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Abstract—In cognitive radio (CR) systems, harmful interfer-
ence from the secondary system degrades the data rate of the
primary system. However, this interference may be beneficial
to the primary system in terms of the secrecy rate, when
unauthorized users eavesdrop on the primary link. This paper
explores multiple-input single-output (MISO) CR systems where
the secondary system secures the primary communication in
return for permission to use the spectrum. In this context, the
optimal transmission strategy has to be found which provides the
best tradeoff between the useful and harmful effects of interfer-
ence on the secrecy rate of the primary system. Considering
the cases of perfect and imperfect channel state information
of the eavesdroppers we formulate optimization problems for
maximizing the primary secrecy rate under secondary data rate
requirements. The resulting non-convex optimization problems
are solved through a sequence of convex semidefinite programs.
The simulation results reveal that the proposed schemes improve
the secrecy level of the primary system while meeting the data
rate requirements of the secondary system.

I. INTRODUCTION

Cognitive radio (CR) is a promising technology to improve
wireless spectrum utilization by conditionally allowing sec-
ondary systems to access the spectrum of the primary system.
Thereby, the effect of the interference from the secondary
system on the primary system should be minimized. In fact, in
general, interference is harmful to the performance of wireless
systems. However, recently it has been shown that in the
context of secrecy, well-coordinated interference may actually
be beneficial [1]–[5]. The idea of exploiting interference for
secrecy can also be applied to CR systems [6]–[10].

The theoretical foundation of physical layer security dates
back to the seminal work by Wyner [11], which showed
that the source can deliver perfectly secure messages to the
destination with a non-zero rate if the channel condition of
the desired receiver is better than that of the eavesdropper.
This basic concept was extended to actively degrading the link
of the eavesdropper by exploiting artificial interference from
other transmitters. The authors of [2], [3] studied scenarios
where helper nodes cooperatively generate artificial noise to
disturb the receptions of the eavesdroppers while minimizing
interference to the legitimate receiver. In CR systems, if
eavesdroppers overhear the primary link and treat interference
as noise, the signals of secondary links can serve as both
artificial noise for the secure primary link and data for their
intended receivers. With respect to generating interference
for secure communications, the operation of the secondary

systems is similar to that of the helper nodes in [1]–[4], but
helper nodes do not simultaneously serve their own receivers.
This concept has recently been introduced in [6], [7]. The
authors of [7] proposed a game-theoretic cooperation scenario
between the primary and secondary systems where the primary
users improve their secrecy level with the aid of secondary
users. However, this work was limited to single-input single-
output (SISO) systems. The work in [6] proposed a multiple-
input single-output (MISO) beamforming algorithm for the
secondary system. However, it only considered a CR system
with a SISO primary link, a single MISO secondary link, and
one eavesdropper, where the channel state information (CSI)
of the eavesdropper is perfectly known. The authors of [9],
[12] studied the case where the CSI of the eavesdroppers is
estimated with a bounded error, but did not attempt to secure
the primary communication through spectrum sharing.

This paper studies a general MISO system framework with
a MISO primary link, multiple MISO secondary links, and
multiple eavesdroppers. In this framework, the interference
from a secondary transmitter is beneficial to the primary
system while being harmful to other secondary links. Thus,
the secondary system has to design its transmit beamforming
vectors by taking into account the interference to the secondary
users as well as the primary users and the eavesdroppers.

The main contributions of this paper are summarized as
follows: To determine the optimal transmission strategy, we
formulate the problem for maximizing primary secrecy rate
under secondary data rate requirements using a semidefinite
relaxation technique. We show that the relaxed non-convex
optimization problem can be solved through a sequence of
convex semidefinite programs (SDPs). Furthermore, we extend
the problem to the case of imperfect eavesdropper CSI and find
the optimal transmission strategy that maximizes the worst-
case secrecy rate of the primary system. Finally, simulation
results show that the proposed beamforming methods improve
the secrecy rate and the worst-case secrecy rate of the primary
system for the cases of perfect and imperfect eavesdropper
CSI, respectively.

The rest of this paper is organized as follows: In Section II,
we introduce the system model. In Sections III and IV,
we present the design of the optimal transmit beamforming
vectors for the cases of perfect and imperfect eavesdropper
CSI, respectively. Simulation results are provided in Section V.
Conclusions are given in Section VI.



Notation: Bold upper and lower case letters denote matrices
and vectors, respectively. (·)⇤ denotes the conjugate transpose.
| · | and k · k denote the absolute value of a scalar and the
Euclidean norm of a vector, respectively. Matrix I

N

denotes
an N ⇥N identity matrix. Tr(A) denotes the trace of matrix
A. A ⌫ B means that A−B is positive semidefinite (PSD).
CN and HN

+ denote the sets of all N -dimensional complex
vectors and PSD Hermitian matrices, respectively.

II. SYSTEM MODEL

We consider a MISO CR system with a primary link,
multiple eavesdroppers who overhear the primary signal, and
multiple secondary links, as shown in Fig. 1. A primary trans-
mitter with N

p

antennas sends its signal to a primary receiver
with a single antenna and needs to prevent eavesdroppers with
a single antenna from overhearing its data. The secondary
transmitters with N

s

antennas want to send data to their own
receivers using the spectrum of the primary system. They help
to secure the primary communication in return for using the
spectrum of the primary system. All primary and secondary
receivers and eavesdroppers treat interference signals as noise.
Eavesdroppers do not perform interference cancelation and are
only interested in the primary signal. Under these assumptions
the primary link achieves the following secrecy rate:

C(p) = log
⇣
1 + (p)

⌘
−max

k2K
log
⇣
1 +

(e)
k

⌘
, (1)

where (p) and
(e)
k

denote the signal-to-interference-plus-
noise ratios (SINRs) of the primary link and the k-th eaves-
dropper’s link, respectively, and K denotes the set of eaves-
droppers. Let M denote the set of secondary transmitters.
Secondary transmitter m serves multiple secondary receivers
denoted by (m,n) where n 2 N

m

. Here, N
m

is the set of
secondary receivers served by secondary transmitter m. We
use h(pp), h

(pe)
k

, h(ps)
mn

2 CNp and h
(sp)
i

, h
(se)
ik

, h
(ss)
imn

2 CNs

to denote complex MISO channel vectors for the links between
the nodes in the system; see Fig. 1 for details. Let the transmit
beamforming vectors for serving the primary receiver and the
(m,n)-th secondary receiver be denoted by w(p) and w(s)

mn

,
respectively. Then, (p) and

(e)
k

are given by

(p) =
|h⇤(pp)w(p)|2

P
i2M

P
j2Ni

|h⇤(sp)
i

w
(s)
ij

|2 + σ2
, (2)


(e)
k

=
|h⇤(pe)

k

w(p)|2
P

i2M
P

j2Ni
|h⇤(se)

ik

w
(s)
ij

|2 + σ2
, (3)

where σ2 denotes the noise variance. The SINR of secondary
receiver (m,n), (s)

mn

, is given by

(s)
mn

=
|h⇤(ss)

mmn

w
(s)
mn

|2

|h⇤(ps)
mn

w(p)|2 + I
(ss)
mn

+ σ2
, (4)

where I(ss)
mn

is defined as
P

j2Nm\{n} |h
⇤(ss)
mmn

w
(s)
mj

|2 +
P

i2M\{m}
P

j2Ni
|h⇤(ss)

imn

w
(s)
ij

|2. The achievable rate of the
(m,n)-th secondary receiver is

C(s)
mn

= log(1 + (s)
mn

) . (5)
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Fig. 1. System model for secure MISO cognitive radio system.

At first, we assume the full availability of CSI. As in
the considered model the primary and secondary systems
cooperate, they may share their CSI. Furthermore, the CSI of
the eavesdroppers may be available when they are also users
of the primary system. Nevertheless, accurate estimation of the
eavesdroppers’ CSI may still be difficult. Thus, in this paper,
we consider the cases of perfect and imperfect eavesdropper
CSI, respectively.

III. PRIMARY SECRECY RATE WITH PERFECT CSI
In this section, we aim to maximize the primary secrecy

rate under constraints on the secondary data rates when the
CSI of the eavesedroppers is perfectly known.

Considering that the primary transmitter and secondary
transmitters have transmit power constraints of P

p

and P
s

,
respectively, the problem can be formulated as

maximize
w(p)

,{w(s)
mn}

C(p) (6a)

subject to C(s)
mn

≥ R(s)
mn

, 8n 2 N
m

,m 2M (6b)
kw(p)k2  P

p

(6c)X

n2Nm

kw(s)
mn

k2  P
s

, 8m 2M, (6d)

where the constant R(s)
mn

is the minimum rate requirement of
the (m,n)-th secondary receiver. This formulation is more
general than the one in [6] which was limited to the optimiza-
tion of one secondary beamforming vector to secure a SISO
primary link against one eavesdropper. A primary transmitter
with a single antenna cannot increase its secrecy level by
itself while a primary transmitter with multiple antennas can
maximize its secrecy rate through secure beamforming when
the CSI of the eavesdroppers is known [12]. In problem (6),
we consider the general case of a primary system with multiple
transmit antennas and multiple eavesdroppers. In addition,
problem (6) considers multiple secondary links, thus secondary
transmit beamforming vectors are designed not only to secure
a primary link but also to reduce the interference among
secondary links. Problem (6) for the joint design of the primary
and secondary beamforming vectors is non-convex and it is
not easy to find its optimal solution. Thus, we relax and
reformulate the problem in the following.



Let W(p) = w(p)w⇤(p) and W(s)
mn

= w(s)
mn

w⇤(s)
mn

. By using
variables W(p) and {W(s)

mn

} instead of w(p) and {w(s)
mn

}, the
quadratic terms of w(p) and {w(s)

mn

} in problem (6) can be
expressed as PSD matrices, W(p) and {W(s)

mn

}, which have
rank one. By relaxing the non-convex rank-one conditions of
the PSD matrices, the relaxed constraint set of problem (6)
becomes convex. Therefore, problem (6) is upper bounded by
the following optimization problem:

maximize
W(p)

,{W(s)
mn}

1 + Tr(W(p)H(pp))
P

i2M
P

j2Ni
Tr(W

(s)
ij H

(sp)
i )+σ

2

1 + max
k2K

Tr(W(p)H
(pe)
k )

P
i2M

P
j2Ni

Tr(W
(s)
ij H

(se)
ik )+σ

2

(7a)

subject to Tr(W(s)
mn

H(ss)
mmn

)− (2R
(s)
mn − 1)(I(s)

mn

+σ2) ≥ 0, 8n 2 N
m

,m 2M (7b)
Tr(W(p))  P

p

(7c)X

n2Nm

Tr(W(s)
mn

)  P
s

, 8m 2M (7d)

W(p) ⌫ 0 (7e)
W(s)

mn

⌫ 0, 8n 2 N
m

,m 2M, (7f)

where H(pp) = h(pp)h⇤(pp), H
(pe)
k

= h
(pe)
k

h
⇤(pe)
k

,
H(ps)

mn

= h(ps)
mn

h⇤(ps)
mn

, H
(sp)
i

= h
(sp)
i

h
⇤(sp)
i

,
H

(se)
ik

= h
(se)
ik

h
⇤(se)
ik

, H
(ss)
imn

= h
(ss)
imn

h
⇤(ss)
imn

, and
I
(s)
mn

= Tr(W(p)H
(ps)
mn

) +
P

j2Nm\{n} Tr(W
(s)
mj

H
(ss)
mmn

) +
P

i2M\{m}
P

j2Ni
Tr(W

(s)
ij

H
(ss)
imn

). Since the logarithm
is a monotonic increasing function, objective function
(6a) can be replaced by objective function (7a). Solving
problem (7) is still difficult because objective function
(7a) is non-concave. We introduce an auxiliary variable

⌧ , 1 + max
k2K

Tr(W(p)H
(pe)
k )

P
i2M

P
j2Ni

Tr(W
(s)
ij H

(se)
ik )+σ

2
. Using ⌧ ,

problem (7) is rewritten as

maximize
W(p)

,{W(s)
mn},⌧

1

⌧

 
1 +

Tr(W(p)H(pp))
P

i2M
P

j2Ni
Tr(W

(s)
ij

H
(sp)
i

) + σ2

!

(8a)

subject to Tr(W(p)H
(pe)
k

)− (⌧ − 1)(I
(e)
k

+ σ2)  0,

8 k 2 K (8b)
⌧  1 + Tr(H(pp))P

p

/σ2 (8c)
(7b)− (7f),

where I
(e)
k

=
P

i2M
P

j2Ni
Tr(W

(s)
ij

H
(se)
ik

). By definition
of ⌧ , ⌧ ≥ 1. In problem (8), the constraint of ⌧ ≥ 1 is
implicit in constraint (8b) because W(p) ⌫ 0 and W(s)

mn

⌫ 0.
Constraint (8c) follows from the fact that the maximum SINR
of eavesdroppers should not be larger than the primary SINR
when we consider a nonnegative primary secrecy rate, i.e.
⌧  1 + Tr(W(p)H(pp))

P
i2M

P
j2Ni

Tr(W
(s)
ij H

(sp)
i )+σ

2
 1 + Tr(H(pp))

Pp

σ

2 .

The problem of maximizing a function can be solved by first
maximizing over some of the variables, and then maximizing
over the remaining ones [13].

Proposition 1: When ⌧ is fixed, problem (8) can be repre-
sented as the following convex optimization problem, where

W(p) = σ

2

⇠

Z(p) and W
(s)
mn

= σ

2

⇠

Z
(s)
mn

, 8n 2 N
m

,m 2M:

maximize
Z(p)

,{Z(s)
mn},⇠

Tr(Z(p)H(pp)) +
X

m2M

X

n2Nm

Tr(Z(s)
mn

H(sp)
m

) + ⇠

(9a)

subject to ⌧

0

@
X

i2M

X

j2Ni

Tr(Z
(s)
ij

H
(sp)
i

) + ⇠

1

A = 1 (9b)

Tr(Z(s)
mn

H(ss)
mmn

)− (2R
(s)
mn − 1)(I 0(s)

mn

+ ⇠) ≥ 0,

8n 2 N
m

,m 2M (9c)

Tr(Z(p)H
(pe)
k

)− (⌧ − 1)(I
0(e)
k

+ ⇠)  0,

8 k 2 K (9d)
Tr(Z(p))  ⇠P

p

/σ2 (9e)X

n2Nm

Tr(Z(s)
mn

)  ⇠P
s

/σ2, 8m 2M (9f)

Z(p) ⌫ 0 (9g)
Z(s)

mn

⌫ 0, 8n 2 N
m

,m 2M (9h)
⇠ ≥ 0, (9i)

where I
0(s)
mn

= Tr(Z(p)H
(ps)
mn

)+
P

j2Nm\{n} Tr(Z
(s)
mj

H
(ss)
mmn

)+
P

i2M\{m}
P

j2Ni
Tr(Z

(s)
ij

H
(ss)
imn

), and I
0(e)
k

=
P

i2M
P

j2Ni
Tr(Z

(s)
ij

H
(se)
ik

).
Proof: Please refer to Appendix A.

From Proposition 1, for given ⌧ , problem (8) is a convex
problem and the optimal solution can be found by the interior-
point method [13]. When problem (9) is represented as a func-
tion of ⌧ , F (⌧), with domain {⌧ | 1  ⌧  1+Tr(H(pp))

Pp

σ

2 },
problem (7) is equivalent to

maximize
1⌧1+Tr(H(pp))

Pp

σ2

F (⌧). (10)

Problem (10) is a single variable optimization problem
which can be solved through a one-dimensional line search
over ⌧ . It means that relaxed problem (7) can be solved
through a sequence of convex SDPs. If the optimal variables
of problem (7) are of rank one, we can obtain the optimal
beamforming vectors from them. Otherwise, in order to ob-
tain an approximated solution for beamforming vectors, we
can apply Gaussian randomization method [14]. However, an
approximated solution yields a primary secrecy rate less than
the optimal value of problem (10). The proposed beamforming
design method is summarized in Algorithm 1.

IV. WORST-CASE PRIMARY SECRECY RATE WITH
IMPERFECT CSI

In this section, we model the imperfect eavesdropper CSI
using an elliptically-bounded channel error model, and design
robust beamforming vectors for maximization of the worst-
case primary secrecy rate under secondary rate requirements.

Let h̄
(pe)
k

2 CNp and h̄
(se)
mk

2 CNs denote estimated
CSI vectors, respectively. Then, h

(pe)
k

= h̄
(pe)
k

+ e
(p)
k

and
h
(se)
mk

= h̄
(se)
mk

+ e
(s)
mk

, where e
(p)
k

and e
(s)
mk

denote the
channel error vectors such that e

(p)
k

2 E(p)
k

, {e(p)
k

2



Algorithm 1 Secure MISO Beamforming for CR System.

1: Initialization: Set ⌧
max

to 1 + Tr(H(pp))P
p

/σ2

2: Find ⌧̂ which maximizes F (⌧) by applying one-
dimensional line search method, e.g. the golden section
method, on interval [1, ⌧

max

]
3: Set the optimal solution of (9) for ⌧̂ to (Ẑ(p), Ẑ(s)

mn

, ⇠̂)

4: Ŵ(p)  σ

2

⇠̂

Ẑ(p), Ŵ(s)
mn

 σ

2

⇠̂

Ẑ
(s)
mn

, 8 (m,n)

5: if rank(Ŵ(p)) = 1 and rank(Ŵ
(s)
mn

) = 1, 8 (m,n) then
6: Apply matrix decomposition to find ŵ(p) and {ŵ(s)

mn

}
7: else
8: Apply Gaussian randomization method [14] to find

an approximated solution (ŵ(p), {ŵ(s)
mn

}) of problem (6),
from (Ŵ(p), {Ŵ(s)

mn

}) with rank greater than one
9: end if

CNp | e⇤(p)
k

Q
(p)
k

e
(p)
k

 1}, 8 k 2 K and e
(s)
mk

2 E(s)
mk

,
{e(s)
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2 CNs | e⇤(s)
mk

Q
(s)
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e
(s)
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 1}, 8m 2 M, k 2 K. Here,
Q

(p)
k

2 HNp

+ and Q
(s)
k

2 HNs
+ .

The worst-case secrecy rate, C̃(p), can be expressed as

C̃(p)= log
⇣
1 + (p)

⌘

−max
k2K

 
max

e
(p)
k 2E(p)

k ,{e(s)
mk2E(s)

mk}
log
⇣
1 +

(e)
k

⌘!
.(11)

We introduce an auxiliary variable ⌧̃ ,
max

k2K

⇣
max

e
(p)
k 2E(p)

k ,{e(s)
mk2E(s)

mk}
1 +

(e)
k

⌘
. Then, the

problem for the design of secure and robust beamforming
vectors can be formulated as

maximize
W(p)

,{W(s)
mn},⌧̃

1

⌧̃
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Tr(W(p)H(pp))
P

i2M
P
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subject to ⌧̃ − 1 ≥ max
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, 8 k 2 K (12b)

⌧̃  1 + Tr(H(pp))P
p

/σ2 (12c)
(7b)− (7f).

Similar to the case of perfect CSI, constraint (12c) follows
from the definition of ⌧̃ and the nonnegativity of primary
secrecy rate. Using the same approach as in Proposition 1, it
can be shown that, for a fixed ⌧ , problem (12) can be rewritten
as

maximize
Z(p)

, {Z(s)
mn}, ⇠

Tr(Z(p)H(pp)) +
X
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(12b), (9c), (9e)− (9i).

However, constraint (12b) has a semi-infinite constraint for
each k. This constraint can be transformed into linear matrix
inequalities (LMIs) using the S-procedure [13].

Proposition 2: Let W(p) = σ

2

⇠

Z(p) and W
(s)
mn

=
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, 8n 2 N
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,m 2M. Problem (13) can be transformed
to the following convex optimization problem.
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.
Proof: This proof shows that problem (13) is equivalent

to problem (14). In other words, it is shown that constraint
(12b) can be rewritten as (14b)-(14e). Because all CSI errors
are independent, the constraint in (12b) for Z(p) and {Z(s)

mn

}
can be rewritten as

max
e
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k

⇣
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+ e
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).
Using the S-procedure, (17) can be transformed into LMIs,
i.e., (14b) and (14c).

When problem (14) is represented as a function F̃ (⌧),
problem (12) can be reformulated into the following single
variable optimization problem:

maximize
1⌧̃1+Tr(H(pp))

Pp

σ2

F̃ (⌧̃). (18)

Therefore, an algorithm to find the optimal beamforming
vectors can be designed, similar to Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the beam-
forming design methods proposed in Sections III and IV, via
simulations. Problems (7) and (12) may not always be feasible
when the constraints are tight or the channel realizations are
poor. If the problems are infeasible, the primary transmitter
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Fig. 2. Primary secrecy rate vs. SNR (Np = Ns = 2, R(s) = 2).

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

Secondary users rate requirement (bps/Hz)

P
ri
m

a
ry

 s
e

cr
e

cy
 r

a
te

 (
b

p
s/

H
z)

 

 
0 Eavesdropper, 0Stx

1Stx/1Srx (N
s

= 2)

2Stx/2Srx (N
s

= 2)

2Stx/4Srx (N
s

= 2)

2Stx/4Srx (N
s

= 4)

0Stx/0Srx

Fig. 3. Primary secrecy rate vs. secondary rate requirement (SNRp =
SNRs = 20dB, four eavesdroppers).

cannot send secure messages to its desired receiver with a non-
zero secrecy rate. In this section, we evaluate the performance
only for the case when the problems are feasible. Figs. 2 - 4
show the results for perfectly-known eavesdropper CSI. For
the transmit powers, P

p

= P
s

holds, and all channels are
randomly generated following an independent and identically
distributed (i.i.d.) complex Gaussian distribution with zero
mean and unit variance. In this section, a helper means a
secondary transmitter that does not have its own receiver
but only secures the primary communication. The notation
MStx/NSrx in the legends of Figs. 3 - 5 means that there
are M secondary transmitters, each of which serves N/M
secondary receivers. The case of M>0 and N=0 means that
M secondary transmitters serve only as helper nodes.

Fig. 2 presents the effect of secondary transmissions on
the primary secrecy rate. When there is an eavesdropper, the
primary system can achieve a secrecy rate similar to its data
rate, which is the upper bound of C(p), by sending its data in
the nullspace of eavesdroppers. In case of four eavesdroppers,
the secrecy rate decreases abruptly. When a helper transmits
artificial interference, the secrecy rate increases again. As long
as the SNR is not too low, the secondary system can serve its
own link with the required rate of 2 bps/Hz, with very small
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Fig. 4. Primary secrecy rate vs. number of eavesdroppers (SNRp =
SNRs = 20dB, R(s) = 2).
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Fig. 5. Comparison of robust and non-robust beamforming design methods
(SNRp = SNRs = 20dB, Np = Ns = 2, R(s) = 1).

performance degradation of the primary system, compared to
the case with no secondary receiver.

Fig. 3 shows the primary secrecy rate as a function of
the secondary rate requirement for each secondary link. In
this figure, a zero secondary rate requirement means that the
secondary transmitters serve as helpers only. The results show
that the secondary system does not only increase the primary
secrecy rate by many folds, compared to the case of not sharing
the spectrum, but also achieve non-zero data rate for each
secondary link. Moreover, it is observed that there exists the
rates that the secondary system can achieve without affecting
the primary secrecy rate severely compared to the case where
the secondary transmitters serve as helpers only, e.g. 0 to 1.5
bps/Hz in the scenario of 1Stx/1Srx in Fig. 3.

In Fig. 4, the effect of the number of eavesdroppers is
investigated. In this figure, it is observed that the case of two
secondary transmitters with two antennas, each of which has a
single receiver, has a lower performance than the case without
any helper. Because the secondary rate requirement is too tight
to lead to a satisfactory performance for the case of only two
antennas, the secondary system cannot help in securing the
communication of the primary system. Thus, we need more
spatial degrees of freedom for the secondary system to increase



the secrecy rate.
In Fig. 5, we compare the non-robust beamforming design

of Section III and the robust beamforming design of Sec-
tion IV, when the eavesdroppers’ channels are not known
perfectly. The simulation assumes that Q

(p)
k

= 1
"

2 INp
and

Q
(s)
mk

= 1
"

2 INs
, i.e., the magnitude of the channel error vectors

are bounded by ". The performance measure is the worst-case
secrecy rate. The non-robust method designs the beamforming
vectors using estimated channels for the eavesdroppers’ links
while the robust method designs them based on the worst-
case channel. Therefore, the non-robust method experiences a
performance degradation because of these errors. Fig. 5 shows
that the robust beamforming vector design yields much better
worst-case secrecy rates than the non-robust design.

The beamforming vector design methods in Sections III and
IV provide the optimal solution for maximizing the secrecy
rate of the primary system when W(p) and {W(s)

mn

} have rank-
one. For all results presented in this section, the solutions were
numerically found to have rank one.

VI. CONCLUSIONS

In this paper, we studied MISO cognitive radio (CR) sys-
tems where the primary system is more secured with the aid
of secondary users. It is shown that the spectrum sharing with
the secondary system can increase the primary secrecy rate
much more, compared to the case where the primary system
with multiple antennas improves its secrecy rate through only
its own secure beamforming. The problem was formulated as
a non-convex optimization problem to maximize the primary
secrecy rate under constraints on the secondary date rates.
Moreover, in case of imperfect CSI of the eavesdroppers’
links, we formulated the problem as a non-convex optimiza-
tion problem with semi-infinite constraints. We solved the
considered problems via a sequence of convex semidefinite
optimization problems. Simulation results showed that the
proposed beamforming methods increased the secrecy rate
and the worst-case secrecy rate of the primary system while
meeting the secondary data rate requirements. An interesting
topic for future work is the study of secure MISO CR systems
for the case when the CSI of the eavesdroppers’ links is
completely unknown.

APPENDIX A
PROOF OF PROPOSITION 1

For fixed ⌧ , by the change of variables W(p) = σ

2

⇠

Z(p),

W
(s)
mn

= σ

2

⇠

Z
(s)
mn

, 8n 2 N
m

,m 2M, where ⇠ > 0, problem
(8) can be transformed into

maximize
Z(p)

,{Z(s)
mn},⇠

Tr(Z(p)H(pp)) +
X

m2M

X

n2Nm

Tr(Z(s)
mn

H(sp)
m

) + ⇠

⌧

 
X

m2M

X

n2Nm

Tr
⇣
Z(s)

mn

H(sp)
m

⌘
+ ⇠

!

(19a)
subject to (9c)− (9h)

⇠ > 0. (19b)

By applying the Charnes-Cooper transformation [15], problem
(19) is equivalent to

maximize
Z(p)

,{Z(s)
mn},⇠

Tr(Z(p)H(pp)) +
X

m2M

X

n2Nm

Tr(Z(s)
mn

H(sp)
m

) + ⇠

(20a)

subject to ⌧

0

@
X

i2M

X

j2Ni

Tr
⇣
Z

(s)
ij

H
(sp)
i

⌘
+ ⇠

1

A = 1 (20b)

(9c)− (9h)
⇠ > 0. (20c)

If ⇠ is equal to zero, then from constraints (9f) and (9h), we
have Z(s)

mn

= 0, 8n 2 N
m

,m 2 M. Because this violates
constraint (9b), ⇠ > 0 must hold and ⇠ ≥ 0 can be used instead
of ⇠ > 0. Therefore, problem (9) is equivalent to problem (8)
for fixed ⌧ .
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