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Abstract—Decentralized federated learning (DFL) enables
clients to train a neural network model in a device-to-device
(D2D) manner without central coordination. In practical systems,
DFL faces challenges due to the dynamic topology changes, time-
varying channel conditions, and limited computational capability
of devices. These factors can affect the performance of DFL. To
address the aforementioned challenges, in this paper, we propose
a graph neural network (GNN)-based approach to minimize the
total delay on training and improve the learning performance
of DFL in D2D wireless networks. In our proposed approach,
a multi-head graph attention mechanism is used to capture
different features of clients and channels. We design a neighbor
selection module which enables each client to select a subset of its
neighbors for the participation of model aggregation. We develop
a decoder which enables each client to determine its transmit
power and CPU frequency. Experimental results show that our
proposed algorithm can achieve a lower total delay on training
when compared with three baseline schemes. Furthermore, the
proposed algorithm achieves similar performance on the testing
accuracy when compared with the full participation scheme.

I. INTRODUCTION

Federated learning (FL) is a distributed learning framework
that allows clients to cooperatively train a global model
under the coordination of a central server. The conventional
centralized FL schemes are vulnerable to single-point failure
since the central server has to be available for aggregating
the local models sent by the clients. Moreover, the wireless
links between the clients and the base station may sometimes
be unreliable due to fading and interference, which increases
the delay on training for FL. To address these challenges,
decentralized federated learning (DFL) [1] has emerged as an
alternative, leveraging device-to-device (D2D) wireless con-
nections and decentralized stochastic gradient descent. DFL
relies on the model exchange between clients without the
assistance of a central server. DFL has two distinct advantages.
First, it is robust to single-point failure due to its decentralized
structure. Second, DFL can reduce network congestion by
exploiting D2D communications between clients, rather than
relying solely on uplink transmissions to the central server.

However, DFL faces several challenges. First, clients need
to exchange model updates frequently in a decentralized
manner, which can lead to a longer convergence time than
the conventional centralized FL schemes. The long conver-
gence time can increase the communication and computation
resource usage. Second, the heterogeneity of devices and the
decentralized structure of DFL can reduce the convergence

rate. Clients with lower communication and computational
capabilities may become stragglers, which take longer time
than other clients to send their model updates to their neigh-
bors. They may reduce the frequency of model aggregation.
Furthermore, the decentralized structure of DFL results in
varying local models among clients. It can degrade the learning
performance. Third, due to mobility, clients can move around.
The associated D2D network topology may change over time.
This can further lead to a longer time for training.

Recent works on DFL mainly focus on the algorithm design
[2] [3] under the full participation schemes, where each client
performs aggregation by requesting the local models from all
of its neighboring clients. However, aggregating all neigh-
boring models can be time-consuming due to the straggler
issue. It can lead to a longer convergence time. Hence, an
alternative approach is to consider partial client participation
such that each client only selects a subset of its neighboring
clients for the participation of model aggregation. Wang et al.
in [4] proposed a matching decomposition sampling strategy.
However, the work did not consider the discrepancy among
clients’ local models. Due to the decentralized structure of
DFL, the local data samples of neighboring clients may not
represent the data distribution of all clients. Model discrepancy
exists across clients and therefore the DFL performance may
be affected. In addition, addressing the impact of DFL perfor-
mance under dynamic network topologies remains unexplored.
In this paper, we aim to propose an effective neighbor selection
and resource allocation approach for DFL to improve the
learning performance and reduce the total delay on training.

The recent advances in graph neural networks (GNNs)
enable them to be used as a tool for wireless network design
[5] [6]. GNNs can be implemented in a decentralized manner
to capture the properties of graphs. Some recent works have
explored the use of GNNs in FL. He et al. in [7] proposed
a serverless FL scheme for graph data. Wang et al. in [8]
proposed graph convolutional networks for client sampling in
FL. However, the aforementioned works did not consider the
impact of wireless links on the performance of DFL.

In this paper, we study the following problem: How to select
neighbors and allocate resources efficiently in a D2D network
to optimize the performance of DFL? The problem is chal-
lenging due to the impact of dynamic topology changes, time-
varying channel conditions, and heterogeneity of devices. We
propose a GNN-based approach to address the aforementioned



challenges. The contributions of this paper are as follows:

• We formulate a neighbor selection and resource allocation
problem for a DFL framework, which enables cooperative
model training among clients in a D2D network. The
formulated problem jointly minimizes the total delay on
training and the differences among local models of DFL.

• We design an attention-based GNN to capture the intrin-
sic properties of the D2D network and the local model
parameters. To achieve a good learning performance and
a low delay on training, the proposed GNN enables each
client to select its neighbors for model aggregation. It also
includes a module to determine the transmit power and
CPU frequency of each client. By training the GNN with
different network topologies and channel conditions, the
proposed GNN can adapt to different network settings.

• We conduct experiments using CIFAR-10 dataset to
compare our proposed algorithm with three baseline
schemes, including full participation, random sampling,
and a path-following FL algorithm [9]. Results show that
our proposed algorithm achieves a lower total delay on
training than the baselines and comparable average testing
accuracy as the full participation scheme.

The rest of the paper is organized as follows. The system
model and problem formulation are presented in Section II.
The proposed algorithm is presented in Section III. Simulation
results and performance comparison are shown in Section IV.
The conclusion is given in Section V.

Notations: We use boldface upper case and lower case letters
to denote matrices and vectors, respectively. RM×N denotes
the set of M×N real-valued matrices. 1 denotes the indicator
function, which is equal to 1 if the argument is true and
equal to 0 otherwise. |·|, ∥·∥, ∥, (·)⊺, and ⌊·⌋ denote the
cardinality, norm, concatenation, transpose, and floor function,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a D2D wireless network with N clients in a
given area. The DFL process iterates for R training rounds. To
capture the mobility of clients, we model the D2D network as a
time-varying directed graph Gr(V, Er), where V and Er denote
the set of clients (i.e., nodes) and the set of communication
links (i.e., edges) between clients in the r-th training round,
respectively. We assume that clients can move freely at the end
of each training round, while they remain stationary within
each training round. There is a communication link between
two clients when their signal-to-interference-plus-noise ratio
(SINR) is greater than or equal to a threshold Ω. The value
of Ω controls the node degree in the D2D network. The link
from client i to client j is denoted by (i, j) ∈ Er. We define
Ar ∈ {0, 1}N×N as the adjacency matrix in the r-th training
round with ari ∈ R1×N , i ∈ V , denoting the i-th row of matrix
Ar. We have ari,j = 1 if there is a link between clients i and
j. Otherwise, ari,j = 0. We define the set of neighbors of client
i in the r-th training round as N r

i = {j | j ∈ V, ari,j = 1}.

Fig. 1: An illustration of DFL executed under time-varying D2D network
topologies. Each client shares its model with its neighbors after local training.
In the r-th training round, client 2 sends its model θr

2 to client 1 and receives
the model θr

1 . In the (r + 1)-th training round, client 2 moves to another
location. It sends its model θr+1

2 to client 4 and receives model θr+1
4 .

1) Decentralized Federated Learning: Each client i ∈ V
has a local dataset Di with Di data samples. Let param-
eters θR

i ∈ Rd denote the local model of client i after
R training rounds. The loss function of the local model of
client i is Fi(θ

R
i ) = 1

Di

∑
z∈Di

ℓ(z;θR
i ), where ℓ(z;θR

i )

denotes the loss on data sample z ∈ Di with model θR
i .

Let θG denote the global model (i.e., ground truth). It is
defined as θG = 1∑N

j=1 Dj

∑N
i=1Diθ

R
i . Note that acquiring

θG in practical systems may result in high communication
delays. To minimize the empirical loss of the global model

1∑N
j=1 Dj

∑N
i=1DiFi(θG), each client shares its models with

its neighbors during model aggregation in each training round
to achieve a high degree of consensus [10].

The DFL process is depicted in Fig. 1. In the r-th training
round, client i trains its model locally with K stochastic
gradient descent (SGD) steps. We define client i’s model at
the k-th step as θr,k

i , 1 ≤ k ≤ K. It is updated as follows:

θr,k
i = θr,k−1

i − ηr∇Fi(θ
r,k−1
i ), (1)

where ηr and ∇Fi(θ
r,k−1
i ) denote the learning rate and the

gradient of the loss function of client i at the (k− 1)-th SGD
step in the r-th training round, respectively. After K SGD
steps in the r-th training round, client i’s local model is θr,K

i .
Then, clients exchange their models. In this work, each

client selects a subset of its neighboring clients to participate
in model aggregation (details to be presented in Section
III). We define the neighbor selection decision variable as
sri,j ∈ {0, 1}, which satisfies sri,j ≤ ari,j , i, j ∈ V . The
neighbor selection matrix for aggregation in the r-th training
round is Sr ∈ RN×N with sri ∈ R1×N denoting the neighbor
selection row vector of client i. We define the set of neighbors
that client i has selected for aggregation in the r-th training
round as N̂ r

i = {j | sri,j = 1, j ∈ V}. N̂ r
i is a set of indices

of non-zero elements in vector sri and set N̂ r
i ⊆ N r

i . Client i
then updates its local model by aggregating the local models
of its selected neighbors in the r-th training round as follows:

θr+1,0
i (sri ) ≜

∑
j∈N̂ r

i

⋃
{i}

ρrj,iθ
r,K
j , (2)

where ρrj,i ≜ Dj/
∑

n∈N̂ r
i

⋃
{i}Dn is the weight of the model

of client j when client i performs aggregation at the end of
the r-th training round. θr+1,0

i will then be used as the client
i’s model for local training in the (r + 1)-th training round.

The consensus distance measures the discrepancy between
the locally aggregated model and the global model [10].



Reducing the consensus distance is crucial for improving the
learning performance of DFL. We denote the consensus dis-
tance between the model of client i and the global model after
the r-th training round as Lgap,r

i (sri ) = ∥θr+1,0
i (sri )− θG∥22.

2) Training Delay: In DFL, each client needs to select its
neighbors, CPU frequency, and transmit power. The chosen
values affect the computation delay and communication delay.
The computation delay of a client is the time that the client
uses for local training. Let decision variable fri ∈ [fmin

i , fmax
i ]

denote the CPU frequency of client i in the r-th training round,
where fmin

i and fmax
i are the minimum and maximum CPU

frequency of client i, respectively. Let ci denote the number
of CPU cycles of client i required to process one bit of data.
Let ϵi denote the size of dataset Di (in bits). The computation
delay of client i in the r-th training round is T comp,r

i = ciϵiK
fr
i

.
When client i completes the local training in one training

round, it sends its updated local model to its selected neigh-
bors. Thus, the communication delay will be incurred. Let
decision variable pri ∈ [0, pmax

i ] denote the transmit power
of client i in the r-th training round, where pmax

i denotes
the maximum transmit power of client i. Let gri,j denote the
channel gain from client i to client j in the r-th training round.
At an arbitrary time instant t within the r-th training round,
we define the set of clients that are transmitting their updated
models as M(t) ⊂ V . The SINR of the link from client i to
client j at time instant t in the r-th training round is

ψr
i,j(t) =

|gri,j |2pri∑
k∈M(t)\{i}|grk,j |2prk + σ2

, (3)

where σ2 is the received noise power. The corresponding
achievable data rate at time instant t in the r-th training round
is Cr

i,j(t) = Blog2(1 + ψr
i,j(t)), where B is the bandwidth.

We consider a synchronized DFL scheme, where all clients
begin local training and perform model aggregation simultane-
ously1. Let τ r denote the time that client i begins to receive the
model from client j in the r-th training round. Let ξm denote
the size of the model (in bits). The corresponding communi-
cation delay is denoted as T tr,r

j,i . Due to selected neighbors’
different transmit power and channel gains, they may complete
sending model parameters to client i at different time instants.
Hence, the interference may change over time. Client i can
calculate the time instant of its selected neighboring client j to
obtain T tr,r

j,i . In particular, T tr,r
j,i satisfies

∫ τr+T tr,r
j,i

τr Cr
j,i(t) dt =

ξm. A new training round begins only when all clients have
received the updated models from their selected neighbors.
The communication delay of client i is defined as the total
time it takes to receive the models from its selected neighbors
in set N̂ r

i , which is T comm,r
i = maxj∈N̂ r

i
{T tr,r

j,i }.
Due to synchronous training, the total delay of the r-th train-

ing round is the sum of the maximum computation delay and
maximum communication delay, which can be represented as a

1Similar to [11], each client can have a scheduler which sends synchro-
nization messages to control the synchronization process. The size of a
synchronization message is small when compared with the size of model
update. Hence, the communication delay of synchronization is negligible.

function of the neighbor selection matrix, transmit power, and
CPU frequency of all clients. Let pr ≜ (pr1, p

r
2, . . . , p

r
N ) and

fr ≜ (fr1 , f
r
2 , . . . , f

r
N ) denote the vectors of transmit power

and CPU frequency in the r-th training round, respectively.
The delay on training in the r-th training round is given by
T r(pr, fr,Sr) = maxi∈V {T comp,r

i }+maxi∈V {T comm,r
i }.

We aim to jointly optimize the neighbor selection and
resource allocation decisions to minimize the total delay on
training and the consensus distance of DFL. Due to time-
varying topologies, the neighbor selection and resource allo-
cation decisions are independent across training rounds. Thus,
we decouple the optimization problem of all training rounds
into R optimization problems, one for each training round. In
the r-th training round, the problem can be formulated as

minimize
pr,fr,Sr

T r(pr, fr,Sr) +
λ

N

∑N

i=1
Lgap,r
i (sri ) (4a)

subject to sri,j ≤ ari,j , i, j ∈ V, (4b)

0 ≤ pri ≤ pmax
i , i ∈ V, (4c)

fmin
i ≤ fri ≤ fmax

i , i ∈ V, (4d)

where λ is a non-negative coefficient. Problem (6) aims to
determine the neighbor selection matrix Sr and the vectors
of transmit power pr and CPU frequency fr. Constraint (4b)
ensures that client i can send its model to its neighbor j only if
there is a communication link between them. Constraints (4c)
and (4d) ensure that each client adheres to the transmit power
and CPU frequency limit. Solving this problem is challenging
due to the coupling of the neighbor selection and resource
allocation decisions. In the next section, we propose a GNN
approach to solve problem (6) in a decentralized manner.

III. ALGORITHM DESIGN

We propose an attention-based GNN algorithm. The atten-
tion mechanism can help each client learn the features of its
neighboring clients and determine the importance scores of
them for selection. The proposed algorithm has four modules:
a client encoder, a parameter encoder, a neighbor selection
module, and a decoder, shown in Fig. 2. The client encoder
encodes the client features (i.e., maximum transmit power,
maximum and minimum CPU frequencies) and edge features
(i.e., channel gains) to capture the intrinsic properties of
the D2D networks. The parameter encoder generates em-
beddings of the model parameters. The neighbor selection
module determines the set of neighboring clients for model
aggregation. The decoder determines the transmit power and
CPU frequency of client i. Let Ñ r

i = N r
i

⋃
{i} denote the

modified neighboring set in the r-th training round. xndin,r
i =

(pmax
i , fmin

i , fmax
i ) ∈ R3 denotes the client i’s feature vector.

The edge feature xein,ri,j is the absolute value of the channel
gain of link (i, j) ∈ Er in the r-th training round, i.e., |gri,j |.

1) Client Encoder: We consider both node and edge fea-
tures. The node features describe the communication and
computational capabilities of devices. The edge features char-
acterize the channel gain which affects the communication
delay. The client encoder utilizes these two features to capture



Fig. 2: A schematic of our proposed algorithm.

the intrinsic properties of the network topology. It generates
the edge-enhanced embeddings with the following steps.

First, we use the z-score normalization to stabilize the gradi-
ents of GNN. Since each client aggregates features of different
magnitudes from its neighbors, local normalization is applied
to ensure that the mean and standard deviation of the features
are zero and one, respectively. The m-th normalized node
feature is xnd,ri,m = (xndin,ri,m − µnd,r

i,m )/σnd,r
i,m , 1 ≤ m ≤ 3, where

µnd,r
i,m and σnd,r

i,m are the mean and standard deviation of the m-
th feature of client i and its neighbors. The neighboring edges
of edge (j, i) are the set of edges from client i’s neighbors to
client i, which are defined as (k, i) ∈ Er, k ∈ N r

i \{j}. The
normalized edge feature is xe,rj,i = (|grj,i|−µ

e,r
j,i )/σ

e,r
j,i , where

µe,r
j,i and σe,r

j,i are the mean and standard deviation of (j, i)
and its neighboring edge features, respectively.

Second, the node and edge features are sent to the node
attention layer and edge attention layer to generate the node
and edge embeddings, respectively. In the graph attention
mechanism, the node attention score αr

i,j assesses the im-
portance of node j’s feature xnd,r

j to node i’s feature xnd,r
i .

Only the neighboring nodes and the corresponding edges are
considered when calculating the attention scores. The multi-
head attention mechanism is employed that uses a predefined
Kh independent sets of weights to encode the features. Then,
we compute the node attention scores to generate the node
embeddings. The kh-th set of node attention scores are

αr,kh

i,j =
exp(σ((and,kh)⊺[Wnd,khxnd,r

i ∥Wnd,khxnd,r
j ]))∑

k∈Ñ r
i

exp(σ((and,kh)⊺[Wnd,khxnd,r
i ∥Wnd,khxnd,r

k ]))
,

(5)
where σ(·) is a nonlinear activation function, which is a
leaky rectified linear unit in our proposed algorithm. and,kh ∈
R2dndo is the kh-th set of weights of the fully-connected
layer. Wnd,kh ∈ Rdndo×3 is the kh-th set of weights for the
node feature. dndo is the dimension of the node embedding
hnd,r
i , i ∈ V . Based on αr,kh

i,j , hnd,r
i is obtained by

hnd,r
i =σ

(
1

Kh

∑Kh

kh=1

∑
j∈Ñ r

i

αr,kh

i,j Wnd,khxnd,r
j

)
. (6)

Let And,r, Wnd,r, Xnd,r denote the Kh sets of weights
of fully-connected layers, Kh sets of weights for node fea-

tures, and all client features, respectively. We define matrix
Ãr = Ar+IN , where IN denotes the N ×N identity matrix.
Let ãri denote the i-th row vector of matrix Ãr. We represent
the node embedding generation process in (5) and (6) as a
function of And,r, Wnd,r, Xnd,r and ãri , which is hnd,r

i =
Att(And,r,Wnd,r,Xnd,r, ãri ), where And,r ∈ R2dndo×Kh ,
Wnd,r ∈ Rdndo×3×Kh , and Xnd,r ∈ R3×N . Let he,r

i ∈ Rdeo

denote the embedding of the edge (j, i), j ∈ N r
i . deo is

the dimension of he,r
i . By using the attention mechanism,

he,r
i can be expressed as he,r

i = Att(Ae,r,We,r,xe,r,ari ),
where Ae,r ∈ R2deo×Kh , We,r ∈ Rdeo×1×Kh . xe,r ∈ R|Er|

includes the edge features of all clients. The edge-enhanced
node embedding of client i is obtained by concatenating the
node and edge embeddings, which is hr

i = (hnd,r
i ∥ he,r

i ).
2) Parameter Encoder: The value of the loss function of

client i in DFL is a function of the model parameters of client i
and its neighbors. To obtain the information of local models,
we design a parameter encoder to generate the embeddings
of model parameters. It uniformly samples parameters based
on a ratio κ and uses the compressed parameters as input
for the parameter attention layer. Let Xpa,r ∈ R⌊κd⌋×N

denote the compressed model parameters of all clients. Let
hpa,r
i ∈ Rdpao denote the parameter embedding of client
i. dpao is the dimension of hpa,r

i . hpa,r
i can be obtained

by hpa,r
i = Att(Apa,r,Wpa,r,Xpa,r, ãri ), where Apa,r ∈

R2dpao×Kh , Wpa,r ∈ Rdpao×⌊κd⌋×Kh . We concatenate hr
i and

hpa,r
i as hmu,r

i = (hr
i ∥ hpa,r

i ). It is sent to the neighbor
selection module as input.

3) Neighbor Selection Module: When performing training
in DFL, the full participation scheme may incur high com-
munication delays. Thus, we propose a neighbor selection
module to determine which neighbors to be selected by each
client. The inputs to the module consist of the concatenated
embedding of a client and the embeddings of its neighbors.
They are concatenated and sent to the module sequentially.
The concatenated embedding of client i and its neighbor j is
hs,r
i,j = (hmu,r

i ∥ hmu,r
j ).

We apply a multi-layer perceptron module to determine
whether a particular neighbor is selected. The output selection
is bri,j = σs(W

s,r
i hs,r

i,j ), where Ws,r
i ∈ R2(dndo+deo+dpao)

denotes the weights of the neighbor selection module. σs(·) is
the sigmoid function that generates the normalized probability
vector. The module determines whether to select a neighbor for
model aggregation. For each neighboring client j ∈ N r

i , client
i determines the selection decision sri,j based on a pre-defined
threshold γ ∈ (0, 1). Since bi-directional model exchanges are
required for model aggregation in DFL, we have

sri,j = 1(bri,j ≥ γ and brj,i ≥ γ). (7)

After all neighbors’ embeddings have been sent to the
module, client i can generate the selection vector sri . The
neighbor selection matrix Sr can then be constructed.

4) Decoder: The decoder determines the transmit power
and CPU frequency for client i by using the edge-enhanced
embeddings generated by the encoders and the neighbor
selection vector generated by the neighbor selection module,



respectively. We define Ŝr = Sr + IN . ûr
i = (p̂ri , f̂

r
i ) denotes

the resource allocation decision of client i. It is obtained by

ûr
i = Att(Ând,r,Ŵnd,r,Hr, ŝri ), (8)

where Ând,r ∈ R4×Kh , Ŵnd,r ∈ R2×(dndo+deo)×Kh . Hr ∈
R(dndo+deo)×N contains the edge-enhanced embeddings of
all clients. Note that ûr

i may be infeasible. Hence, we add
a differentiable convex optimization (DCO) layer [12] to
the last part of the decoder to generate the feasible output
ur
i = (pri , f

r
i ) by solving the following problem:

minimize
ur

i

∥ur
i − ûr

i ∥22

subject to constraints (4c) and (4d).
(9)

5) Loss Function and Training Algorithm: We define the
loss function as a weighted sum of the delay and the consensus
distance. Given sri , the aggregated compressed parameters of
client i in the r-th training round can be represented by
xpa,r+1
i (sri ) =

∑
j∈N̂ r

i

⋃
{i} ρ

r
j,ix

pa,r
j . It is used to approxi-

mate the consensus distance between the full model parameters
of client i and the average of all model parameters after
neighbor selection. We define x̄pa,r = 1

N

∑N
i=1 x

pa,r
i . In order

to obtain x̄pa,r for training, we need to collect xpa,r
i , i ∈ V .

Since we use uniformly sampled parameters, the consensus
distance is given by Lgap,r

i (sri ) ≈ ∥xpa,r+1
i (sri )− x̄pa,r∥22/κ.

Since Lgap,r
i requires only xpa,r+1

i , i ∈ V , the communication
delay during GNN training can be minor. After we have
obtained the transmit power and CPU frequency, the total
delay of client i in the r-th training round is given by
T r
i = T comp,r

i + T comm,r
i . The loss function of client i is

Lr
i = T r

i + λLgap,r
i . (10)

To ensure that the proposed algorithm can adapt to differ-
ent network settings, we train our GNN in an offline and
unsupervised manner. We generate a set of D2D network
scenarios with topology changes and time-varying channel
conditions. Due to the small size of the neighbors’ node
features, compressed model parameters, and channel condi-
tions, each client collects these features in each scenario
with negligible communication delay. It then determines the
decision and sends the decision to its neighbors and the loss
of each client can be calculated. Let Ws,r = {Ws,r

i , i ∈ V}
denote the set of weights of the neighbor selection module.
Let Φr = {And,r,Ae,r,Apa,r, Ând,r,Wnd,r,We,r,Ws,r,
Wpa,r,Ŵnd,r} denote the set of parameters of GNN. Then
Φr is updated based on each loss. The adjacency matrix
serves as a mask matrix. It ensures that the weights of non-
neighboring clients are not considered during the update for a
particular client. Let Φ⋆,r denote the parameters of GNN after
training. The training algorithm is given in Algorithm 1.

IV. PERFORMANCE EVALUATION

We consider a scenario where the clients are randomly
located in a 2 × 2 km2 coverage area. To model the mobility of
clients, each client can move in an arbitrary direction. The trav-
eling distance of each client i ∈ V between two training rounds

Algorithm 1 Training Algorithm

Input: Normalized client features Xnd,r , normalized edge features
xe,r , compressed model parameters Xpa,r , total number of
training epochs Nep, pre-defined threshold γ, and initialized
parameters of GNN Φr .

1: for n = 1 to Nep do
2: Select a batch of network scenarios for training.
3: for i ∈ V do
4: Obtain sri and ûr

i based on eqns. (7) and (8).
5: Determine ur

i by solving problem (9).
6: Calculate the loss based on eqn. (10).
7: end for
8: Update Φr using the SGD optimizer.
9: end for
Output: Trained parameters of GNN Φ⋆,r .

Table I: List of key simulation parameters

Para. Value Para. Value Para. Value Para. Value
B 0.1 MHz Ω −25 dB Nep 200 ξm 160 kB
Kh 4 K 20 γ 0.4 λ 0.5
σ2 3.98× 10−13 mW ci 20 κ 0.03 R 300
dndo 3 deo 2 dpao 20 ϵi 2.61 MB

follows a uniform distribution △di ∼ U [0, 100m]. To depict
the heterogeneity of devices, the maximum transmit power
of each device i follows pmax

i ∼ U [6.667mW, 13.333mW].
The minimum and maximum CPU frequency of each de-
vice i follow fmin

i ∼ U [0.067GHz, 0.133GHz], fmax
i ∼

U [1.667GHz, 2.333GHz], respectively. We initialize the
transmit power and CPU frequency of each client to the
maximum value and implement our trained GNN. We consider
Rayleigh fading channel model. Each client can independently
generate their decisions and obtain the delay by recording the
wall clock time. Unless stated otherwise, the number of clients
N is set to 30. A list of key simulation parameters is given
in Table I. We use CIFAR-10 as the dataset and allocate the
same number of data samples to the local dataset of each client
in all cases. We adopt the convolutional neural networks with
three convolutional layers, two fully-connected layers, and a
dropout layer in DFL. We compare the performance of our
algorithm with the following baseline schemes:

• Random sampling DFL (RS-DFL) scheme: Neighbors
are randomly selected by each client based on a certain
ratio ζ, where 0 < ζ < 1. Then, the resources are
allocated using our proposed client encoder and decoder.

• Full participation DFL (FP-DFL) scheme: Each client
performs local aggregation based on the model obtained
from all of its neighbors. The power and CPU frequencies
are allocated to the clients using our pre-trained GNN.

• Path-following FL (PF-FL) scheme [9]: Problem (6) is
solved by using the centralized path-following algorithm
in [9] without the energy consumption constraint. The
algorithm uses the full participation scheme and itera-
tively solves the problem by transforming the nonconvex
problem into a computationally tractable convex form.

In Fig. 3, we compare the average testing accuracy of
all clients under different schemes. Results show that our
proposed algorithm outperforms the RS-DFL scheme when
ζ = 0.4 and 0.6. It achieves an average testing accuracy
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Fig. 3: Comparison of the average testing accuracy versus the number of
training rounds.
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comparable to FP-DFL, with a gap of only 1.3%. The PF-
FL and FP-DFL schemes have the same learning performance
since they both apply the full participation scheme.

In Fig. 4, we compare the total delay on training of our
proposed algorithm with the baselines. We choose ζ = 0.6 for
RS-DFL since Fig. 3 shows that RS-DFL can achieve similar
accuracy to our proposed algorithm at this sampling ratio. Fig.
4 shows that our proposed algorithm can achieve a lower total
delay than the other baselines. When N is equal to 50, our
proposed algorithm can achieve a total delay of 23.82% and
13.59% lower than FP-DFL and PF-FL schemes, respectively.
This indicates the effectiveness of partial participation. In addi-
tion, the total delay of our proposed algorithm is 6.71% lower
than the RS-DFL scheme. This is because the neighboring
clients are properly selected by the proposed algorithm.

In Fig. 5, we show the impact of parameter γ of the neighbor
selection module on the total delay on training and learning
performance of DFL. The value of γ controls the average
fraction of selected neighbors (i.e. 1

N

∑N
i=1

∥sri ∥1

∥ar
i ∥1

). When γ =

0.1, 0.4, and 0.9, the average fraction of selected neighbors
is 0.95, 0.67, and 0.12, respectively. Increasing γ within a
certain range can reduce the delay while maintaining the
average testing accuracy. When γ varies from 0.1 to 0.4, the
average testing accuracy remains stable and the training delay
decreases. This is because selecting fewer but proper neighbors
for each client leads to a lower delay and a relatively good
learning performance of DFL. Further increasing γ results
in a significant degradation in the average testing accuracy
since the limited number of selected neighbors for each client
hinders a good approximation of the global model.
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Fig. 5: Effect of γ on (a) the average testing accuracy and (b) the total delay
on training of the proposed algorithm.

V. CONCLUSION

In this paper, we proposed a GNN-based approach to
minimize the total delay on training and optimize the learning
performance of DFL in D2D networks. We developed an
attention-based GNN to determine the neighbor selection and
resource allocation decisions. Experimental results showed
that when compared with three baseline schemes, our proposed
algorithm achieves a relatively good learning performance but
with a significantly lower total delay on training. These results
showed the importance of neighbor selection in DFL. For
future work, we will consider minimizing the delay and energy
consumption of DFL in non-IID data settings.
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