
Direct Energy Trading of Microgrids in Distribution Energy Market

Hongseok Kim†, Joohee Lee†, Shahab Bahrami?, Vincent W.S. Wong?
†Department of Electronic Engineering, Sogang University, Seoul, Korea

?Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
email: {hongseok, ooeelee}@sogang.ac.kr, {bahramis, vincentw}@ece.ubc.ca

Abstract—Recent advancement of distributed renewable gener-
ation has motivated microgrids to trade energy directly with one
another, as well as with the utility, in order to minimize their
operational costs. Energy trading among microgrids, however,
confronts challenges such as reaching a fair trading price,
maximizing participants’ profit, and satisfying power network
constraints. In this paper, we formulate the direct energy trading
among multiple microgrids as a generalized Nash bargaining
(GNB) problem that involves the distribution network’s opera-
tional constraints (e.g., power balance equations, voltage limits).
We prove that solving the GNB problem maximizes the social
welfare and also distributes the revenue among the microgrids
based on their market power. To address the nonconvexity of
the GNB problem, we propose a two-phase approach. The first
phase involves solving the optimal power flow problem in a
distributed fashion using the alternative direction method of
multipliers to determine the amount of energy trading. The
second phase determines the market clearing price and mutual
payments of the microgrids. Simulation results on an IEEE
33-bus system with four microgrids show that the proposed
framework substantially reduces total network cost by 37.2%.
Our results suggest direct trading need to be enforced by the
regulators in order to maximize the social welfare.

I. INTRODUCTION

Recent development of renewable generations (e.g., wind
turbine, photovoltaic (PV) panel) has made sustainable energy
economically viable. Unlike the conventional large-scale gen-
erators, renewable generators are often small-scale, and thus
appropriate for serving microgrids. However, the stochastic
nature of renewable energy sources and the fluctuations in
load demand can cause microgrids to experience intermittent
energy shortage or surplus. To this end, direct energy trading
among microgrids can be a viable solution to balance energy
and lower the operational cost.

Direct trading is beneficial to both sellers and buyers
compared to the trading with the utility company by reducing
the intermediate trading step. However, there are several
challenges in designing a direct energy trading mechanism.
First, it is difficult to reach an agreement on the trading price,
which should not be biased toward either sellers or buyers.
Second, it is crucial to determine the power flow from sellers
to buyers while satisfying the distribution network constraints.
Third, it would be desirable that direct trading can maximize
the social welfare (or equivalently, minimize the total cost
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of energy generation and operation) so that regulators can
advocate direct energy trading with legitimate support.

There have been some efforts to tackle the first challenge
associated with trading price [2]–[5]. For example, auction
mechanism is applied for direct trading among microgrids in
[2]. A coalition of sellers and buyers is considered in [3] to
collectively trade energy with the utility company and share
the revenue using the Shapley value. The concept of peer-
to-peer trading between any pair of microgrids using Nash
bargaining solution is proposed in [5]. However, [2]–[5] do
not consider the distribution network constraints. In resolving
the second and third challenges associated with physical
constraints and optimal operation, several works study the
energy management system of microgrids and/or distribution
network, but without a market clearing mechanism [6]–[8]. In
these works, microgrids are assumed to cooperate to minimize
their aggregate cost in a distributed fashion. Some works
have investigated the distributed optimal power flow (OPF) for
energy trading in a distribution network using techniques such
as the alternative direction method of multipliers (ADMM) [8].
The combination of OPF and direct trading is proposed [9], but
a heuristic market clearing may not guarantee social welfare.

In this paper, we provide a framework that can address
the above challenges. The proposed framework determines
the amount of direct energy trading and the corresponding
payment among microgrids, considering the operational con-
straints imposed by the distribution network. We formulate the
problem as a generalized Nash bargaining (GNB) problem. We
summarize our key contributions as follows.

1) Direct Trading Framework: We design a general market
mechanism for direct trading among microgrids considering
full AC power flow model for the distribution network. Solving
the GNB problem can incentivize microgrids to participate in
direct trading rather than trading with the utility company. We
prove that solving the GNB problem minimizes the total cost,
and thereby the proposed framework maximizes the social
welfare while each microgrid can maximize its own profit.

2) Distributed Optimization Methods: We address the non-
convexity and obtain an optimal solution of the GNB problem
by first solving the OPF and then clearing the market. To solve
the OPF problem in a distributed manner, we leverage ADMM
to decouple the optimization variables of the microgrids and
the distribution network. This enables us to determine the
amount of energy trading while concurrently solving the OPF.
Then, the market is cleared by using ADMM in a privacy

978-1-5386-8099-5/19/$31.00 c� 2019 IEEE



preserving manner. The proposed market mechanism ensures
that the profit of each microgrid is proportional to the amount
of energy exchange by exploiting the notion of market power.

3) Significant Cost Reduction: Simulation results show that
the proposed direct trading can reduce the total network cost
by 37.2% compared to the case without direct trading. Fur-
thermore, the costs are reduced by 9�42.8%, the revenues are
increased by up to 73% depending on microgrids . The power
losses are also reduced by 20.6%. Finally, all participating
microgrids fairly achieve the same trading profit per kWh.

The rest of this paper is organized as follows. In Section II
we describe the overall system model including the distri-
bution network and the components within each microgrid.
We formulate our direct trading with power flow problem
in Section III. We present a distributed approach for solving
the OPF and clearing the market in Section IV. Simulation
results are provided in Section V, and conclusion is given in
Section VI.

II. SYSTEM MODEL

Consider a radial distribution network represented by a
graph G(N , E), where N is the set of buses and E ✓ N⇥N is
the set of branches in the network. We consider a set M ✓ N
of M = |M| microgrids. Let 0 2 N denote the slack bus of G,
where the utility is connected as an external power source of
the distribution network. The direct energy trading framework
among microgrids in a distribution network is shown in Fig. 1.
Let T = {1, . . . , T} denote the operational horizon, which is
divided into T time slots with equal duration (e.g., one hour)
denoted by �t.

For bus i 2 N , let V

i

(t) denote the complex voltage in
time slot t 2 T , and let s

i

(t) = p

i

(t) + iq
i

(t) denote the
complex power injection into bus i. For line (i, j) 2 E , let
z

ij

= r

ij

+ ix
ij

denote the line impedance, and I

ij

(t) denote
complex current from bus i to bus j in time slot t. For branch
(i, j) 2 E and time slot t 2 T we have V

i

(t) � V

j

(t) =

z

ij

I

ij

(t). Let I

⇤
ij

(t) denote the complex conjugate of I

ij

(t).
Then, the complex power flow in line (i, j) 2 E is defined
by S

ij

(t) = V

i

(t)I

⇤
ij

(t) from which the real power P
ij

(t) and
the reactive power Q

ij

(t) are determined such that S
ij

(t) =

P

ij

(t) + iQ
ij

(t).
The power balance equation for bus j 2 N is given

by s

j

(t) = S

ij

(t) � z

ij

��
I

⇤
ij

(t)

��2 �
P

k 6=i:(j,k)2E Sjk

(t). Let
l

ij

(t) = |I
ij

(t)|2 and v

i

(t) = |V
i

(t)|2. Using the branch
flow model in [10], we have the following equations with real
variables for all (i, j) 2 E and t 2 T ,

p

j

(t) = P

ij

(t)� r

ij

l

ij

(t)�
X

k 6=i:(j,k)2E

P

jk

(t), (1)

q

j

(t) = Q

ij

(t)� x

ij

l

ij

(t)�
X

k 6=i:(j,k)2E

Q

jk

(t), (2)

v

j

(t) = v

i

(t)�2(r

ij

P

ij

(t)+x

ij

Q

ij

(t))+(r

2

ij

+x

2

ij

)l

ij

(t), (3)

l

ij

(t) =

P

ij

(t)

2

+Q

ij

(t)

2

v

i

(t)

. (4)
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Figure 1. The system schematic of microgrids energy trading through the
distribution network.

We consider the following voltage tolerance constraint:

v

min

i

 v

i

(t)  v

max

i

, i 2 N \{0}. (5)

As shown in Fig. 1, the microgrids are interconnected by the
distribution network G through which energy can be traded.
Each microgrid i 2 M has its own renewable or fuel-based
distributed generator (DG), energy storage, and local loads.
The goal of each microgrid is to minimize its total operational
cost which includes the cost of purchasing energy from the
utility, battery degradation cost, and fuel-based distributed
generation operational cost. We assume fixed loads that can
be forecasted with reasonably good accuracy.

1) Power trading with the utility: Let u

b,i

(t) denote the
power purchased from the utility company by microgrid i and
µ

b

(t) denote the purchasing price ($/MWh) in time slot t. Due
to the physical or contractual power limit, we have

0  u

b,i

(t)  u

max

b,i

, i 2 M, t 2 T , (6)

where u

max

b,i

denotes the maximum purchasing power of micro-
grid i. Let d

i

(t) denote the load of microgrid i 2 M in time
slot t. Due to the stochastic nature of the renewable generation,
the local generation level of a microgrid can exceed the total
local load demands. The microgrid can sell its surplus power
to the utility at selling price ($/MWh) µ

s

(t) in time slot t. The
amount of selling power, denoted by u

s,i

(t), is also subject to
the physical or contractual power limit:

0  u

s,i

(t)  u

max

s,i

, i 2 M, t 2 T , (7)

where u

max

s,i

denotes the maximum selling power of micro-
grid i. Then, the cost of purchasing power by microgrid i 2 M
from the utility during time period T is

C

u,i

(u
i

) =

X

t2T
[µ

b

(t)u

b,i

(t)� µ

s

(t)u

s,i

(t)]�t, (8)

where u
i

= (u

b,i

(t), u

s,i

(t), t 2 T ) is a power trading profile
of microgrid i 2 M with the utility.

2) Battery operation: The charging and discharging powers
of microgrid i 2 M in time slot t, denoted by b

c,i

(t) and
b

d,i

(t), are limited by the capacity of power conditioning
system such that

0  b

c,i

(t)  b

max

c,i

, (9a)
0  b

d,i

(t)  b

max

d,i

, (9b)



where b

max

c,i

and b

max

d,i

are the maximum of charging power and
discharging power of the battery in microgrid i, respectively.
The stored energy in the battery E

b,i

(t) changes according to
the following equation:

E

b,i

(t+ 1) = E

b,i

(t) +

✓
⌘

c,i

b

c,i

(t)� 1

⌘

d,i

b

d,i

(t)

◆
�t, (10)

where ⌘

c,i

and ⌘

d,i

are the charging and discharging efficien-
cies of microgrid i. Since battery degradation is known to be
severe at both ends of the state-of-charge (SoC), i.e., either
empty or full, E

b,i

(t) should be constrained by [11]

SoCmin

i

 E

b,i

(t)

E

max

b,i

 SoCmax

i

, (11)

where SoCmin

i

and SoCmax

i

denote the minimum and max-
imum SoC of the battery, and E

max

b,i

denotes the maximum
battery capacity in microgrid i.

Although the battery degradation depends on the SoC, the
degradation density function of the SoC is almost flat between
SoCmin

i

and SoCmax

i

[12]. Thus, the battery degradation cost
can be computed by the amount of transferred energy:

C

b,i

(b
i

) = c

b,i

X

t2T
[b

c,i

(t) + b

d,i

(t)]�t, (12)

where b
i

= (b

c,i

(t), b

d,i

(t), t 2 T ) and c

b,i

is the degradation
cost coefficient per unit energy.

3) Distributed generation cost: Let r
i

(t) denote renewable
generation of microgrid i 2 M in time slot t. We assume
that r

i

(t) can be predicted reasonably well as in [5], [6].
Renewable generation is assumed to have zero marginal cost in
the short run [5]. On the other hand, fuel-based generation such
as fuel cell, distributed micro turbine or diesel generator has
a nonlinear cost function [6]. We use the following quadratic
cost function for a fuel-based DG in microgrid i:

C

g,i

(g
i

) =

X

t2T

�


2,i

g

i

(t)

2

+ 

1,i

g

i

(t) + 

0,i

�
�t, (13)

where g
i

= (g

i

(t), t 2 T ), and the positive coefficients of


2,i

, 

1,i

, and 

0,i

depend on the type of DG. The output
power of DG in microgrid i is bounded by

g

min

i

 g

i

(t)  g

max

i

, (14)

where g

min

i

and g

max

i

are the minimum and maximum gener-
ation capacities in microgrid i, respectively.

4) Total cost of microgrid: The active power balance equa-
tion at microgrid i 2 M in time slot t 2 T is

r

i

(t)+g

i

(t)+u

b,i

(t)+b

d,i

(t) = d

i

(t)+u

s,i

(t)+b

c,i

(t), (15)

where d

i

(t) is the real power demand of microgrid i in time
slot t. Then, the left-hand side corresponds to the power
generations and the right-hand side corresponds to the power
demands. Then, the internal cost function of microgrid i 2 M
is given by

e
C

i

(u
i

,b
i

,g
i

) = C

u,i

(u
i

) + C

b,i

(b
i

) + C

g,i

(g
i

). (16)

5) Microgrid’s local optimization problem: If microgrid i 2
M does not participate in direct energy trading with other
microgrids, it solves the following optimization problem:
P0: Microgrid’s Optimization without Direct Trading

minimize e
C

i

(u
i

,b
i

,g
i

)

subject to (6), (7), (9a)–(11), (14), (15),
variables {u

i

,b
i

,g
i

}.

Problem P0 is a convex problem since the objective function
and all constraints are convex. Problem P0 is solved by
microgrid i 2 M. The optimal value is denoted by C

i

.
III. GNB FOR DIRECT ENERGY TRADING

When microgrid i 2 M has energy surplus or deficit,
it can trade power through the distribution network G as
shown in Fig. 1. Let e

ij

(t) denote the exporting power from
microgrid i to microgrid j. In a lossless power network, we
have e

ij

(t) + e

ji

(t) = 0. However, the power losses may
not be negligible. Specifically, in the distribution network,
we have e

ij

(t) + e

ji

(t) = r

ij

l

ij

(t). Note that the power
losses depend on l

ij

(t) = |I
ij

(t)|2, i.e., the solution of
OPF. However, before solving the OPF, we do not know the
feasibility of direct trading between microgrids i and j due
to physical constraints. To overcome the complexity to trace
e

ij

(t) for all tradable (i, j) pairs of microgrids, we focus on
the net exporting power e

i

(t) to all other microgrids, which
is defined as e

i

(t) =

P
j2M\{i} eij(t). If e

i

(t) is negative,
then microgrid i will import power from other microgrids
through the distribution network. The net power injection into
microgrid i becomes

p

i

(t) = u

b,i

(t)� u

s,i

(t)� e

i

(t), i 2 M, t 2 T . (17)

The power balance equation of (15) becomes

r

i

(t) + g

i

(t) + u

b,i

(t) + b

d,i

(t) (18)
= d

i

(t) + e

i

(t) + u

s,i

(t) + b

c,i

(t), i 2 M, t 2 T .

We also have the following constraint
X

i2M
e

i

(t) = 0, t 2 T , (19)

which implies that the sum of all exporting powers should be
equal to the sum of all importing powers in time slot t. Let
e
i

= (e

i

(t), t 2 T ) denote the trading profile of microgrid i 2
M. To incentivize direct trading, the cost after direct trading
should be less than or equal to the cost before direct trading
C

i

. To determine the cost after direct trading, we consider two
other factors: the distribution network access fee of microgrid
i, denoted by �

i

, and the direct trading payment of microgrid
i denoted by ⇡

i

. Microgrid i participates in the direct energy
trading only if

e
C

i

(u
i

,b
i

,g
i

) + �

i

+ ⇡

i

 C

i

, i 2 M. (20)

We consider a non-profit organization called distribution
system operator (DSO), which manages and balances the
distribution network. The DSO should compensate power



losses in the distribution network by purchasing power from
the utility company through the slack bus. Thus, DSO imposes
an access fee �

i

for microgrid i 2 M to cover the overhead
cost for direct trading. Let � =

P
i2M �

i

denote the total
overhead cost. Then, we have

� =

X

t2T

X

(i,j)2E

r

ij

l

ij

(t)⇠(t), (21)

where ⇠(t) is a coefficient that accounts for the overhead cost
from the power losses and network maintenance. For example,
when ⇠(t) is equal to µ

b

(t), the access fee accounts for the
cost from power losses. Note that determining ⇠(t) requires
the detailed analysis on the operational cost and is beyond the
scope of this paper. When the access fee �

i

is imposed in
proportion to the amount of direct trading, we have

�

i

=

P
t2T |e

i

(t)|P
j2M

P
t2T |e

j

(t)|�, i 2 M. (22)

Then, the cost for microgrid i including the access fee is
defined by

C

i

(u
i

,b
i

,g
i

) =

e
C

i

(u
i

,b
i

,g
i

) + �

i

, i 2 M. (23)

Finally, the payment of one microgrid becomes the revenue of
the other microgrids, and the sum of payments is zero, i.e.,

X

i2M
⇡

i

= 0. (24)

Then, the GNB problem is formulated as follows.

P1: Generalized Nash Bargaining (GNB) Problem

maximize
Y

i2M

⇥
C

i

� (C

i

(u
i

,b
i

,g
i

) + ⇡

i

)

⇤
↵

i (25)

subject to (1)–(5), (6), (7), (9a)–(11), (14),
(17)–(20), (24),

variables {e
i

,u
i

,b
i

,g
i

,⇡

i

, i 2 M,P,Q,v, l, s},

where the positive parameter ↵
i

denotes the market power of
microgrid i 2 M, P = (P

ij

(t), (i, j) 2 E , t 2 T ), Q =

(Q

ij

(t), (i, j) 2 E , t 2 T ), v = (v

i

(t), i 2 N \ {0}, t 2 T ),
l = (l

ij

(t), (i, j) 2 E , t 2 T ), s = (s

i

(t), i 2 N , t 2 T ).

Instead of solving P1, we provide Proposition 1 stating
that the solution of P1 also minimizes the total cost of
the distribution network, which gives us a way to detour in
solving P1 in two separate steps: solving the OPF and then
determining the market clearing.

Proposition 1 (Social Welfare Maximization): Let C

⇤
i

de-
note the optimal value of C

i

(u
i

,b
i

,g
i

) at the solution of
P1. Then, the solution of P1 minimizes the total cost of the
distribution network, which is given by

P
i2M C

⇤
i

.

Proof: For notational simplicity, we omit the variables
(u

i

,b
i

,g
i

) in C

i

. We prove by contradiction. Let {C⇤
i

, i 2
M} be obtained from the solution of P1. Suppose thatP

i2M C

⇤
i

does not minimize
P

i2M C

i

. Then, there exists
C

0
i

such that
P

i2M C

0
i

<

P
i2M C

⇤
i

.

Let �C

i

= C

0
i

� C

⇤
i

. Then, we have
X

i2M
�C

i

< 0. (26)

We consider another cost C

i

and the payment ⇡

i

such that
C

i

= C

⇤
i

+ �C

i

for i = 1, . . . ,M and ⇡

i

= ⇡

⇤
i

� �C

i

for i = 1, . . . ,M � 1, and ⇡

M

= ⇡

⇤
M

� �C

M

+ ✏ where
✏ = �

P
i2M(⇡

⇤
i

��C

i

) to satisfy the constraint (24). Then,

MY

i=1

⇥
C

i

� (C

i

+ ⇡

i

)

⇤
↵

i

= [C

1

� (C

⇤
1

+�C

1

+ ⇡

⇤
1

��C

1

)]

↵1 ⇥ · · ·⇥
[C

M

� (C

⇤
M

+�C

M

+ ⇡

⇤
M

��C

M

+ ✏)]

↵

M

. (27)

From (24) and (26), ✏ =

P
i2M �C

i

< 0. Then, all other
terms of (27) remain the same as

⇥
C

i

� (C

⇤
i

+ ⇡

⇤
i

)

⇤
↵

i , but
the last term increases, which makes

MY

i=1

⇥
C

i

� (C

i

+ ⇡

i

)

⇤
↵

i

>

MY

i=1

⇥
C

i

� (C

⇤
i

+ ⇡

⇤
i

)

⇤
↵

i

.

This contradicts that C⇤
i

and ⇡

⇤
i

maximize P1.
IV. DISTRIBUTED SOLUTION APPROACH

The OPF problem is formulated as follows: The
cost function is equal to

P
i2M C

i

(u
i

,b
i

,g
i

) =P
i2M

� e
C

i

(u
i

,b
i

,g
i

) + �

i

�
according to (21) and (22).

The distribution network constraints are given by (1)�(5),
the constraints of microgrids are given by (6), (7), (9a)�(11),
(14), and the power balancing constraints with trading are
given by (17)�(19). The OPF problem is nonconvex due to
the quadratic equality constraint of (4). We apply convex
relaxation by replacing (4) with the inequality constraint:

l

ij

(t) � P

ij

(t)

2

+Q

ij

(t)

2

v

i

(t)

, (28)

which gives us the following relaxed OPF problem.
P2: OPF-r Problem with ADMM

minimize
X

i2M

e
C

i

(u
i

,b
i

,g
i

) +

X

t2T

X

(i,j)2E

r

ij

l

ij

(t)⇠(t)

subject to MG: (6), (7), (9a)–(11), (14), (18),
NET: (1)–(3), (5), (17), (19), (28),
AUX: e

i

=

ˆe
i

,u
i

=

ˆu
i

, i 2 M,

variables {e
i

,u
i

,b
i

,g
i

,

ˆe
i

,

ˆu
i

, i 2 M,P,Q,v, l, s}.

The augmented Lagrangian L is

L(e
i

,u
i

,b
i

,g
i

,

ˆe
i

,

ˆu
i

,�
i

, i 2 M,P,Q,v, l, s)

=

X

i2M

e
C

i

(u
i

,b
i

,g
i

) +

X

t2T

X

(i,j)2E

r

ij

l

ij

(t)⇠(t)

+

X

i2M
(�T
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where �
i

= (�
e,i

,�
u,i

) and �
e,i

, �
u,i

are dual variable vec-
tors for the constraints of e

i

=

ˆe
i

and u
i

=

ˆu
i

, respectively.



Then, we now develop the following MG
i

update rule, DSO
update rule, and the dual variables update rule.

For MG
i

update, at the (m+ 1)

th iteration, each microgrid
i 2 M solves the following optimization problem with ˆe

i

=

ˆe(m)

i

, ˆu
i

=

ˆu(m)

i

, and �
i

= �(m)

i

.
MG

i

update
minimize e

C

i

(u
i
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i
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i

)

+�T
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)
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⇢
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||ˆe
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||2 + ⇢

2

||ˆu
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� u
i

||2 (30)

subject to (6), (7), (9a)–(11), (14), (18),
variables {e

i

,u
i

,b
i

,g
i

}.

The MG
i

update is a convex optimization problem. The
solution variables of MG

i

update are labeled as e
i

= e(m+1)

i

and u
i

= u(m+1)

i

, which are used for DSO update below.
DSO update
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X

t2T
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subject to (1)–(3), (5), (17),
X

i2M
ˆe
i

= 0, (28),

variables {ˆe
i

,

ˆu
i

, i 2 M,P,Q,v, l, s}.

The DSO update is a convex optimization problem. Let the
solution of DSO update be labeled as ˆe(m+1)

i

and ˆu(m+1)

i

.
Using the solutions of MG

i

update and DSO update, the dual
variables are updated as follows.
Dual variable update

�(m+1)

e,i

= �(m)

e,i

+ ⇢(

ˆe(m+1)
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� e(m+1)

i

), (32)

�(m+1)

u,i

= �(m)

u,i

+ ⇢(

ˆu(m+1)

i

� u(m+1)

i

). (33)

Then, the iteration of the MG
i

update, the DSO update, and
the dual update converges to an optimal solution [13].

Next, we address the market clearing problem. Let C

o

i

denote the optimal cost of microgrid i 2 M obtained after
solving P2. The payment ⇡

i

, i 2 M can be determined using
the minimum cost Co

i

, i 2 M. Note that we use C

o

i

instead
of C

⇤
i

(which comes from the solutions of P1) because they
may not necessarily be the same. After substituting C

o

i

into
P1, we have the following market clearing problem.
P3: P2P Market Clearing Problem

maximize
Y

i2M

⇥
C

i

� (C

o

i

+ ⇡

i

)

⇤
↵

i (34)

subject to
X

i2M
⇡

i

= 0

variables {⇡
i

, i 2 M},

which is solvable by the exchange ADMM to preserve privacy.
Proposition 2 (Fairness): If the market power ↵

i

is set
in proportion to the total traded energy, i.e., ↵

i

=

P
t2T |eo

i

(t)|P
i2M

P
t2T |eo

i

(t)| where e

o

i

(t) is an optimal solution of P2,
then each microgrid has the equal trading profit per unit energy
� =

P
i2M �

iP
i2M

P
t2T |eo

i

(t)| where �

i

= C

i

� C

o

i

upon market
clearing.

Proof: By taking log and negating the objective function,
we have the following minimization problem

minimize
X

i2M
�↵

i

log(�

i

� ⇡

i

)

subject to
X

i2M
⇡

i

= 0

variables {⇡
i

, i 2 M}.
Then, the Lagrangian is given by L =P

i2M (�↵

i

log(�
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� ⇡
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) + �⇡
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) . From @L

@⇡
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= 0, we
have ⇡
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= �
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+
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i

�

. From
P

i2M ⇡

i

= 0 and
P
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= 1,
we have 1

�

= �
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i

. Thus, the payment of microgrid i

is simply given by
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= �
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i

X
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�
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. (35)

Since the profit of microgrid i is defined as the reduced
cost after the payment, we have �

i

= �

i

� ⇡

i

= ↵

i

P
j2M �

j

.
Thus, the total profit

P
j2M �

j

of direct trading is allocated
to each microgrid i based on its market power ↵

i

. Then, the
profit per unit energy is �

iP
t2T |eo
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(t)| =

P
i2M �

iP
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P
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(t)| =

�. When substituting ⇡
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in (35) into (34), we have the
maximum value given by
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. The maximum value only depends
on

P
i2M �

i

, and it is uniquely determined by solving P2.
Proposition 3 (Converse): If the solution of P1 exists, then

the solutions of P2 and P3 maximize P1.
Proof: Let C⇤

i

and ⇡

⇤
i

be obtained from the solution of
P1. Let Co

i

be obtained from the solution of P2. Recall that
we do not claim that C

o

i

= C

⇤
i

because we do not know
if the solution of P2 can be a part of the solution of P1.
Nevertheless, we have the property of

P
i2M C

⇤
i

=

P
i2M C

o

i

by Proposition 1. Then, we replace C

i

in (25) with C

o

i

, which
transforms P1 into the form of P3. Let ⇡o

i

be the solution of
P3. Then, from the structure of the problem, it can be shown
that ⇡o

i

= C

⇤
i

�C

o

i

+⇡

⇤
i

, i 2 M. Then, the objective function
of P3 can be equal to that of P1.

V. PERFORMANCE EVALUATION

In this section, we provide numerical experiments to demon-
strate the virtue of the proposed direct trading technique
considering four microgrids interconnected in the IEEE 33-
bus test system [10]. We use the time-of-use (ToU) pricing
provided by California Independent System Operator (CAISO)
[6], which serves as the purchasing price from the utility
company in our work. The selling price to the utility is set
as half of the purchasing price. We consider two cases. In
Case 1, each microgrid solves P0, i.e., schedules its battery
and/or DG to minimize the cost function. In Case 2, microgrids
trade energy directly (i.e., solve P1) in two steps: solving the
OPF-r P2 and solving the payment problem P3. All microgrids



Table I
SIMULATION PARAMETERS.

Parameters Value / Component

Number of time slots per day 24
Battery size 3 MWh

Maximum battery power 1 MW
Battery charging efficiency 0.9

Battery discharging efficiency 0.9
Battery degradation cost $10/MWh
Maximum power of DG 3 MW

Maximum SoC 0.9
Minimum SoC 0.1

maximum voltage (p.u.) 1.05
minimum voltage (p.u.) 0.95

2 10
1 61.1
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Figure 2. Load and renewable generation profiles of different microgrids.

have batteries, loads and DGs. Each microgrid has its own
load profile and renewable generation profile as shown in
Fig. 2; microgrid 1 has PV generation, microgrid 2 has no
renewable generation, and microgrids 3 and 4 have wind power
generation. Note that the PV generation is during daytime
while the wind power generations are mostly during nighttime.
Table I summarizes key parameters in the simulation.

Table II presents the costs before and after direct energy
trading (DET). The sum of costs covering all four microgrids
is significantly reduced from $2246.74 (Cost before DET)
to $1588.66 (Cost after DET), i.e., 29.3% of reduction. The
power loss cost is also reduced from $284 to $225 by 20.6%.
The total network cost including power loss cost is then
reduced from $2530.74 to $1588.66 by 37.2%.

VI. CONCLUSION

In this paper, we investigated direct energy trading among
microgrids considering both the economical and technical
aspects of the distribution power market and network con-
straints. We formulated direct energy trading as a nonconvex
generalized Nash bargaining problem and showed that the

Table II
MICROGRID (MG) COSTS ($) USING DIRECT ENERGY TRADING (DET).

Metric MG1 MG2 MG3 MG4
Cost before DET 372.37 2175.40 16.69 �317.71

Cost with OPF 439.42 453.21 386.31 84.15
Access Fee �i 54.65 68.32 23.15 79.45

GNB Payment ⇡i �281.14 1454.53 �460.30 �713.10
Cost after DET 212.93 1976.07 �50.84 �549.50

Profit �i 159.44 199.33 67.53 231.78
Quantity (MWh) 22.408 28.015 9.491 32.577
Profit per MWh 7.11 7.11 7.11 7.11
Market power 0.242 0.303 0.103 0.352

problem can be solved by decomposing it into two phases:
solving the OPF and solving the payment. In both cases,
we leveraged ADMM to decouple the optimization variables
of the DSO and microgrids, and to preserve the privacy of
microgrids. The proposed DSO-based market mechanism is
efficient in maximizing the social welfare and minimizing the
network loss, and also fair by guaranteeing the equal trading
profit per unit energy among microgrids. Simulation results
demonstrated that direct energy trading reduces the total cost
including the costs of all microgrids and network loss by
37.2% compared to the case without direct trading.
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