n,t+1 | st, at) = I

(
Qlocal
n,t+1 = min

(
Qlocal
n,t

+ Y local
n,t , Qmax

)
− I(at = 2)

)
.

(10)

Similarly, for the user request queue corresponding to the
MBS, we have

P(QMBS
t+1 | st, at) = I

(
QMBS
t+1 = min

(
QMBS
t

+ Y MBS
t , Qmax

)
− I(at = 3)

)
.

(11)

6) Overall State Transition Probability: Given the current
state vector st and action at, the state transition probability to
the next state st+1 can be written as

P(st+1 | st, at) = P(Clt+1 | st, at)P(Cgt+1 | st, at)

×
N∏
n=1

P(Qlocal
n,t+1 | st, at)P(QMBS

t+1 | st, at)

× P(Gt+1)

N∏
n=1

P(Y local
n,t+1 | Clt)P(Y MBS

t+1 | Clt).

(12)

C. Rewards and Optimal Policy

We consider the problem of maximizing the total throughput
during peak hours, where the throughput in each decision
epoch is used as the reward. This can be expressed as

r(st, at) =


0, if at = 0 or 1∑N
n=1 I(Q

local
n,t > 0) if at = 2

1, if at = 3.
(13)

In decision epoch t, the throughput of the network is zero
when the MBS stays idle or pushes a new file to the CSs.
When action at = 2, the CSs are scheduled to simultaneously
serve user requests, therefore the throughput corresponds to
the total number of CSs which have non-empty user request
queues. When action at = 3, the MBS serves one user request,
therefore the throughput is equal to one file per time slot.

Let π = {at(st),∀ st ∈ S, t ∈ T } denote a scheduling
policy for the formulated MDP problem, where at(st) is the
scheduling decision given the current state st. Let Π denote
the set of feasible policies, where at(st) ∈ At(st), for all
t ∈ T . Since Gt, Y local

1,t , . . . , Y local
N,t , and Y MBS

t are random
variables, we aim to determine the optimal scheduling policy
that maximizes the expected total throughput of the HetNet
over a finite horizon from t = 0 to T − 1. The optimal policy
π can be determined by solving the following optimization
problem

π∗ = arg max
π∈Π

E

{
T−1∑
t=0

r(st, at(st)) | π

}
. (14)

IV. FINITE HORIZON DYNAMIC PROGRAMMING

In this section, we present an algorithm which solves the
throughput maximization problem (14) by using backward
induction and dynamic programming [10]. Let Jt(s), ∀ t ∈ T ,
denote the functions representing the maximum expected total
throughput between decision epochs t and T − 1, when the
current system state is s, where s ∈ S. Jt(s) can be determined
by backward induction starting from t = T − 1 and back to
t = 0. At decision epoch T − 1, we have

JT−1(s) = max
aT−1∈A(s)

r(s, aT−1). (15)

For decision epochs t = T − 2, . . . , 0, we have

Jt(s) = max
at∈A(s)

[
r(s, at)

+
∑

st+1∈S
P(st+1 | s, at)Jt+1(st+1)

]
,

(16)

where the optimal policy of the MDP is π∗ = {a∗t (s), ∀ s ∈
S, t ∈ T }, where

a∗t (s) = arg max
at∈A(s)

[
r(s, at)

+
∑

st+1∈S
P(st+1 | s, at)Jt+1(st+1)

]
.

(17)

Using these optimality conditions, we have the following
monotonicity result.
Theorem 1: The expected throughput between decision
epochs t and T − 1, Jt(st), is monotonically non-decreasing
with respect to the buffer occupancy, QMBS

t , Qlocal
1,t , . . . , Qlocal

N,t .
Proof: (By induction) Consider state variable vectors s

and s+, where Qlocal
n ≤ Qlocal+

n , for all n ∈ {1, . . . , N}3,
QMBS ≤ QMBS+, and the other state variables being equal.
We define this relation as s+ < s. From equation (13), we
have r(s+, at) ≥ r(s, at), ∀ at, s+ < s. Therefore, from
equation (15), we have JT−1(s+) ≥ JT−1(s), ∀ s+ < s. Now
suppose Jt+1(s+) ≥ Jt+1(s), ∀ s+ < s, we would like to
show Jt(s

+) ≥ Jt(s), ∀ s+ < s. Suppose the optimal policy
in decision epoch t is a∗t (s), ∀ s ∈ S. We have

Jt(s)

= r(s, a∗t (s)) +
∑

st+1∈S
P(st+1 | s, a∗t (s))Jt+1(st+1)

(a)

≤ r(s+, a∗t (s))

+
∑

st+1∈S
P(st+1 | s, a∗t (s))Jt+1(Ps(st+1, s+ − s))

= r(s+, a∗t (s)) +
∑

s+t+1∈S

P(s+
t+1 | s+, a∗t (s))Jt+1(s+

t+1)

(b)

≤ r(s+, a∗t (s
+)) +

∑
s+t+1∈S

P(s+
t+1 | s+, a∗t (s

+))Jt+1(s+
t+1)

= Jt(s
+).

3For notation simplicity, we use Qlocalx
n and QMBSx to represent the

corresponding queue lengths of the state variable vector sx.

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0

1

2

3

(a) Cg
t = 1

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0 2 4 6 8

0
2
4
6
8

0

1

2

3

(b) Cg
t = 0

Fig. 2: Optimal actions in different decision epochs and combinations of user request queue lengths.

where we define Ps(·) : S × S 7→ S, Ps(s1, s2) = s3,
with Qlocal3

n = min(Qmax, Q
local1
n + Qlocal2

n), ∀ n, QMBS3 =
min(Qmax, Q

MBS1 + QMBS2), and the other state variables
being the same as s1. Since s+ < s, we have Ps(st+1, s+ −
s)) < st+1. Equation (13) and the induction assumption give
inequality (a). Inequality (b) is due to that a∗t (s

+) is the
optimal action.

Our proposed optimal cache content update scheduling
algorithm is shown in Algorithm 1. In the planning phase, the
MBS computes the optimal scheduling policies in different
decision epochs and stores them in a look-up table. In the
deployment phase, the MBS first uses the tracked and observed
information to determine its current state and then finds the
optimal scheduling policy from the look-up table. Based on its
observations in decision epoch t, the MBS updates the new file
generation and user request arrivals for decision epoch t+ 1.
The algorithmic complexity is O(T |S||A|2) [11], where | · |
represents the cardinality of a set.

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed optimal CS content
update scheduling algorithm. Unless specified otherwise, we
consider a HetNet with one MBS and three CSs. We set λu =
0.4 [requests/second] and λf = 0.1 [files/second]. The cache
hit probability is discretized into Nc = 20 levels. There are
two possible popularity levels of a newly generated file, i.e.,
L = {0, 0.1, 0.3}. The total number of decision epochs T =
100. The length of a time slot is one second. The file size is
100 MB. The maximum queue length is eight for all queues.
We compare the performance of our proposed algorithm with
two heuristics, which use different scheduling policies instead
of line 19 in Algorithm 1. For the periodic update heuristic
algorithm with period 1/λf , CS content update is performed
once every 1/λf decision epochs. In other decision epochs,
CS content update action is not allowed, and the action set is
Â(st) = A(st)\{1}. For the greedy algorithm, the scheduling
policy aims to maximize the throughput only in the current

Algorithm 1 Optimal Peak Hour Cache Content Update
Scheduling Algorithm

1: Planning Phase:
2: Set JT−1(sT−1), according to (15).
3: Set t := T − 2.
4: while t ≥ 0 do
5: Calculate Jt(st), ∀ st ∈ S according to (16).
6: Find the optimal action a∗

t (st), according to (17).
7: Set t := t− 1.
8: end while
9: Deployment Phase:

10: Set t := 0
11: while t ≤ T − 1 do
12: Track the MBS queue length QMBS

t .
13: Track the new arrivals at the MBS Y MBS

t .
14: for n = 1 to N do
15: Track Qlocal

n,t and Y local
n,t .

16: end for
17: Track Cl

t , C
g
t , and Gt.

18: Set st := (Cl
t, Gt, C

g
t , Q

local
1,t , . . . , Q

local
N,t , Q

MBS
t ,

Y local
1,t , . . . , Y local

N,t , Y
MBS
t).

19: Obtain at from the stored a∗
t (st) values.

20: Update the queue lengths based on the new arrivals
and action at, according to (10) and (11).

21: Update Y local
1,t , . . . , Y local

N,t , Y MBS
t , and Gt based on

observations in the current decision epoch.
22: Set t := t+ 1.
23: end while

decision epoch. In the case when there is only one CS that has
user requests to serve and the MBS also has user requests to
serve, the greedy algorithm randomly decides between letting
the MBS or CS serve a user request.

In Fig. 2, the optimal policies for Clt = 0.5, Qlocal
3,t = 0 and

different combinations of QMBS
t , Qlocal

1,t , and Qlocal
2,t are shown

for different decision epochs. From Fig. 2(a), we observe that
given the same combination of user request queue lengths, the
optimal policy varies in different decision epochs. Consider
the case when QMBS

t = 1 and Qlocal
1,t = Qlocal

2,t = 3. In decision
epoch t = 0, the optimal decision policy is to update the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

80

100

120

140

160

180

Optimal

Periodic

Greedy

Fig. 3: Comparison of the total throughput of the proposed optimal algorithm
vs. the heuristics under different initial cache hit probability.

CS content, while in decision epoch t = 99, the optimal
action is to serve a user request. This demonstrates the trade-
off between throughput in the current decision epoch and
the expected throughput in future decision epochs. Towards
the end of the peak hour, the optimal policy maximizes the
immediate reward, while at the beginning of the peak hour,
the optimal policy prioritizes future expected throughput.

Fig. 3 shows the average total throughput of all 100 decision
epochs against the initial cache hit probability Cl0. The pro-
posed optimal CS cache content update scheduling algorithm
outperforms the two heuristics in all settings. The throughputs
of all three algorithms become higher when Cl0 increases.
When the value of Cl0 is small, the throughput of the HetNet
at the beginning of the peak hour is lower, since more user
requests need to be served by the MBS directly.

Fig. 4 shows the average total throughput of the three algo-
rithms against the user request arrival rate λu. The proposed
algorithm outperforms the two heuristics in all settings. The
advantage is more apparent when the user request arrival rate
is higher. This justifies our initial assumption that the higher
λu is, the more critical the efficient use of spectral resources
becomes. On the other hand, when λu is low and the MBS
can handle all user requests on its own without the CSs, the
throughputs of all three algorithms become the same.

Fig. 5 shows the average total throughput of the algorithms
against the new file generation rate λf . We observe that the
throughputs of all three algorithms become lower as the new
file generation rate increases. This is because as more frequent
cache updates are being scheduled, the total number of user
requests being served is reduced.

VI. CONCLUSION

In this paper, we proposed an optimal cache content update
scheduling algorithm for HetNets. We formulated the CS
content update problem as an MDP problem and designed
an algorithm that maximizes the total throughput under the
uncertainty in the arrival of new user requests and file gen-
erations. The optimal scheduling policy was obtained using
dynamic programming. Based on the structure of the optimal
policy obtained in this paper, in our future work, we will apply
threshold-based policy to reduce the state-space, hence reduce
the amount of memory resource required to solve the MDP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

500

1000

1500
Optimal

Periodic

Greedy

Fig. 4: Comparison of the total throughput of the proposed optimal algorithm
vs. the heuristics under different user request arrival rate.

0.05 0.1 0.15 0.2 0.25 0.3
750

800

850

900

950

Optimal

Periodic

Greedy

Fig. 5: Comparison of the total throughput of the proposed optimal algorithm
vs. the heuristics under different of new file generation rate.

problem. We also plan to apply model-free techniques, such
as deep reinforcement learning, to accommodate unknown
system parameters, such as the user request arrival rates and
future file popularities.

REFERENCES

[1] V. W. S. Wong, R. Schober, D. W. K. Ng, and L. Wang, Key Technologies
for 5G Wireless Systems. Cambridge University Press, 2017.

[2] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–
8413, Dec. 2013.

[3] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. of IEEE Int’l Conf. on Commun.
(ICC), Sydney, Australia, Jun. 2014.

[4] T. Hou, G. Feng, S. Qin, and W. Jiang, “Proactive content caching by
exploiting transfer learning for mobile edge computing,” in Proc. of
IEEE Global Commun. Conf. (GLOBECOM), Singapore, Dec. 2017.

[5] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5G using reinforcement learning of space-time
popularities,” IEEE Trans. Sel. Areas. Signal Process., vol. 12, no. 1,
pp. 180–190, Feb. 2018.

[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[7] B. Zhou, Y. Cui, and M. Tao, “Stochastic content-centric multicast
scheduling for cache-enabled heterogeneous cellular networks,” IEEE
Trans. Wireless Commun., vol. 15, no. 9, pp. 6284–6297, Sep. 2016.

[8] Z. Ding, P. Fan, G. K. Karagiannidis, R. Schober, and H. V. Poor,
“NOMA assisted wireless caching: Strategies and performance analysis,”
IEEE Trans. Commun., vol. 66, no. 10, pp. 4854–4876, Oct. 2018.

[9] X. Wang, Y. Bao, X. Liu, and Z. Niu, “On the design of relay caching
in cellular networks for energy efficiency,” in Proc. of IEEE INFOCOM
Workshop, Shanghai, China, Apr. 2011.

[10] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1,
4th ed. Belmont, MA: Athena Scientific, 2017.

[11] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity of
solving Markov decision problems,” in Proc. of Conf. on Uncertainty in
Artificial Intelligence, San Francisco, CA, Aug. 1995.

