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Abstract—Predictive analysis of wireless cellular traffic plays
an important role in network resources provisioning. Accurate
traffic prediction is a challenging task due to the dynamic
spatial-temporal nature of wireless traffic. Most of the existing
approaches do not consider spectral domain information for
wireless traffic prediction. Some of the approaches cannot capture
the spatial dependencies between neighbouring and distant cells.
In this paper, we propose a dynamic Bernstein graph recurrent
network for traffic prediction in wireless cellular networks. First,
we design a spectral dynamic graph construction (SDGC) method
to model the spatial dependencies between cells as a dependency
graph in a data-driven fashion. A dynamic Bernstein polynomial
filtering (DBPF) scheme based on the K-order Bernstein poly-
nomial approximation is then developed to capture the spatial
correlations and infer the cell-specific parameters. To predict
the spatial-temporal traffic demands, we propose a dynamic
Bernstein graph recurrent network (DBGRN), which integrates
the proposed DBPF module with a gated recurrent unit (GRU)
network. We evaluate the performance of our proposed model
using a real-world dataset. Results show that our proposed
model outperforms four state-of-the-art baseline schemes, and
achieves up to 8% and 10% improvements in terms of the root
mean squared error (RMSE) and mean absolute error (MAE),
respectively.

I. INTRODUCTION

With the advancement of the fifth generation and beyond

(B5G) wireless systems, fine-grained analysis of wireless

traffic is a fundamental building block for optimizing network

resources and supporting different use cases. As an example,

proactive monitoring of wireless traffic enables mobile service

providers to partition network resources by using network

slicing and network functions virtualization. This results in

an improvement of the spectral and energy efficiencies.

The accuracy of traffic prediction depends on several con-

tributing factors. First, the traffic demand of users can vary

substantially. As shown in Fig. 1, the Internet traffic in three re-

gions of Milan, Italy, exhibit dynamic patterns in the temporal

domain [1]. Other factors such as time periods (e.g., holidays

vs. weekdays, peak hour vs. off-peak hour) and usage of

different types of mobile applications (e.g., streaming videos,

social networks) have an impact on traffic patterns [2]. Second,

user mobility introduces spatial dependencies in the traffic data

between neighbouring cells. Moreover, geographically distant

areas may exhibit similar traffic patterns [3]. This implies

that physical proximity may not always provide sufficient

information on spatial dependencies between cells.

To address the aforementioned challenges, data-driven ap-

proaches have been proposed in the literature. Recurrent neural

Fig. 1. Illustration of dynamic patterns of Internet traffic service at randomly
selected cells in three regions of Milan, Italy, for the duration of one week.
The dataset is from Telecom Italia [1].

networks, such as long short-term memory (LSTM) model [4],

have been utilized to capture the long-term temporal depen-

dencies. Convolutional neural network (CNN)-based methods

have been proposed to capture the local spatial relationships

[5]. In [6], a deep 3D residual convolutional network is pro-

posed to capture the local spatial-temporal features. It is fol-

lowed by an attention-aided convolutional LSTM network to

learn the long-term spatial-temporal dependencies. However,

the CNN-based models can only extract spatial dependencies

between neighbouring cells.

Recently, a new line of research focuses on graph neural

networks (GNNs) with applications to different domains, in-

cluding traffic prediction [7], [8]. Some recent works have

exploited graph convolutional network (GCN) architecture [9],

which utilizes the first-order Chebyshev polynomial expansion,

to approximate the graph convolutional operation [10], [11].

In [10], the handover data is used to design a pre-defined

graph structure. An integration of the GCN architecture with

the gated recurrent unit (GRU) is proposed to capture the

spatial-temporal dependencies. Moreover, different methods

have been proposed to obtain the graph structure. In [3],

the dynamic time wrapping algorithm is utilized to construct

a weighted graph. An attention-aided recurrent network is

proposed to capture the spatial-temporal dependencies. A

collaborative global-local learning strategy is then developed

to improve the training performance. In [12], a multi-view

spatial-temporal graph network is proposed, which captures

various local and global spatial-temporal correlations by using

multi-head attention mechanism.

In spite of the favourable results of the aforementioned

models, several challenges have yet to be addressed. First,

the GCN architecture serves as a low-pass filter by using

a polynomial spectral graph filtering scheme. However, the



GCN architecture may not be feasible for large-scale wireless

systems. This is because more high-level filter structures,

such as narrow-band and comb filters, are required to capture

the dynamic traffic patterns. Moreover, pre-determined graph

construction methods based on similarity measures undermine

the ability to infer the spatial dependencies [7]. To tackle these

challenges, in this paper, we propose a graph recurrent neural

network for wireless cellular traffic prediction. The proposed

model utilizes the information in the spatial, temporal, and

spectral domains. The main contributions of this paper are

summarized as follows:

• Construction of the Dependency Graph: To characterize

the spatial dependencies between cells, we propose a

spectral dynamic graph construction (SDGC) method to

model the network topology as a graph structure. The

proposed SDGC module extracts the cell dependencies

by leveraging the discrete Fourier transform (DFT) and

GRU in the frequency domain. It then uses self-attention

mechanism to determine the connections between each

pair of cells in a data-driven fashion.

• Spatial-Temporal Traffic Prediction: We develop a dy-

namic Bernstein polynomial filtering (DBPF) module

to infer the spatial dependencies and learn the cell-

specific parameters dynamically by utilizing the K-order

Bernstein polynomial expansion. We propose a dynamic

Bernstein graph recurrent network (DBGRN), which inte-

grates the developed DBPF module with a GRU to predict

the spatial-temporal traffic demands.

• Performance Evaluation: We evaluate the performance of

our proposed model by conducting extensive experiments

using a real-world dataset. The results show that our

proposed model outperforms four state-of-the-art baseline

models, and achieves up to 8% and 10% improvements

in terms of the root mean squared error (RMSE) and

mean absolute error (MAE), respectively. Furthermore,

we demonstrate the performance gain of using the K-

order Bernstein polynomial expansion over the K-order

Chebyshev polynomial expansion. We also show the

importance of incorporating spectral domain information

in graph dependency construction.

The remainder of this paper is organized as follows. In Sec-

tion II, we present the problem formulation and our proposed

model. In Section III, we provide the performance evaluation

of the proposed model and comparisons via experiments.

Conclusions are given in Section IV.

Notations: In this paper, we use R to denote the set of real

numbers. We use (·)T to denote the transpose of a vector or

matrix. i represents the imaginary unit satisfying the equation

i2 = −1. We use � for element-wise product. We use boldface

upper-case letters (e.g., X) to denote two-dimensional matri-

ces or multiple-dimensional tensors and boldface lower-case

letters (e.g., x) to denote vectors. We use ∗ to denote the graph

convolutional operation. IN represents the identity matrix of

size N . We use [·] to denote the concatenate operation. We use

⊗ to denote the tensordot as a multi-dimensional operation.

II. SYSTEM MODEL AND PROPOSED MODEL

In this section, we first present the system model and

the wireless traffic prediction problem. Then, we present our

proposed model. We describe the construction process of

the dependency graph between cells by using the proposed

SDGC method. Next, we present the DBPF module, which can

capture the spatial dependencies and infer the cell-specific pa-

rameters. Finally, we propose the DBGRN framework, which

can predict the spatial-temporal wireless traffic.

A. System Model

Consider a geographical area is served by N cells or base

stations. Let V = {v1, v2, . . . , vN} denote the set of cells.

Let T = {1, . . . , T} denote the set of time steps, where T
represents the total number of time steps. Let xn

t denote the

traffic volume of cell vn ∈ V in time step t ∈ T . We denote

the traffic vector for cell vn as xn = (xn
1 , . . . , x

n
T ) and the

traffic vector observed in time step t as xt =
(
x1
t , . . . , x

N
t

)
.

The network topology is modeled as an undirected weighted

graph G(V, E), where V is the set of cells (or nodes) and

E = {(vm, vn) | vm, vn ∈ V} is the set of edges. Let

A ∈ R
N×N denote the adjacency matrix of graph G, with

each element Am,n corresponding to the weight of an edge

between nodes vm and vn. The adjacency matrix A can either

be pre-determined or learned in a data-driven fashion. We will

describe the latter case in Section II-B.

The traffic prediction problem can be formulated as approx-

imating a function M which maps P steps of historical traffic

data onto the next Q steps of traffic data as follows:

(xt−P+1, . . . ,xt)
M(Θ)−−−−→ (xt+1, . . . ,xt+Q) , (1)

where Θ denotes the parameters of the prediction model M.

Let C denote the number of samples in the training dataset.

We define the temporal traffic tensor X ∈ R
C×N×P and the

output tensor Y ∈ R
C×N×Q, where Xc,n,: denotes the P

steps of traffic data of cell vn from the c-th sample and Yc,n,:

is the associated next Q steps of traffic data.

The parameters Θ can be determined by minimizing the

prediction error over all cells in the training dataset. The

problem can be formulated as:

argmin
Θ

1

CN

C∑
c=1

N∑
n=1

L (M (Xc,n,:; Θ) ,Yc,n,:) , (2)

where L is a pre-defined loss function. In this paper, we con-

sider the L1 loss function, i.e., L =
∑Q

q=1 |Y′
c,n,q −Yc,n,q|,

where Y′
c,n,q is the output of prediction model M.

B. Construction of the Dependency Graph

The graph-based approaches require a dependency graph to

characterize the spatial dependencies between different cells in

the first step. Note that the pre-determined graph structures,

which rely on either similarity measures or distance functions,

cannot infer the spatial correlations between neighbouring and

distant cells effectively. To address this issue, we propose a

SDGC method to model the spatial dependencies between
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Fig. 2. Illustration of the proposed dynamic Bernstein graph recurrent network (DBGRN). (a) Spectral dynamic graph construction (SDGC): The temporal
traffic tensor X is converted into the frequency domain and the cell dependencies are inferred. The self-attention mechanism determines the weight of edge
connections between cells. The output is the adjacency matrix A. (b) Dynamic Bernstein graph recurrent network (DBGRN): Given the temporal traffic tensor
X and the adjacency matrix A, the DBPF module captures the spatial dependencies and learns the cell-specific parameters dynamically. The GRU network
extracts the temporal dependencies and predicts the future traffic demands Y′.

neighbouring and distant cells as a graph structure in a data-

driven fashion. We use the auto-correlation between different

traffic data observations in the spectral domain to construct

the dependency graph. First, DFT is used to convert the

temporal traffic tensor X into the frequency domain, where

X̂ ∈ R
C×N×P represents the spectral traffic tensor. Given

the c-th sample for cell vn, the DFT operation transforms a

vector Xc,n,: with P time steps into another vector X̂c,n,: with

P values as follows:

X̂c,n,k =

P∑
p=1

Xc,n,pe
−i 2π

P kp, k = 1, . . . , P, (3)

where X̂c,n,k denotes the k-th transformed traffic data volume

of the c-th sample for cell vn ∈ V in the frequency domain.

The spectral traffic tensor X̂c,n,k consists of the real and

imaginary parts. We have

X̂ = Re{X̂}+ i Im{X̂}. (4)

As shown in Fig. 2(a), each part of the spectral traffic tensor

X̂c,n,k is fed into an individual GRU network to learn the

hidden spectral dependencies. The outputs X̂R and X̂I ∈
R

C×N×H represent the hidden state corresponding to each

converted data sample, where H denotes the dimension of

the hidden state. Subsequently, we construct a new tensor

X̃ = X̂R + i X̂I . We then use the inverse discrete Fourier

transform (IDFT) to transform X̃ back to the time domain,

where tensor Z ∈ R
C×N×H represents the transformed tensor.

Similar to (3), given the c-th sample for cell vn, the IDFT

operation transforms vector X̃c,n,: with H time steps into

another vector Zc,n,: with H values as follows:

Zc,n,t =
1

H

H∑
h=1

X̃c,n,he
i 2π
H ht, t = 1, . . . , H, (5)

where Zc,n,t represents the t-th transformed hidden state value

of the c-th sample for cell vn ∈ V in the time domain. We

then take the average along the first dimension to determine

the hidden state traffic matrix Z̄ ∈ R
N×H as follows:

Z̄ =
1

C

C∑
c=1

Zc,:,:. (6)

In the next step, to determine the weights of graph edges be-

tween cells, we use the self-attention mechanism by initializing

two learnable projection matrices P1 and P2 ∈ R
N×H . The

linear projection of the hidden state traffic matrix is defined

as follows:

Z1 = Z̄PT
1, (7a)

Z2 = Z̄PT
2. (7b)

We further compute the importance score between each pair

of cells by the multiplicative attention as follows:

S = RLReLU

(
Z1Z

T
2√

H

)
, (8)

where the element Sm,n in matrix S corresponds to the

importance score of cell vm with respect to cell vn. The

randomized leaky rectified linear unit (RLReLU) function in

(8) is defined as follows:

RLReLU(u) =

{
u, u ≥ 0

au, u < 0
, (9)

where a is randomly sampled from uniform distribution

U [α, β] and α, β ∈ [0, 1). Unlike the rectified linear unit

(ReLU) function that keeps only nonnegative values, RLReLU

considers both strong and weak connections between cells.

This enables the creation of a dense graph with more infor-

mation. Finally, we normalize the importance score matrix S



by applying a softmax function to obtain the adjacency matrix

A of graph G:

Am,n = softmax(Sm,n) =
eSm,n∑N
j=1 e

Sm,j

. (10)

The projection matrices P1 and P2 as well as the weights of

the GRU networks are updated dynamically through time via

backpropagation algorithm during the learning process. Thus,

we can obtain the adjacency matrix of graph G without any

prior knowledge.

C. Spatial Dependencies Between Cells
To capture the spatial dependencies between cells, graph

convolutional operation can be used within the context of

graph-based approaches. Let D denote the diagonal degree

matrix with the (m,m)-th element equals to the sum of the m-

th row of the adjacency matrix A. That is, Dm,m =
∑

n Am,n.

The graph Laplacian matrix is defined as L = D − A. The

normalized graph Laplacian matrix can be obtained as L̃ =
D−1/2LD−1/2 ∈ R

N×N . To perform the graph convolutional

operation, the eigenvectors of the normalized graph Laplacian

matrix L̃ are used as a set of bases to transform the graph data

into the frequency domain. However, performing eigenvalue

decomposition on the normalized graph Laplacian matrix L̃
to obtain the eigenvectors has a computational complexity of

O(N3) [9]. This high cost limits the use of graph convolutional

operation for traffic prediction in practical wireless systems

with a large number of cells.
Some recent works have considered the use of graph spectral

filtering with polynomials, namely Chebyshev polynomial,

in traffic forecasting problem. This approach can reduce the

computational complexity to O(N2). The GCN architecture in

[9] exploits the first-order Chebyshev polynomial, which ap-

proximates the graph convolutional operation as a polynomial

filtering scheme to capture the spatial dependencies. However,

the GCN architecture only performs as a low-pass filter. It

may not be able to capture complex spatial dependencies. Due

to the dynamic nature of wireless traffic patterns, other filter

structures, such as narrow-band and comb filters, are required.

To tackle this issue, we use the K-order Bernstein polynomial

approximation to capture the spatial dependencies. The K-

order approximation of the Bernstein polynomial is capable of

learning arbitrary spectral filters, including the band-rejection

and comb filters. Based on the K-order approximation of

Bernstein polynomial in [13], we propose a DBPF module

to capture the spatial dependencies and infer the cell-specific

parameters dynamically. Let O ∈ R
C×N×Q denote the output

of the DBPF module. The output of the DBPF module can be

determined as follows:

O = B(W,K) ∗X =

K∑
k=0

1

2K

(
K

k

)
(E1 ⊗E2) , (11)

where E1 = (2IN −L)K−kLk and E2 = X⊗W:,k+1,:,:. The

elements in tensor W ∈ R
N×(K+1)×P×Q are the learnable

filter weights, and W:,k+1,:,: ∈ R
N×P×Q denotes the (k+1)-

th tensor along the second dimension.

To learn the filter weights, we assign a particular set of

parameters Wn,:,:,: ∈ R
(K+1)×P×Q to each cell vn. The

dynamic patterns of all traffic data can be learned by shar-

ing these parameters among all cells. This process enables

each cell to learn its specific patterns from a set of shared

parameters dynamically over time. However, the number of

cells N can be large in practical wireless systems. Thus,

W ∈ R
N×(K+1)×P×Q would have a large number of param-

eters to train, which may lead to the overfitting problem. To

address this issue, we use the matrix factorization technique,

which yields a smaller set of parameters to learn. In particular,

we use the same projection matrices P1 and P2 in (7a) and

(7b) to generate tensor W using tensordot operation. That

is, W = (P1 � P2) ⊗ F, where F ∈ R
H×(K+1)×P×Q

is a learnable tensor and H is the same hidden dimension

as in (5). Since H << N , tensor F with a smaller set of

parameters can be trained during the learning process. Com-

pared with the approach in [7], which uses the enhanced first-

order Chebyshev polynomial approximation, our proposed

DBPF module captures the complex spatial dependencies and

learns the dynamic cell-specific patterns by fine-tuning the

approximation order.

D. Spatial-Temporal Traffic Prediction

To further extract the temporal dependencies, we use GRU

which can learn the long-term dependencies among sequential

data. As shown in Fig. 2(b), we integrate the proposed DBPF

module with the GRU to obtain the DBGRN framework,

which can capture both the spatial and temporal dependencies

simultaneously. In time step t ∈ {1, . . . , P}, we have:

P = P1 �P2, (12a)

zt = σ (B (P⊗ Fz,K) ∗ [Xc,:,t,ht−1] +PVz) , (12b)

rt = σ (B (P⊗ Fr,K) ∗ [Xc,:,t,ht−1] +PVr) , (12c)

ĥt = tanh
(
B
(
P⊗ Fĥ,K

)
∗ [Xc,:,t, rt � ht−1] +PVĥ

)
,

(12d)

ht = zt � ht−1 + (1− zt)� ĥt, (12e)

where Xc,:,t and ht are the input and output, respectively.

The variables rt and zt are the reset gate and update gate,

respectively. σ(.) is the sigmoid function and tanh(.) is the

hyperbolic tangent function. P1,P2,Fz,Fr,Fĥ, as well as

Vz,Vr, and Vĥ ∈ R
H×Q are the learnable parameters of the

model, which can be trained via backpropagation algorithm

through time. For the purpose of multi-step prediction (i.e,

Q > 1), we stack multiple layers to learn the long-term spatial-

temporal patterns, and use linear projection to predict the next

Q steps of wireless traffic data.

III. PERFORMANCE EVALUATION AND COMPARISON

We apply our proposed model to a real-world dataset

representing the mobile traffic volume provided by Telecom

Italia [1] in the city of Milan. The Milan area is divided

into 10, 000 cells. In the dataset, three types of cellular traffic

services, namely: short message service (SMS), call service,

and Internet service, are collected from Nov. 1, 2013 to Jan.



1, 2014 in 10-minute intervals. Since many cells have zero

traffic volume in the 10-minute time intervals, we aggregate

the traffic into hourly intervals. We use the mean absolute

error (MAE) and root mean squared error (RMSE) as metrics

to evaluate the performance of the prediction models.
We compare the performance of our proposed prediction

model with the following baseline models:

• LSTM [4]: The LSTM model in [4] uses multiple LSTM

units for mobile traffic prediction.

• Spectral-temporal graph neural network (StemGNN) [8]:

The StemGNN model is designed for multivariate time-

series forecasting. It uses the graph Fourier transform,

DFT and deep neural networks to capture inter-series

correlations and intra-series dependencies jointly in the

spectral domain.

• Multi-view spatial-temporal graph network (MVSTGN)

[12]: The MVSTGN combines multi-head attention and

convolution mechanisms, to learn the spatial-temporal

characteristics of the wireless data.

• Adaptive graph convolutional recurrent network

(AGCRN) [7]: The AGCRN model combines the

enhanced GCN architecture with GRU to capture the

spatial-temporal dependencies.

Without loss of generality, we randomly select 700 cells

and conduct experiments on three types of traffic services. The

proposed DBGRN framework has two layers. Each layer has

128 hidden neurons. We choose α = 0.1 and β = 0.4 in the

RLReLU function. The hidden state dimension H is set to 2.

We use Adam optimizer to update our model with a learning

rate of 0.025. We choose P = 5 and Q = 1. We use min-

max normalization technique to scale the data to be within the

range of [0, 1]. After performing all the operations, the values

are scaled back to the original ones. For each service type, we

use the first six weeks data to train the prediction models. The

data in the seventh week is used as the validation set. We use

the traffic data from the last week for testing.
1) Performance Comparison: Table I presents the exper-

imental results of different models for three types of traffic

services. The results show that our proposed model out-

performs all four baseline models for both metrics with a

significant margin. The AGCRN baseline [7] is the second

best-performing model. In particular, our proposed model

can achieve 9.6% (SMS), 7.29% (call) and 9.16% (Internet)

improvements in terms of the MAE when compared with

AGCRN. Moreover, our proposed model provides 5.55%,

8.33%, and 6.5% improvements on RMSE in SMS, call and

Internet services, respectively, when compared with AGCRN.
In Fig. 3, we plot the ground truth and predicted val-

ues obtained by our proposed model and AGCRN [7] at a

randomly selected cell for the duration of one week. The

results show that the dynamics of the ground truth traffic

curve is well-captured by our proposed model, especially at

the peaks and troughs. Our proposed model considers the

information in the spatial, temporal, and spectral domains.

In particular, the proposed SDGC module uses the spectral

information of traffic data to model the spatial dependencies

TABLE I
PREDICTION PERFORMANCE COMPARISONS AMONG DIFFERENT MODELS.

SMS Call Internet
Models MAE RMSE MAE RMSE MAE RMSE
LSTM 14.57 50.51 15.93 52.53 84.40 222.28

StemGNN 11.03 30.27 11.44 31.50 55.19 162.32
MVSTGN 10.51 32.16 9.47 28.37 46.81 135.97
AGCRN 8.95 25.06 5.90 18.83 43.33 117.0

Our model 8.09 23.67 5.47 17.26 39.36 109.39
↑ (+,−)% +9.60 +5.55 +7.29 +8.33 +9.16 +6.50

(a)

(b)

(c)

Fig. 3. Comparisons of predicted results of our proposed model, AGCRN
[7] and the ground truth for (a) SMS service, (b) call service and (c) Internet
service at a randomly selected cell for the duration of one week.

between neighbouring and distant cells as a graph structure.

Furthermore, our proposed DBGRN framework is capable of

learning both complex spatial correlations and cell-specific

traffic patterns.

2) Effect of the K-order Bernstein Polynomial: The Bern-

stein polynomial filtering scheme is able to learn arbitrary

interpretable spectral filters. It can capture the complex spa-

tial dependencies and learn cell-specific parameters. We now

compare the performance of the K-order Bernstein polynomial

expansion with the K-order Chebyshev polynomial expansion,

which has been used in traffic prediction problems [7], [10].

We use the dynamic filter weights learning approach proposed

in our framework for fair comparison. We present the predic-
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Fig. 4. The impact of the K-order approximation of the polynomials on the prediction performance of (a) SMS, (b) call and (c) Internet services.

TABLE II
PERFORMANCE COMPARISONS AMONG DIFFERENT GRAPH DEPENDENCY

CONSTRUCTION APPROACHES.

SMS Call Internet
Modules MAE RMSE MAE RMSE MAE RMSE

ATT 8.56 24.32 6.28 18.8 42.43 112.2
Time+ATT 8.23 23.98 5.73 17.98 40.87 110.91

SDGC 8.09 23.67 5.47 17.26 39.36 109.39

tion performance of the Bernstein and Chebyshev polynomial

filtering schemes in terms of RMSE in Fig. 4. The results show

that the Bernstein polynomial achieves a lower RMSE for all

values of K among all three service types when compared

with the Chebyshev polynomial. Furthermore, considering the

Bernstein polynomial approximation, the results show that the

best-performing models for call and Internet traffic services are

obtained by the first-order approximation (i.e., K = 1). The

best-performing model for SMS service is achieved when K
is equal to three. This illustrates that the first-order polynomial

approximation may not always result in the best-performing

model and fine-tuning the polynomial order can improve the

prediction performance.

3) Effect of Inferring Spectral Dependencies: Finally, we

evaluate the effectiveness of our proposed SDGC method,

which uses the traffic data information in the spectral domain

for graph dependency construction. For comparison, we con-

sider two other approaches to obtain the dependency graph.

In the first approach, we only use an individual self-attention

mechanism module. We refer to this as the ATT module. In

the second approach, we first use a GRU network to capture

the dependencies of the input data X in the time-domain. It is

followed by a self-attention mechanism module. We refer to

this as the Time+ATT module. The results in the Table II show

that our proposed SDGC module achieves lower RMSE and

MAE than the ATT and Time+ATT modules. This illustrates

that incorporating the spectral information of traffic data in

graph dependency construction can improve the prediction

accuracy.

IV. CONCLUSION

In this paper, we investigated the problem of wireless cellu-

lar traffic prediction and proposed a dynamic Bernstein graph

recurrent network that considers the information in the spatial,

temporal, and spectral domains. Our proposed model is able

to learn the spatial relationships between neighbouring and

distant cells as a dependency graph in a data-driven fashion.

It can effectively predict the spatial-temporal traffic demands.

We evaluated the performance of our proposed model using a

real-world dataset with three service types. The experimental

results showed that the proposed model outperforms four state-

of-the-art baseline models, and achieves 8% and 10% improve-

ments in terms of the RMSE and MAE, respectively. For future

work, we will consider data augmentation techniques to further

improve the prediction accuracy.

REFERENCES

[1] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of Milan and the Province of Trentino,”
Scientific Data, vol. 2, p. 150055, Oct. 2015.

[2] L. Yu, M. Li, W. Jin, Y. Guo, Q. Wang, F. Yan, and P. Li, “STEP: A
spatio-temporal fine-granular user traffic prediction system for cellular
networks,” IEEE Trans. Mobile Comput., vol. 20, no. 12, pp. 3453–3466,
Dec. 2021.

[3] K. He, X. Chen, Q. Wu, S. Yu, and Z. Zhou, “Graph attention spatial-
temporal network with collaborative global-local learning for citywide
mobile traffic prediction,” IEEE Trans. Mobile Comput., vol. 21, no. 4,
pp. 1244–1256, Apr. 2022.

[4] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction from
raw data using LSTM networks,” in Proc. IEEE Int. Symp. Pers. Indoor
Mobile Radio Commun. (PIMRC), Bologna, Italy, Sept. 2018.

[5] C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. Zhang, “Deep transfer
learning for intelligent cellular traffic prediction based on cross-domain
big data,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1389–1401,
Jun. 2019.

[6] Z. Wang and V. W.S. Wong, “Cellular traffic prediction using deep
convolutional neural network with attention mechanism,” in Proc. of
IEEE Int. Conf. Commun. (ICC), Seoul, South Korea, May 2022.

[7] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph
convolutional recurrent network for traffic forecasting,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), Virtual, Dec. 2020.

[8] D. Cao, Y. Wang, J. Duan, C. Zhang, X. Zhu, C. Huang, Y. Tong,
B. Xu, J. Bai, J. Tong, and Q. Zhang, “Spectral temporal graph neural
network for multivariate time-series forecasting,” in Proc. Adv. Neural
Inf. Process. Syst. (NeurIPS), Virtual, Dec. 2020.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. on Learning Representations
(ICLR), Toulon, France, Apr. 2017.

[10] S. Zhao et al., “Cellular network traffic prediction incorporating han-
dover: A graph convolutional approach,” in Proc. IEEE Int. Conf. on
Sensing, Commun., and Netw. (SECON), Virtual, Jun. 2020.

[11] Y. Fang, S. Ergüt, and P. Patras, “SDGNet: A handover-aware spa-
tiotemporal graph neural network for mobile traffic forecasting,” IEEE
Commun. Lett., vol. 26, no. 3, pp. 582–586, Mar. 2022.

[12] Y. Yao, B. Gu, Z. Su, and M. Guizani, “MVSTGN: A multi-view spatial-
temporal graph network for cellular traffic prediction,” accepted for
publication in IEEE Trans. Mobile Comput., Nov. 2021.

[13] M. He, Z. Wei, Z. Huang, and H. Xu, “BernNet: Learning arbitrary
graph spectral filters via Bernstein approximation,” in Proc. Adv. Neural
Inf. Process. Syst. (NeurIPS), Virtual, Dec. 2021.


