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Abstract—In this paper, we study the competitive interac-
tions between electric vehicle charging stations (EVCSs) with
renewable electricity generation facilities (REGFs). As electric
vehicles (EVs) become more popular, there will be a competition
between neighboring EVCSs to attract more EVs. Therefore, an
EVCS is likely to set its electricity price by taking into account
the competition with neighboring EVCSs, such that its revenue
is maximized. We model the competitive interactions between
EVCSs by using game theory. In this paper, we show that the
game played by EVCSs is a supermodular game and there exists
a unique pure Nash equilibrium for best response algorithms
with arbitrary initial policy. Simulation results confirm the
convergence of the game between EVCSs. The results also verify
that it is beneficial for both EVs and EVCSs to have REGFs and
all EVCSs will have REGFs in the long run.

I. INTRODUCTION

Smart grid is the next generation power grid and expected
to be distributed, reliable, and more efficient than the current
power grid [1]. It is envisioned that the generation of elec-
tricity from renewable sources will be more common and will
constitute a large portion of the total electricity generation [1].
Therefore, renewable power generation will play a significant
role in smart grid and analyzing its effects is necessary.

Another key characteristic of the smart grid is the extensive
use of electric vehicles (EVs) [1]. Although the capacity
of the battery of a single EV is not large (e.g., 41.8 kWh
for Toyota RAV 4), the number of EVs will be large such
that the sum capacity of the EV batteries will be substantial
(e.g., 106 GWh if 1% of all vehicles in the U.S. are EVs).
Therefore, EVs are considered as one of the major consumers
of electricity in smart grid [2]. These numbers are expected
to grow considerably over the next few years. As a natural
consequence, analyzing the effect of EV charging on smart
grid and designing an optimal charging strategy for EVs are
crucial [2]- [8].

The most straightforward strategy for charging EVs is to
charge EVs when the price of electricity is low, e.g., at night
time [3]. In [2], the fluctuation of the power level of the grid
was controlled by managing the charging of EVs. The effect of
power losses on the transmission line and a departure penalty
were taken into account in [5]. Moreover, EV charging was
analyzed and optimized by using state-of-the-art mathematical
techniques. In [4], the behavior of EVs which try to be charged
at minimum cost was analyzed using a mean-field game.
Particle swarm optimization was applied in [6] to find the
optimal EV charging schedule. In [7], a distributed congestion
control for Internet traffic was modified to control EV charging

in a distributed manner. Furthermore, consumer preferences for
EV charging were investigated in [8].

Most of the existing works on EV charging assumed that
EVs are charged only at home. However, considering that
conventional internal combustion engine vehicles refuel at gas
stations, EVs might also be charged at other facilities which
provide charging service. Hereafter, we refer to facilities which
provide charging service to EVs as electric vehicle charging
stations (EVCSs) [10]. The charging of EVs at EVCSs is
viable for the following two reasons: 1) An EVCS can buy
electricity from the power grid at a cheaper rate compared to
the rate that an EV owner has to pay to charge at home1

such that EV charging at the EVCS is cheaper that the
charging at home. 2) An EV might run out of electricity
while traveling and immediate charging becomes unavoid-
able2. Since charging an EV is more time consuming than
refueling a conventional vehicle, the EVCSs can be located at
public parking lots and shopping centers where the EVs are
parked for a long time [10]. There are some previous works
that consider the operation of EVCS. In [12], the optimal
deployment of EVCSs was investigated, and in [13], the effect
of local energy storage at the EVCSs was investigated.

Currently, the majority of the EVCSs provide electricity at
a very cheap rate to stimulate the EV market [10]. However,
after the establishment of a stable EV market, the electricity
price will be rationalized and EVCSs will generate revenue
from selling electricity to EVs. Therefore, when multiple
EVCSs with different ownerships coexist in the same area, the
competition between the EVCSs to attract EVs is inevitable.
An EVCS can attract more EVs by providing electricity at
a cheaper price compared to its neighboring competitors. As
a consequence, the price of electricity can be different for
different EVCSs which is in analogy to the heterogeneity of
the gas price at different gas stations. Although the competition
between EVCSs is obvious, it has not been considered in
previous works on smart grid. There are some previous works
which consider the competition between gas stations, e.g.,
[14]. However, the analysis for gas stations is not directly

1For example, in the U.S. [11], the price of electricity for the residential
sector is 30% higher than that for the commercial sector. Moreover, many
countries adopt tiered electricity rates and charging an EV at home can greatly
increase the electricity bill of the EV owner [9].

2The distance which an EV can travel on a fully charged battery is generally
less than the distance that an internal combustion engine vehicle can travel
on a full gas tank.



applicable to EVCSs, because unlike gas stations, EVCSs
can generate electricity without incurring additional generation
cost by using their own renewable electricity generation facil-
ities (REGFs) such as photovoltaic (PV) generators [10]. In
other words, unlike gas stations, EVCSs can generate revenue
from generating electricity as well as earning commission for
selling electricity to EVs. The use of REGFs by EVCSs is
viable because EVCSs can be located at public parking lots
and shopping centers which can accommodate REGFs with
high generation capacity such as large-size PV generators [22].
Such PV generators may supply more than 500 kW of power
[22] providing sufficient electricity to charge tens of EVs at a
time. We note that some EVCSs with REGFs are already in
operation [10].

Herein, we analyze the competition between EVCSs with
REGFs. The contributions of this paper are as follows:

1) We model the competition between EVCSs with REGFs
by using game theory. We show that the resulting game
is a supermodular game and there is a unique pure Nash
equilibrium for best response algorithms with arbitrary
initial values.

2) We evaluate the effect of renewable power generation
on the operation of EVCSs and EVs. We show that by
adopting REGFs at the EVCSs, the electricity price can
be reduced such that EVs can be charged at a cheaper
rate while the revenue of the EVCSs improves compared
to when the EVCSs sell all electricity generated by the
REGFs to the power grid. We also show that the revenue
of EVCSs, which are not equipped with REGFs, drops
significantly due to the price competition with EVCSs
with REGFs and eventually, all EVCSs are likely to
employ REGFs.

The rest of this paper is organized as follows. We present
the system model in Section II. In Section III, the game model
for competing EVCSs is formulated and the supermodularity
of the game is proved. The existence of and convergence
to a unique Nash equilibrium is also shown in Section III.
Simulation results are provided in Section IV. The paper is
concluded in Section V.

II. SYSTEM MODEL

In this section, we present an analytical description of the
operation of EVs and EVCSs. Our system model is depicted
in Fig. 1.

A. Electric Vehicles

We assume that the number of EVs which want to charge
their batteries are uniformly distributed in the considered area.
An EV selects an EVCS for charging based on the electricity
price of the EVCS and its distance to the EVCS. Furthermore,
Huff has shown that the preference of customers to a facility
is significantly affected by the distance to the facility [15]. Let
the penalty that distance has on the selection of an EVCS be
modeled as g(di,j), where di,j is the distance between EVCS
i and EV j. Then, EV j will choose EVCS i∗ if it satisfies

i∗ = argmin
i∈I

g(di,j) + pirp (1)
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Fig. 1. System model of EVs and EVCSs.

where I is the set of all EVCSs and pirp is the electricity price
of EVCS i. Moreover, we assume that the EV reserves the
charging service from the EVCS prior to its arrival because
the electricity price might change on the way to the EVCS.
B. Operation of Electric Vehicle Charging Stations

We assume that there are multiple EVCSs under different
ownership and the EVCSs are capable of generating electricity
from REGFs without incurring additional generation cost. We
also assume that an EVCS has to maintain its electricity price
fixed for at least ∆t and the amount of electricity that EVCS
i can generate within ∆t from its own REGFs is W i. W i will
be significantly affected by the surrounding environment. For
example, at night time, we always have W i = 0 when a PV
generator is used. Furthermore, we assume that the EVCSs do
not have local energy storage, because storage is expensive
[13], and that the number of charging plugs at each EVCS are
sufficient to allow charging all of EVs which visit the EVCS.

The total average amount of electricity demand that is
incurred to EVCS i within ∆t is denoted by γi, and N i is
the average number of EVs which choose EVCS i based on
(1). Moreover, let Cavg be the average amount of electricity
required for charing one EV. Furthermore, let Bavg and Ssocavg

be the average battery capacity of EVs and the average state-
of-charge (SoC) of an EV which visits an EVCS, and the EV is
fully charged at the EVCS. Then, Cavg and γi can be modeled
as

Cavg = Bavg (1− Ssocavg) (2a)

γi = Cavg N
i. (2b)

Each EVCS has two options for selling the excess electricity
generated by its REGF. First, the EVCS can sell its excess
electricity to the power grid at price pupwp. Second, it can sell
the excess electricity at price pirp to EVs by charging them, see
Fig. 1. The value of pupwp is determined by the power grid and it
is likely identical to the wholesale electricity price. However,
EVCS i can freely set pirp to maximize its revenue and pirp
will generally be greater than pupwp, because otherwise there is
no incentive for the EVCS to sell its excess electricity to EVs.

When γi > W i, the amount of electricity from the REGF
is not sufficient to satisfy the electricity demand. Then, EVCS
i buys extra electricity from the power grid at price pdnwp and



correspondingly, the EVCS pays pdnwp (γi−W i) to the power
grid. Otherwise, when γi ≤ W i, the amount of electricity
from the REGF of EVCS i is sufficient to satisfy the electricity
demand of the EVs visiting EVCS i. In this case, the excess
electricity, W i − γi, is sold to the power grid at price pupwp.
The revenue that EVCS i can get from the power grid by
selling the excess electricity is pupwp (W i − γi). In general,
pupwp ≤ pdnwp, because pupwp is the wholesale price while pdnwp is
the retail price.
C. Coverage of Electric Vehicle Charging Stations

Herein, we define the coverage of EVCS i as the region in
which the EVs will visit EVCS i for charging because EVCS
i satisfies the selection criterion of the EV. The coverage of
EVCS i can be found by solving (1) for the considered area.
Let Na be the total number of EVs in the area. Also, let Sarea

be the total area that EVCSs can be located in. In this paper,
we assume that N i is proportional to the size of the coverage
area of EVCS i, which we refer to as Si, because the EVs are
uniformly distributed. Then, γi can be calculated as

γi = Cavg Na
Si

Sarea .
(3)

The shape of the coverage area of the EVCSs depends on
the selection criterion in (1). For general functions g(di,j), the
boundaries of the coverage areas are not straight lines and will
have curvature. Therefore, the coverage areas of the EVCSs are
not polygons which makes the analysis complicated. However,
it is shown in the following lemma that if g(di,j) in (1) has a
unary quadratic form such that g(di,j) = ζ1 d

2
i,j , where ζ1 is

a constant which characterizes the severity of the penalty of
distance, then the boundaries of the coverage areas are straight
lines and the coverage area of each EVCS is a polygon. The
proof of Lemma 1 is omitted here due to page limitations but
the complete proof can be found in the longer version of our
paper in [23].

Lemma 1. The boundaries of the coverage areas of the EVCSs
are straight lines, if g(di,j) is a unary quadratic function, i.e.,
g(di,j) = ζ1 d

2
i,j .

III. PRICE ADJUSTMENT GAME

A. Game Model

In our system model, the EVCSs will not cooperate because
they belong to different owners. As a consequence, each
EVCS will set its electricity price independently and greedily
by taking into account the electricity price of neighboring
EVCSs such that its own revenue is maximized. Herein, we
formulate the competitive interactions between EVCSs as a
non-cooperative game where each EVCS makes decisions
independently as follows.

Price Adjustment Game Between EVCSs:
• Players: EVCSs.
• Strategy: The strategy of the players is the adjustment

of the electricity price for charging EVs. In other words,
the strategy of EVCS i is setting pirp where pirp ∈ R+.
We will use p−irp to denote the vector of the electricity
prices of all EVCSs except EVCS i.

• Payoff: The payoff of EVCS i, πi(pirp,p−irp ), is the
monetary revenue that EVCS i obtains.

In our system model, EVCS i can generate revenue by
charging EVs and the amount of revenue is pirp γ

i. EVCS i can
also obtain revenue from the power grid by selling the excess
electricity from the REGF, which remains after satisfying the
electricity demand of the EVs. In this case, the amount of
revenue is pupwp × [W i − γi]+. Finally, EVCS i has to buy
additional electricity from the power grid if the amount of
electricity from its own REGF, i.e., W i, is not sufficient to
satisfy the electricity demand of the EVs. In this case, the
EVCS should pay for the electricity which is bought from the
power grid and the payment is pdnwp × [γi −W i]+. Therefore,
the total revenue of EVCS i, πi(pirp,p−irp ), is obtained as

πi(pirp,p−irp ) = pirp γ
i(pirp,p−irp )

+ pupwp × [W i − γi(pirp,p−irp )]+

− pdnwp × [γi(pirp,p−irp )−W i]+

= pirp γ
i(pirp,p−irp ) + h(γi(pirp,p−irp )−W i)

(4)
where h(x) = pupwp × [−x]+ − pdnwp × [x]+. Herein, γi is a
function of pirp and p−irp , because the demand for electricity at
EVCS i depends not only on the electricity price of EVCS i
but also on the prices of the other EVCSs, i.e., p−irp .
h(x) is a piece-wise linear and concave function because

pupwp ≤ pdnwp. Although h(x) is continuous in the entire range of
x, it is not differentiable at x = 0. For the following analysis,
we have to differentiate πi(pirp,p−irp ) with respect to pirp to
prove the super-modularity of the considered game and this
non-differentiable point is problematic. To overcome this prob-
lem, we approximate h(x) by smoothing the function around
x = 0, such that the approximated function is differentiable in
the entire range of x. The approximation of h(x), which we
will refer to as h̄(x), is given by

h̄(x) =

{
pdnwp−p

up
wp

4 δa
× (x+ δa)2 + pupwp x, for |x| ≤ δa

h(x), otherwise.
(5)

We note that for δa → 0, we get h̄(x) → h(x). Therefore,
h(x) can be approximated by h̄(x) by using a sufficiently
small δa. h̄(x) is differentiable and concave because ∂2h̄(x)

∂x2 ≤
0. In the following, we will use h̄(x) instead of h(x).
B. Convergence of the Game

In the following, we show that the price adjustment game of
the EVCSs is a supermodular game. First, let S be the set of
strategies that players can choose. Then, the supermodularity
of payoff function πi(x) is defined as follows [16]:

Definition 1. Payoff function πi(x) is supermodular if and
only if the following inequality holds:

πi(x ∧ y) + πi(x ∨ y) ≥ πi(x) + πi(y), ∀x, y ∈ S (6)

where x ∧ y and x ∨ y are the component-wise maximum and
minimum of vectors x and y, respectively.

If πi(x) is twice differentiable, then πi(x) is supermodular
if the following inequality holds [16]



∂2πi(x)
∂xi∂xj

≥ 0, ∀x ∈ S, j 6= i. (7)

Let Si be the set of strategies for player i. Also let si and
s−i be the strategy of player i and the strategies of all players
except player i, respectively. Then, a supermodular game is
defined as follows [17]:

Definition 2. A game is a supermodular game, if 1) the set
of strategies of player i, Si, is a compact subset of R, 2) πi

is continuous in si and s−i, and 3) πi is supermodular.

Supermodular games have some nice properties. Especially,
pure Nash equilibria exist in supermodular games and the con-
vergence of best response algorithms to the Nash equilibria is
guaranteed [16]. Now, we will show that the price adjustment
game of the EVCSs is a supermodular game when g(di,j) is
a unary quadratic function. The supermodularity of the game
is formally stated in Theorem 1. The proof of Theorem 1 is
omitted here due to page limitations but the complete proof
can be found in the longer version of our paper in [23].

Theorem 1. The electricity price adjustment game of the
EVCSs is a supermodular game if g(di,j), the effect that
distance has on the selection of an EVCS, is a unary quadratic
function, i.e., g(di,j) = ζ1 d

2
i,j .

In Theorem 1, we assume that g(di,j) is a unary quadratic
function. Considering Huff’s work on the attractiveness of
competing facilities which have different distances to cus-
tomers [15], this assumption seems reasonable. Huff has
shown that if two facilities are competing with each other to
attract users, the probability that a user goes to one facility
is inversely proportional to the square of the distance to
the facility. From this, we conjecture that the preference of
customers for one facility is inversely proportional to the
square of the distance and the penalty of distance in EVCS
selection is proportional to the square of the distance.

Based on Theorem 1, a pure Nash equilibrium can be
achieved with best response algorithms in the price adjustment
game. However, it is not guaranteed that the Nash equilibrium
is unique and that the equilibrium can be achieved when the
initial strategies are arbitrarily chosen and the strategy of each
player is updated in an arbitrary time instant. Therefore, in the
following, we will show that a unique pure Nash equilibrium
can be achieved by any best response algorithm with any initial
policy. To prove the uniqueness and convergence of the game,
we need the following two lemmas.

Lemma 2. If g(di,j) is a unary quadratic function, i.e.,
g(di,j) = ζ1 d

2
i,j , π

i(pirp, p−irp ) is a strictly concave function

of pirp, i.e.,
∂2πi(pirp,p

−i
rp )

(∂pirp)2 < 0.

Lemma 3. Let Bri(p−irp ) be the best response of EVCS i when
the electricity price of the other EVCSs is p−irp . Then, add η to
all components of p−irp and let this modified electricity price be
p−i

η

rp , i.e., pk
η

rp = pkrp + η for k 6= i. Then, if g(di,j) = ζ1 d
2
i,j

and η > 0, Bri(p−irp )+η > Bri(p−i
η

rp ). In other words, even if
all other EVCSs increase their prices by η, the best response
of EVCS i is to increase its price by less than η.

The proofs of Lemma 2 and Lemma 3 have been omitted
here due to the page limitations. The complete proofs can be
found in the longer version of our paper in [23]. Based on these
two Lemmas and the Theorems 1 and 2 in [16], which consider
the uniqueness and convergence of supermodular games, we
obtain the following theorem.

Theorem 2. The electricity price adjustment game for EVCSs
has a unique pure Nash equilibrium and the equilibrium can
be achieved by any best response algorithm with any initial
policy, if g(di,j) = ζ1 d

2
i,j .

The proof of Theorem 2 has been omitted here due to the
page limitations. The complete proof can be found in the
longer version of our paper in [23].

IV. PERFORMANCE EVALUATION

In this section, we verify the convergence of the price
adjustment game. We also evaluate the electricity price and
revenue of the EVCSs and illustrate the effect of renewable
power generation.
A. Simulation Environment

Our performance evaluation is conducted based on a re-
alistic simulation environment. In particular, we assume that
the electricity price of EVCSs can change every 30 minutes,
i.e., ∆t = 30 min, because it takes about 30 minutes to fully
charge the battery of an EV if fast charging is used [10], [13].
We also assume that four EVCSs are located randomly in a
4 km by 4 km square area in Philadelphia, PA, USA, based
on the actual density of gas stations in this region and an EV
market penetration of 13%3. We do not limit the number of
EVs that can be charged concurrently in one EVCS. Moreover,
we assume that EVs charge their batteries once per day and
the average number of EVs that visit the four EVCSs in 30
minutes, Na = 80 by taking into account the number of
registered vehicles in Philadelphia, which is 689,132 [19]. We
also assume that g(di,j) = 1

2 d
2
i,j .

Furthermore, we assume that the battery capacity of each
EV is 41.8 kWh which corresponds to the battery capacity of a
Toyota RAV 4. Moreover, we assume that the average SoC of
EVs which visit an EVCS is 10% [20] such that Bavg = 37.62
kWh. For electricity prices, we use the average wholesale and
retail electricity prices in Philadelphia in 2011. The average
wholesale electricity price is 5.426 cents/kWh and the average
retail electricity prices are 13.26 cents/kWh, 10.03 cents/kWh,
and 7.73 cents/kWh for the residential, commercial, and in-
dustrial sectors, respectively [11]. Therefore, we assume that
pdnwp is 10.03 cents/kWh and pupwp is 5.426 cents/kWh.

For REGF, PV generation is assumed. In Philadelphia, 3.95
kWh of electricity can be generated per square meter PV panel
[21] in one day on average. Herein, we assume that a 5329
m2 commercial PV generation facility is used [22]. We also
assume that a REFG only generates electricity during day
time which is assumed to last for 12 hours. Thus, a REGF

3There are 719 gas stations in Philadelphia and the density of gas stations
is 1.95/km2. Therefore, the density of EVCSs will be 0.25/km2, if the EV
market penetration is 13%.
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generates 889 kWh of electricity in 30 minutes during day
time on average.

B. Convergence of Price Adjustment Game

First, we verify that the price adjustment game of EVCSs
converges when best response algorithms are used. The posi-
tion of the four EVCSs is depicted in Fig. 2. In this subsection,
we assume that only EVCS 4 has a REGF, and EVCS 1, EVCS
2, and EVCS 3 do not have REGFs, to show the effect of
EVCS with REGF on EVCSs without REGF.

In Fig. 2, the coverage areas of EVCSs during day time and
night time are shown. In night time, EVCS 4 cannot generate
electricity with the REGF. First, we can see that the boundaries
of the coverage areas are straight lines, as we have shown in
Lemma 1. Second, EVCS 4 has a larger coverage area in day
time than in night time. In particular, the energy from the
REGF leads to a lower electricity price, which helps to attract
more EVs.

In Fig. 3, we show the electricity prices for EVCS 1 and
EVCS 4 over the iterations of a best response algorithm.
Herein, we consider the case where the REGF of EVCS 4
does not generate electricity initially but starts to generates
electricity after 10 iterations (referred to as Case 1). We also
consider the case where the REGF of EVCS 4 generates
electricity from the beginning (referred to as Case 2). The
initial electricity prices of the EVCSs are randomly chosen
and the EVCSs update their electricity prices with probability
of 0.7 every 30 minutes by using a best response algorithm.

We observe from Fig. 3 that the electricity prices of the
EVCSs converge to the same values in both considered cases
confirming the convergence of price adjustment game. We
also observe that the electricity price of EVCS 4 with REGF
is lower than that of EVCS 1 without REGF. Although not
included in Fig. 3, the electricity prices of EVCS 2 and EVCS
3 are also higher than that of EVCS 4. EVCS 4 reduces its
electricity price to attract more EVs such that it can sell its
excess electricity. Moreover, we can observe that the electricity
price of EVCS 1 is affected by the price adjustment of EVCS
4. For Case 1, EVCS 4 reduces its price after 10 iterations,
and then EVCS 1 also has to reduce its price accordingly, in
order to avoid losing all of its customers.
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C. Effect of Renewable Power Generation at EVCS

In Fig. 4, we show the average electricity price of EVCS
1 as a function of the electricity generated by the REGF in
30 minutes. Herein, we consider four cases: 1) none of the
EVCSs has a REGF (referred to as Case 1), 2) EVCS 1 does
not have a REGF but one of the other EVCSs has a REGF
(referred to as Case 2), 3) only EVCS 1 has a REGF (referred
to as Case 3), 4) all EVCSs have a REGF (referred to as Case
4).

We can observe from Fig. 4 that the average electricity
price offered by EVCS 1 is always lower than the retail price
of electricity for the residential sector. Therefore, EV owners
can charge their vehicles at a lower rate by using an EVCS
and this price difference justifies the usage of the EVCS. We
can also observe that the average electricity price of EVCS
1 with REGF (i.e., Case 3 and Case 4) is lower than that of
EVCS 1 without REGF (i.e., Case 1 and Case 2) when the
generation is sufficiently large. Therefore, having renewable
power generation with high power generation capacity is
beneficial to the EVs, because the EVs can be charged at a
lower price. Moreover, we can see that the average price of
EVCS 1 with REGF decreases if all the other EVCSs have a
REGF, because the competition between the EVCSs becomes
more severe.

We also observe from Fig. 4 that the electricity price of
EVCS 1 with REGF can be lower than the retail price for
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the commercial sector, which is the price for EVCSs to buy
extra electricity from the power grid. However, in this case,
EVCS 1 can still generate revenue because it can sell its excess
electricity to EVs at a higher price compared to when it sells
its electricity to the power grid.

In Fig. 5, we show the average annual revenue of EVCS 1
as a function of the electricity generated by its REGF in 30
minutes. The average annual revenue is calculated by taking
into account the fact that a REGF cannot generate electricity
during night time, such that the revenue during day time and
night time is averaged. The lower bound in Fig. 5 corresponds
to the revenue of EVCS 1 with a REGF when it sells all its
excess electricity to the power grid and not to EVs. From Fig.
5, we can see that the revenue of EVCS 1 is much higher
if it has a REGF than if it does not, because if EVCS 1 has
a REGF, it can sell its excess electricity to either the EVs
or the power grid. EVCS 1 can generate more revenue by
selling its electricity to EVs instead of the power grid. For
example, assuming a REGF which generates 889 kWh per 30
minutes, the revenue of the EVCS can be increased by 15%,
which corresponds to $78,000 per year, if the EVCS sells its
electricity to the EVs. In this case, the payback period4 of
investing on REGFs is less than 2 years.

We observe that the revenue of EVCS 1 without REGF
drops severely due to the price competition with the other
EVCSs, which have a REGF. Therefore, if one EVCS intro-
duces REGF, then the neighboring EVCSs are likely to add
REGFs as well in order to avoid losing revenue. Therefore,
eventually, all EVCSs will have their own REGF. Moreover,
in Fig. 5, we can observe that the revenue of EVCS 1 for Case
4 converges to the lower bound when the electricity generated
by the REGF is larger than 1.1 MWh due to the severe price
competition between EVCSs.

V. CONCLUSION

In this paper, we explored the competition between EVCSs
with renewable power generation in smart grid. We formulated
the competitive price adjustment of EVCSs as a supermodular
game. Based on the characteristics of supermodular games,

4The payback period is the time needed for the cumulative revenue to
exceed the initial investment.

we showed that a unique pure Nash equilibrium exists for any
best response algorithm with arbitrary initial policy. Through
simulations, we confirmed the convergence of the price adjust-
ment game. We also investigated the electricity price and the
revenue of EVCSs as a function of the electricity generated
from the renewable power generators and showed that adopting
renewable power generation at the EVCSs can reduce the
electricity price while increasing the revenue of the EVCSs.
Thus, having renewable power generation at the EVCSs is
beneficial for both the EVs and the EVCSs.
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