
Throughput Optimization in Grant-Free NOMA
with Deep Reinforcement Learning

Rui Huang∗, Vincent W.S. Wong∗, and Robert Schober†
∗Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

†Friedrich-Alexander University of Erlangen-Nürnberg, Germany
email: {ruihuang, vincentw}@ece.ubc.ca, robert.schober@fau.de

Abstract—Grant-free non-orthogonal multiple access (GF-
NOMA) is a promising paradigm for reducing the access delay
and improving the spectrum efficiency. As the signals of multiple
users are superimposed in GF-NOMA systems, each user is
required to select a user-specific pilot sequence to distinguish
its own signal from the signals of other users. Packet collisions
in the uplink occur when multiple users select the same pilot
sequence. In this paper, we first formulate a pilot sequence
selection problem for aggregate throughput maximization in GF-
NOMA systems. We then design a deep reinforcement learning
(DRL)-based distributed algorithm for each user to select its pilot
sequence via learning from the past pilot sequence selections.
The proposed algorithm does not rely on information exchange
between the users and does not require centralized scheduling
by the base station. Packet-level simulations show that, for the
considered system parameters, the proposed DRL distributed
algorithm can achieve an average aggregate throughput which is
within 90% of the optimal value, and has a better performance
than both acknowledgement-based and random selection GF-
NOMA schemes.

I. INTRODUCTION

Grant-free non-orthogonal multiple access (GF-NOMA) is
a promising paradigm for supporting massive machine-type
communication (mMTC) use cases and the Internet of Things
(IoT) in fifth generation (5G) wireless networks as it enhances
the spectrum efficiency and reduces the access delay [1], [2].
For uplink non-orthogonal multiple access (NOMA), multiple
users can share the same resource to transmit their packets
simultaneously to the base station. In GF-NOMA, a user
transmits its packets to the base station without sending an
access request to the base station beforehand. This reduces
the signaling overhead required for coordination between the
base station and the users.

To fully exploit the benefits of GF-NOMA, two challenges
have to be overcome. First, in GF-NOMA systems, signals
from multiple users are superimposed. Each user should
choose a user-specific pilot sequence that distinguishes its
signal from the signals of other users to ensure successful
channel estimation and decoding at the receiver [3]. Due to the
lack of centralized scheduling, packet collisions occur when
multiple users select the same pilot sequence, which can lead
to decoding failure and throughput degradation. Second, since
it is difficult for a user to exchange information with other
users in GF-NOMA systems, the pilot sequence selection
should be performed by the users in a distributed manner.

The authors in [4] proposed an acknowledgement (ACK)-
based scheduling scheme, where a user who experienced a
packet collision will select a new pilot sequence from the
rest of the pilot sequences which have not yet been selected
by other users and retransmit the packet. The authors in [5]
designed an ACK frame to provide feedback for grant-free
uplink transmission. Through the broadcast of an ACK, the
base station allocates an exclusive pilot sequence to users that
have suffered a packet collision. For ACK-based solutions
[4], [5], although a collision is resolved in the retransmission
phase, collisions can still occur when a user transmits a
packet for the first time as the scheduling is performed
only after a collision occurs. The authors in [6] proposed a
pilot sequence allocation scheme, in which the base station
allocates exclusive pilot sequences to users that have higher
probabilities of transmitting packets in the next time slot.
However, the allocation scheme in [6] requires centralized
scheduling and accurate estimation of the transmit probability.

Deep reinforcement learning (DRL) is a learning technique
based on deep neural networks (DNNs). It does not rely
on a pre-established tractable system model and does not
require information exchange between users [7], [8]. DRL is
a promising technique for the design of distributed algorithms
to improve pilot sequence selection and avoid packet collision.
Nevertheless, to the best of our knowledge, the application of
DRL for the design of GF-NOMA protocols has not been
considered yet, while some insights can be obtained from
the application of DRL for spectrum access [9], [10]. The
authors in [9] used DRL to design a distributed multi-channel
access algorithm. Furthermore, DRL was employed to study
cooperative and non-cooperative distributed channel access of
multiple users in [10]. Unlike the distributed channel access
problem, where a channel is occupied by only one user, for
the considered pilot sequence selection problem, users cannot
avoid collisions through sensing the channel in advance as
multiple users share the same physical layer resource.

To address the aforementioned issues, in this paper, we
propose a DRL-based distributed pilot sequence selection al-
gorithm for aggregate throughput maximization in GF-NOMA
systems. Our contributions are as follows:

• We formulate the pilot sequence selection problem for
throughput optimization in GF-NOMA systems as a
combinatorial optimization problem.

• We design a distributed DRL framework for GF-NOMA

systems, where a multi-layer DNN module is used to
aggregate experience throughout the access process. We
design an offline training algorithm that exploits the
system transition history to efficiently train the DNN
module.

• We propose a distributed online algorithm for users to
select their pilot sequences exploiting the pre-trained
DNN module, without relying on centralized scheduling
or information exchange between users.

• We conduct packet-level simulations to evaluate the per-
formance of the proposed DRL algorithm. Results show
that, for the considered system, the proposed algorithm
can achieve an aggregate throughput which is within 90%
of the optimum. The proposed algorithm can maintain
a higher aggregate throughput for different numbers of
pilot sequences and users than two other previously
proposed GF-NOMA schemes.

This paper is organized as follows. The system model
and problem formulation are introduced in Section II. The
DRL-based GF-NOMA pilot sequence selection algorithm
is presented in Section III. Simulation results are given in
Section IV. Conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a GF-NOMA system with one base station
serving multiple users. The base station and each user are
equipped with one antenna. Time is slotted into intervals of
equal duration. The time interval [t, t + 1) is referred to as
time slot t, where t ∈ T = {0, 1, 2, . . . , T − 1}. In each time
slot, the base station assigns one physical layer time-frequency
resource block, referred to as the basic physical resource
(BPR), for GF-NOMA transmission. We assume the base
station assigns K pilot sequences to the BPR in each time slot,
and K = {1, 2, . . . ,K} is the set of pilot sequence indices.
Welch bound equality sequences, Grassmannian sequences, or
other types of sparse spreading sequences can be used as pilot
sequences [1, Section 5.1]. In each time slot, N users share
one BPR for transmitting their packets using code-domain
NOMA. The set of users is denoted by N = {1, 2, . . . , N}.

The timing sequence diagram for GF-NOMA is illustrated
in Fig. 1. The base station first informs the users about the
BPR and the K available pilot sequences via radio resource
control (RRC) signaling [1]. When a user decides to transmit,
it selects one of the K available pilot sequences. Using the
selected pilot sequence, the user then sends its packet to the
base station. We define binary variable gnk(t) ∈ {0, 1}, where
gnk(t) is equal to 1 if user n selects the k-th pilot sequence,
k ∈ K, in time slot t ∈ T . Otherwise, gnk(t) is equal to 0.
Since a user can select at most one pilot sequence in each
time slot, we have∑

k∈K

gnk(t) ≤ 1, n ∈ N , t ∈ T . (1)

User n does not transmit in time slot t if
∑

k∈K gnk(t) = 0.
We further define vector gn(t) = (gn1(t), gn2(t), . . . , gnK(t))
as the pilot sequence selection of user n in time slot t.

BPR information

via RRC signaling

User Base Station

Uplink transmission

Acknowledgement

Blind detection and

decoding

Select pilot sequence

Fig. 1. The timing sequence diagram for GF-NOMA. The base station
configures the BPR via RRC signaling. Each user then selects a pilot sequence
and transmits its packet to the base station. After decoding, the base station
sends an ACK to the users.

We define nk(t) to be the number of users that select the
k-th pilot sequence in time slot t. We have

nk(t) =
∑
n∈N

gnk(t), k ∈ K, t ∈ T . (2)

Furthermore, S(t) denotes the set of users who select a
pilot sequence that is not chosen by other users in time slot
t. That is,

S(t) =
{
n
∣∣∣ ∑
k∈K

1(nk(t) = 1)gnk(t) = 1, n ∈ N
}
, t ∈ T ,

where 1(·) is the indicator function.
We assume the uplink channel suffers from Rayleigh fading

and path loss. We assume perfect channel estimation. We
denote dn(t) and hn(t) as the distance and channel gain
between user n and the base station in time slot t, respectively.
We denote P tx

n (t) ∈ [0, Pmax] as the transmit power of user
n in time slot t, where Pmax is the maximum transmit power.
We define P rx

n (t) as the received power of user n at the base
station in time slot t. We have

P rx
n (t) = Gn(t)P

tx
n (t), n ∈ N , t ∈ T , (3)

where Gn(t) = |hn(t)|2d−β
n (t) and β is the path loss

exponent. We adopt open loop power control [1, Section 9.2],
such that the received signal powers at the base station are
equal to a constant P0 for all users.

To decode the signals received in the considered BPR,
the base station employs blind detection to detect the pilot
sequences. Due to potential pilot sequence collisions, we
assume the base station can only successfully decode the data
of the users in set S(t). For user n ∈ N , we define rn(t)
to be a binary indicator that specifies whether its signal is
successfully decoded in time slot t. We have

rn(t) =

{
1, if n ∈ S(t),
0, otherwise.

(4)

After decoding, the base station broadcasts an ACK to inform
users about the decoding results. Our objective is to maximize
the time average aggregate throughput in GF-NOMA systems,
which leads to the following optimization problem

maximize
gn(t), n∈N , t∈T

lim
T→∞

1

T

T−1∑
t=0

∑
n∈N

rn(t)

subject to constraints (1) and (4).

(5)

Problem (5) is a combinatorial optimization problem. Ob-
taining the optimal solution of (5) requires centralized com-
putation. Besides, centralized scheduling is needed for the
implementation of the optimal solution of (5) in GF-NOMA
systems. In the next section, we propose a DRL-based online
pilot sequence selection algorithm to obtain a suboptimal
solution of (5) in a fully distributed manner.

III. DRL-BASED PILOT SEQUENCE SELECTION

DRL is a powerful tool for finding distributed solutions
for combinatorial optimization problems that require neither
centralized scheduling nor information exchange between
the users. In this section, we develop a multi-layer DNN
module along with a training framework for efficiently solving
problem (5). Moreover, we propose an online algorithm that
allows the users to select their pilot sequences in a distributed
manner.

A. Decision Process and Deep Q-learning

We model the pilot sequence selection of each user n ∈ N
as a decision process (s(t),an(t), Rn(t)), where the details
are as follows:

1) State s(t): We define variable vk(t) ∈ {−1, 0, 1}, k ∈
K, as the indicator for the decoding state of the k-th pilot
sequence at the beginning of the current time slot t ∈ T . vk(t)
depends on the pilot sequence selection of the users in the
previous time slot t−1. Specifically, vk(t) is equal to 1 if the
signal using the k-th pilot sequence was decoded successfully
in time slot t − 1. We set vk(t) to be −1 if the signal using
the k-th pilot sequence was not decoded successfully in time
slot t− 1. vk(t) is equal to 0 if no signal using the k-th pilot
was transmitted in time slot t− 1.

In time slot t, the state s(t) consists of the decoding states
of all pilot sequences. We have

s(t) = (v1(t), v2(t), . . . , vK(t)), t ∈ T . (6)

2) Action an(t): In time slot t, the action profile of user
n consists of its own pilot sequence selection gn(t). We have

an(t) = gn(t), n ∈ N , t ∈ T . (7)

We define An ⊆ {0, 1}K as the set of feasible gn(t) of user
n ∈ N which satisfy constraint (1).

3) Reward Rn(t): At the end of time slot t, the users
determine their rewards based on the ACK received from the
base station. For user n ∈ N , the reward Rn(t) is given by

Rn(t) = rn(t), n ∈ N , t ∈ T , (8)

where rn(t) is specified in (4).
To maximize its reward during the decision process, user

n may apply traditional Q-learning [11], where the expected
reward of selecting an(t) under state s(t) in time slot t is
given by the Q-value Q(s(t),an(t)). To maximize its reward,
user n determines its action from

an(t) = argmax
an∈An

Q(s(t),an). (9)

The Q-value is updated during the decision process. Given
the state s(t) in time slot t, if user n chooses action an(t),
receives reward Rn(t), and observes the next state sn(t+1),
then it will update the Q-value as

Q(s(t),an(t))←Rn(t) + γ max
an∈An

Q(sn(t+ 1),an),

where γ is a constant discount factor. To obtain an(t) based on
(9), in traditional Q-learning, each user has to maintain a Q-
table to store the Q-values of all possible actions under given
state s(t). However, the size of the Q-table increases with
the cardinality of the action and state spaces, which makes
Q-learning costly in terms of computation and memory.

Deep Q-learning [7] has been proposed to tackle the
aforementioned issues. In deep Q-learning, the Q-value is
approximated by DNNs through the establishment of a map-
ping between each state and the corresponding Q-values of all
actions. Specifically, user n uses a DNN with total Z learnable
parameters (i.e., the weights and biases) to approximate the
Q-values. We define Z = {1, 2, . . . , Z} to be the set of the in-
dices of all parameters. We denote the parameters of the DNN
of user n as a vector Φn = (ϕ

(1)
n , ϕ

(2)
n , . . . , ϕ

(Z)
n), where ϕ

(z)
n

is the z-th parameter for z ∈ Z . We initialize all parameters
in Φn to values drawn randomly from a uniform distribution.
Parameters Φn are then updated during the training process
to improve the accuracy of the Q-value approximation based
on the system transition history. In the current time slot t,
the system transition history of user n consists of the system
transition tuples (sn(τ),an(τ), sn(τ + 1), Rn(τ)) with time
index τ ∈ {0, 1, . . . , t − 1}, which describes the system
transition from time slot τ to time slot τ + 1. We denote
the Q-value for s(t) and an(t), which is approximated by a
DNN employing parameters Φn, as QΦn(s(t),an(t)).

To update parameters Φn based on the system transition
tuple, in each training iteration, we first save the current
parameters before update as Φ̂n and use Φ̂n to obtain the
target of the Q-value approximation, which is Rn(τ) +
γ max

an∈An

QΦ̂n
(sn(τ +1),an). We then find the Φn that mini-

mizes the difference between the target and the approximated
Q-value [7]. That is,

argmin
Φn

1

2

(
Rn(τ) + γ max

an∈An

QΦ̂n
(sn(τ + 1),an)

−QΦn(sn(τ),an(τ))
)2
,

(10)

where τ ∈ {0, 1, . . . , t−1}, n ∈ N . To solve problem (10), we
apply a stochastic gradient decent (SGD) algorithm to update
parameters Φn. Specifically, parameters Φn of the DNN of
user n are updated as [12]

Φn ← Φn − α∇QΦn(sn(τ),an(τ))
(
Rn(τ)

+ γ max
an∈An

QΦ̂n
(sn(τ + 1),an)

−QΦn(sn(τ),an(τ))
)
,

(11)

where α is a positive learning rate.
We use backpropagation algorithm [13, Ch. 6] to determine

the gradient ∇QΦn(sn(τ),an(τ)) in (11). In particular, we

first determine the partial derivatives of the approximated Q-
value QΦn(sn(τ),an(τ)) with respect to the parameters of
the DNN layer that directly yields the Q-value. Then, the
partial derivatives of QΦn(sn(τ),an(τ)) with respect to the
remaining parameters in Φn can be determined by recursively
applying the chain rule based on the previously obtained
partial derivatives.

After updating parameters Φn with a sufficient number of
system transition tuples, the DNN can accurately approximate
the Q-values. Based on the pre-trained DNN with updated
parameters Φn, user n can determine its action as

an(t) = argmax
an∈An

QΦn(s(t),an). (12)

To obtain an(t) based on (12), we feed s(t) into the DNN
and determine an(t) based on the output of the DNN. Instead
of maintaining a large Q-table, with deep Q-learning, user n
only needs to store parameters Φn.

B. Proposed DNN Architecture

To determine the pilot sequence selection that maximizes
the reward in (8) based on deep Q-learning, we design a cor-
responding multi-layer DNN module. The proposed structure
of the multi-layer DNN module is illustrated in Fig. 2. The
DNN layers and their functionalities are as follows:

1) Input Layer: The input layer collects the state and feeds
it to the DNN. For the multi-layer DNN module of user n,
the input is the state s(t).

2) Long Short-Term Memory (LSTM) Layer: LSTM is a
deep recurrent neural network that can aggregate experience
more efficiently than convolutional neural networks for time
series learning problems [8]. Therefore, we use an LSTM
layer with H hidden units to learn from the system transition
history and approximate the Q-values.

3) Output Layer: The LSTM layer is connected to the
output layer to generate the Q-values. Specifically, we use
two fully connected (FC) layers with one rectified linear unit
(ReLU) layer to map the output of the LSTM layer to the
Q-values. The output is a vector of size K + 1. For k ∈ K,
the (k+1)-th entry is the Q-value for selecting the k-th pilot
sequence in time slot t for state s(t), while the first entry is
the Q-value for not transmitting in time slot t.

In the aforementioned network structure, the number of
parameters in the LSTM layer is 4H(K+H). The size of the
first FC layer in the output layer is set to H×64, where H and
64 are the dimensions of the input and output, respectively.
The first FC layer then contains 64H weights and 64 biases.
The second FC layer in the output layer employs a size of
64× (K+1), with 64(K+1) weights and K+1 biases. The
input layer and ReLU layer do not have learnable parameters.
Therefore, the total number of parameters Z in the proposed
network structure is

Z = 4H(K +H)︸ ︷︷ ︸
LSTM layer

+64H + 64︸ ︷︷ ︸
first FC layer

+64(K + 1) + (K + 1)︸ ︷︷ ︸
second FC layer

.

LSTM

unit

Output

layer

System

state

Q-values

vector

…

⋮

Input

layer

LSTM

layer

ReLU

…

Fully

connected

…

…

Fully

connected

LSTM

unit

The

action

with the

maximum

Q-value

…
…

…

⋮⋮

Fig. 2. The proposed network structure consists of an input layer, an LSTM
layer, and an output layer.

C. Training Framework

The multi-layer DNN module has to be trained for ac-
curate Q-value approximation. We propose a DRL training
framework in which users generate and accumulate the system
transition history and forward it to the base station along with
their data. The base station uses the system transition history
to train the DNN module and sends the DNN parameters back
to the users. In the proposed framework, users do not have to
perform extensive computations during the training process,
and meanwhile can leverage the pre-trained DNNs to improve
their decisions.

In order to store the system transition history for training
the DNNs, the base station maintains a long-term replay for
user n ∈ N , which consists of a large number of system
transition tuples. We denote the set of time indices of the
system transition tuples stored in the long-term replay of user
n by Tn. User n also maintains a local short-term replay, in
which it stores the system transition tuple (s(t),an(t), sn(t+
1), Rn(t)) at the end of time slot t. While the long-term replay
at the base station records the system transition history in a
long time scale, the local short-term replay only maintains the
system transition tuples of the recent time slots. When user n
transmits its packet, it uploads its local short-term replay to
the base station. The base station then updates the long-term
replay with the short-term replay from user n.

Recall that when updating the parameters with (10), the
parameters for obtaining the target Q-value (i.e., Φ̂n), and the
parameters we update (i.e., Φn) come from the same DNN. As
the parameters Φn cannot accurately approximate the Q-value
in the early stages of training, errors in the approximation of
the Q-value will lead to an overestimation of the target Q-
value and consequently affect the update of Φn [14]. To tackle
these issues, we use deep Q-learning with double Q-learning
[14] to update the parameters, where we decompose the Q-
value approximation and action selection by using one DNN
module to estimate the Q-values and another DNN module
to determine the pilot sequence selection. Furthermore, we
refer to the DNN module for Q-value estimation as the target
DNN module. We use Φtar

n to denote the parameters of the
target DNN module of user n. We refer to the DNN module
for determining pilot sequence selection as the policy DNN
module. We use Φpol

n to denote the parameters of the policy
DNN module of user n. Both the policy and target DNN
modules employ the same network structure as introduced in
the previous subsection.

The proposed training framework is illustrated in Fig. 3,

Policy DNN Module

Target DNN Module

System

transition

tuples

Action

User n

Pilot

sequence

selection

Fig. 3. Illustration of the training framework. The policy DNN module
determines the action a∗

n and feeds it to the target DNN module. The target
DNN module then estimates the Q-values and feeds them to the policy DNN
module for updating Φ

pol
n . Φtar

n is updated periodically by copying Φ
pol
n .

and the training algorithm is summarized in Algorithm 1. In
Lines 3− 5 of Algorithm 1, the base station first determines
the difference between the target Q-value and the approxi-
mated Q-value. In particular, the base station samples system
transition tuples (sn(τ),an(τ), sn(τ + 1), Rn(τ)), τ ∈ Tn of
m = 20 consecutive time slots [8], and updates Φpol

n by [14]

a∗
n := argmax

an∈An

QΦpol
n
(sn(τ + 1)an), (13a)

argmin
Φpol

n

1

2
(Rn(τ) + γ QΦtar

n
(sn(τ + 1),a∗

n)

−QΦtar
n
(sn(τ),an(τ)))

2. (13b)

In Line 4, action a∗
n in (13a) is determined by feeding

sn(τ + 1) into the policy DNN module and selecting the
action that corresponds to the entry with the maximum value
in the output. In Line 5, the term QΦtar

n
(sn(τ),an(τ)) in (13b)

is obtained by feeding the state sn(τ) into the target DNN
module and selecting the values of the entries of the output
that correspond to an(τ). The term QΦtar

n
(sn(τ + 1),a∗

n) in
(13b) is obtained by feeding the state sn(τ+1) into the target
DNN module and selecting the values of the entries of the
output that correspond to a∗

n.
In Line 6, the base station updates the parameters Φpol

n by
using the SGD algorithm [12] to solve problem (13b). The
parameters of the policy DNN module are updated in every
iteration, while the parameters of the target DNN module are
updated less frequently to avoid potential overestimation. In
particular, in Line 7, we update the parameters Φpol

n every M
iterations by copying the parameters from the policy DNN
module, i.e., Φtar

n ← Φpol
n . The base station will send the

parameters of the target DNN module Φtar
n to user n.

D. Proposed Online Algorithm

To determine the pilot sequence selection in the current
time slot t, each user n ∈ N maintains a local DNN module
with parameters Φn. User n receives the updated parameters
of the target DNN module Φtar

n from the base station. As
the local DNN module has the same structure as the target
DNN module, user n updates Φn as Φn ← Φtar

n . User n
then applies an ϵ-greedy policy to determine its pilot sequence
selection. Specifically, the pilot sequence selection of user n
in the current time slot t is determined by

an(t) =

argmax
an∈An

QΦn(s(t),an), with probability 1− ϵ

random selection, with probability ϵ,
(14)

Algorithm 1 Offline Training Algorithm for the Target and
Policy DNN Modules in Each Training Iteration
1: for n ∈ N do
2: Update the replay if a new transition history is received.
3: Sample the system transition tuples (sn(τ),an(τ), sn(τ +

1), Rn(τ)), τ ∈ Tn.
4: Determine a∗

n with the policy DNN module.
5: Determine QΦtar

n
(sn(τ),an(τ)) and QΦtar

n
(sn(τ + 1),a∗

n)
with the target DNN module.

6: Update Φpol
n by using the SGD algorithm to solve (13b).

7: Update the parameters of the target DNN module Φtar
n as

Φtar
n ← Φpol

n every M iterations.
8: end for

Algorithm 2 Online Pilot Sequence Selection Algorithm for
User n ∈ N in Time Slot t ∈ T
1: Determine the pilot sequence selection according to the ϵ-greedy

policy in (14).
2: if

∑
k∈K gnk(t) = 1 then

3: Send packet along with local short-term replay to base station.
4: else
5: User n does not transmit in time slot t.
6: end if
7: Calculate Rn(t) and observe sn(t + 1) based on the received

ACK, and store the system transition tuple.

Fig. 4. Average aggregate throughput versus time slot. K = 4 and N = 8.

where ϵ = ϵmin + (ϵmax − ϵmin)e
−C/ϵdecay , ϵmin, ϵmax, and ϵdecay

are constants, and C is the training iteration counter. The
ϵ-greedy policy is adopted to avoid overfitting during the
training of DNN modules. To determine the action an(t) =
argmax
an∈An

QΦn(s(t),an) in the current time slot t, user n feeds

the state s(t) into the DNN module, and determines the pilot
sequence selection in the current time slot t based on the
output of the DNN module. The proposed online algorithm is
shown in Algorithm 2.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results for the pro-
posed scheme and compare them with the optimal scheme, the
ACK-based scheme [4], and the random selection scheme.
We use PyTorch [15] for simulation. The optimal scheme
is the centralized solution of problem (5), where the pilot
sequence selection is determined in a centralized manner, such
that there is no collision for pilot sequence selection. In the
random selection scheme, each user randomly selects one pilot

Fig. 5. Average aggregate throughput versus the number of users. K = 4.

sequence. In simulations, the radius of the circular cell is 800
m. We set the maximum transmit power Pmax to 23 dBm,
P0 for open loop power control is −90 dBm [1]. The path
loss exponent β is set to 4. For the LSTM layer, we set H to
64. The size (i.e., the maximum number of system transition
tuples that can be stored) of the long-term replay at the base
station is set to 4000, while each user maintains a short-term
replay of size 20. For the ϵ-greedy policy, we set ϵmin to 0.05,
ϵmax to 0.95, and ϵdecay to 200. For the SGD algorithm, we set
α to 0.01. For deep Q-learning, we set γ to 0.995 and M to
5. In each time slot, the base station trains the DNN modules
for 20 iterations.

Fig. 4 shows the evolution of the average aggregate through-
put across the time slot. The proposed scheme achieves 90%
of the optimum after 80 time slots. A gap exists between the
aggregate throughput of the proposed algorithm and the opti-
mal scheme due to the errors in the Q-value approximation.
The proposed scheme achieves an aggregate throughput which
is 35% and 165% higher than that of the ACK-based scheme
and the random selection scheme, respectively.

Fig. 5 shows the impact of the number of users on the aver-
age aggregate throughput when the number of pilot sequences
K is equal to 4. The performance of the proposed scheme is
evaluated after training for 150 time slots. When the number
of users is equal to 10, the proposed scheme can achieve an
aggregate throughput which is 41% and 237% higher than the
ACK-based and random selection schemes, respectively.

Fig. 6 illustrates the average aggregate throughput versus
the number of pilot sequences K, where we set the number
of users to 2K. The performance of the proposed scheme is
evaluated after training for 150 time slots. While the average
aggregate throughput of the other schemes increase with
K, the proposed scheme can achieve an average aggregate
throughput which is 39% and 212% higher than that of
the ACK-based scheme and the random selection scheme,
respectively, when the number of pilot sequences is equal to
16.

V. CONCLUSION

In this paper, we proposed a distributed pilot sequence
selection algorithm for improving the aggregate throughput
in GF-NOMA systems. We first formulated a pilot sequence

Fig. 6. Average aggregate throughput versus the number of pilot sequences.

selection problem for throughput optimization. We then de-
signed a DRL-based distributed pilot sequence selection al-
gorithm, which enables the users to gain experience from
their action history and improve their pilot sequence selection.
Simulation results showed that the proposed scheme can
achieve a significant higher aggregate throughput than two
previously reported GF-NOMA schemes. In our future work,
we will consider throughput optimization for GF-NOMA
systems where the users are equipped with multiple antennas.

REFERENCES

[1] 3GPP TR 38.812 V16.0.0, “Technical specification group radio access
network; Study on non-orthogonal multiple access (NOMA) for NR
(Release 16),” Dec. 2018.

[2] V. W. S. Wong, R. Schober, D. W. K. Ng, and L. Wang, Key Technolo-
gies for 5G Wireless Systems. Cambridge University Press, 2017.

[3] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey
of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys &
Tuts., vol. 20, no. 3, pp. 2294–2323, Third Quarter 2018.

[4] S. Han, X. Tai, W. Meng, and C. Li, “A resource scheduling scheme
based on feed-back for SCMA grant-free uplink transmission,” in Proc.
IEEE Int’l Conf. on Commun. (ICC), Paris, France, May 2017.

[5] J. Shen, W. Chen, F. Wei, and Y. Wu, “ACK feedback based UE-to-CTU
mapping rule for SCMA uplink grant-free transmission,” in Proc. Int’l
Conf. Wireless Commun. Signal Process., Nanjing, China, Oct. 2017.

[6] J. Sun, W. Wu, and X. Wu, “A contention transmission unit allocation
scheme for uplink grant-free SCMA systems,” in Proc. IEEE Int’l Conf.
on Commun. (ICC), Kansas City, MO, May 2018.

[7] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[8] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos,
“Recurrent experience replay in distributed reinforcement learning,” in
Proc. Int’l Conf. Learn. Representations, New Orleans, LA, May 2019.

[9] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Trans. Cogn. Commun. Netw., vol. 4, pp. 257–265, Jun. 2018.

[10] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning
for distributed dynamic spectrum access,” IEEE Trans. Wireless Com-
mun., vol. 18, no. 1, pp. 310–323, Jan. 2019.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, 2018.

[12] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade, 2nd ed., G. Montavon, G. B. Orr, and K.-R. Müller,
Eds. Springer, 2012, pp. 421–436.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[14] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. on Artificial Intelligence,
Phoenix, AZ, Feb. 2016.

[15] A. Paszke et al., “PyTorch,” 2018. [Online]. Available: https:
//pytorch.org/

