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Abstract—Intelligent reflecting surface (IRS) is a promising
paradigm for enhancing the spectrum efficiency of wireless
communication systems. In this paper, we study the joint uplink
scheduling and phase shift control in IRS-aided systems. We
formulate the throughput maximization problem as a combina-
torial optimization problem. We decompose the problem into
two subproblems for user scheduling and phase shift control,
respectively. We propose a neural combinatorial optimization
(NCO)-based algorithm, in which a near-optimal stochastic
policy for user scheduling is learned by deep neural networks
(DNNs) with attention mechanism, while the phase shifts of the
IRS are optimized using fractional programming. Unlike alter-
nating optimization-based approaches which obtain a suboptimal
solution by iteratively solving two subproblems, the proposed
NCO-based algorithm is capable of obtaining a near-optimal
solution while each subproblem is required to be solved only
once. Simulation results show that the proposed NCO-based
algorithm achieves an aggregate throughput which is within 98%
of the exhaustive search algorithm, and outperforms both greedy
scheduling and random scheduling algorithms.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is a reconfigurable pla-
nar surface with multiple passive reflecting elements. Each
element on the IRS can perform a phase shift to the incident
signal independently and reflect the shifted signal to a receiver.
An IRS-aided system serving three users to perform uplink
transmissions is shown in Fig. 1. Apart from the direct
channels between the base station and the user equipment,
IRS introduces additional propagation channels. When the
line-of-sight (LOS) links between the base station and users
are blocked by obstacles, deploying an IRS can create virtual
LOS channels to facilitate data transmission and improve the
coverage of the base station. Moreover, by properly control
the phase shift of the reflecting elements on IRS, the base
station can mitigate interference and allow multiple users to
share one physical resource block (PRB) to perform uplink
transmissions.

Existing research on resource allocation in IRS-aided sys-
tems mostly focus on the optimization of the beamforming
at the base station and the phase shift control of IRS [1]–
[5]. The beamforming and phase shift optimization for IRS-
aided systems with single user have been studied in [1], [2].
Recently, beamforming and phase shift design for interference
mitigation in IRS-aided systems with multiple users have
been proposed in [4], [5]. The authors in [4] studied the
ergodic rate of an IRS-aided system with interference from
a secondary user and proposed a parallel coordinate descent-
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Fig. 1. An IRS-aided system with three users sharing one uplink PRB. The
direct channels are denoted by blue solid lines, while the reflecting channels
are denoted by yellow dashed lines.

based algorithm to optimize the phase shift. The authors in
[5] investigated an IRS-aided system with multiple primary
and secondary users, and proposed an alternating optimization
(AO)-based algorithm to jointly optimize the beamforming
vector and phase-shift matrix. However, while the aforemen-
tioned algorithms are designed for a given set of users, the
uplink scheduling problem in IRS-aided systems has not been
investigated. For an IRS-aided system with multiple users,
it is necessary and beneficial for the base station to properly
schedule the transmissions of the users, such that the potential
interference between the users can be mitigated. Moreover, in
the existing AO-based approaches, the iterative optimization
process has to be invoked again whenever the base station
observes a change in the channel states. This may lead to a
high computational complexity.

To tackle these challenges, in this paper, we propose a
neural combinatorial optimization (NCO)-based algorithm for
maximizing the aggregate throughput by jointly optimizing
the uplink scheduling and phase shift control of an IRS-
aided system. NCO is a powerful tool for solving combi-
natorial optimization problems, where the optimal solution
is a permutation of the optimization variables [6]–[8]. In
our proposed NCO-based approach, we apply reinforcement
learning and train the deep neural networks (DNNs) with
attention mechanism [9] to obtain a stochastic policy. The
proposed NCO-based algorithm is capable of obtaining a near-
optimal solution while each subproblem is required to be
solved only once. Our contributions are as follows:

• We formulate the joint user scheduling and phase shift
optimization problem for aggregate throughput maxi-
mization in IRS-aided systems as a mixed-integer non-
linear optimization problem.



• We propose an NCO-based algorithm to learn the sto-
chastic policy for obtaining a near-optimal solution. We
employ two DNN modules, i.e., an encoder module and
a decoder module. The encoder module learns the high-
dimensional representations of the channel information
of the users, and these representations are used by the
decoder module to obtain the stochastic policy.

• We propose an offline training algorithm, in which the
DNNs are trained based on reinforcement learning with-
out requiring the optimal solution of the problem during
the training phase. The learned stochastic policy can be
applied to solve the problem in an online manner.

• Simulation results show that the proposed NCO-based
algorithm achieves an aggregate throughput that is within
98% of the exhaustive search algorithm and outperforms
greedy scheduling and random scheduling algorithms.

This paper is organized as follows. The system model and
problem formulation are presented in Section II. The NCO-
based algorithm is given in Section III. Simulation results are
shown in Section IV. Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider an IRS-aided system with one base station,
an IRS, and N users. The set of users is denoted by N =
{1, 2, . . . , N}. The base station and the users are equipped
with one antenna. Time is slotted into intervals of equal
duration. The time interval [t, t + 1) is referred to as time
slot t, where t ∈ T = {0, 1, 2, . . . , T − 1}. An IRS with LR
phase-shifting elements is deployed to facilitate the uplink
transmission of the users. In each time slot t ∈ T , the base
station schedules M users to perform uplink transmission
using one PRB. Similar settings have also been adopted in
[3]. We use binary control variable xn(t) ∈ {0, 1} to indicate
whether user n ∈ N is scheduled for uplink transmission in
time slot t. We set xn(t) = 1 if user n is scheduled in time
slot t, and xn(t) = 0 otherwise. In time slot t, we have

xn(t) ∈ {0, 1}, n ∈ N , (1)∑
n∈N

xn(t) =M. (2)

We use vector x(t) = (x1(t), x2(t), . . . , xn(t)) to denote all
control variables xn(t) in time slot t.

Let hD,n(t) ∈ C and hR,n(t) ∈ CLR denote the channel
gain between user n ∈ N and the base station, and the
channel gain between user n and the IRS in time slot t ∈ T ,
respectively. The channel gain between the IRS and the base
station in time slot t is denoted by g(t) ∈ CLR . We assume
perfect channel estimation at the base station. We use diagonal
matrix Ψ(t) to denote an LR×LR diagonal phase-shift matrix
of the IRS in time slot t. We have

Ψ(t) = diag(ejψ1(t), · · · , ejψLR
(t)) ∈ CLR×LR , (3)

where ψl(t), l ∈ {1, . . . , LR} is the phase shift of the l-
th reflecting element on the IRS. We have the following
constraint on the phase shift of each reflecting element

ψl(t) ∈ [0, 2π), l ∈ {1, . . . , LR}. (4)

We assume the scheduled users always use the maximum
transmit power Pmax for packet transmission. The received
signal of user n at base station in time slot t ∈ T is given by

yn(t) = xn(t)
√
Pmax

(
hD,n(t) sn(t)

+ gH(t)Ψ(t)hR,n(t) sn(t)
)
+ In(t) + w,

where (·)H denotes the conjugate transpose, sn(t) ∈ C is the
symbol of user n in time slot t with unit power, w is the
complex Gaussian noise with zero mean and variance σ2, and
In(t) is the interference from the remaining scheduled users
in time slot t. In(t) is given by

In(t) =
∑

j∈N\{n}

xj(t)
√
Pmax

(
hD,j(t) sj(t)

+ gH(t)Ψ(t)hR,j(t) sj(t)
)
.

The signal-to-interference-plus-noise ratio (SINR) of user n
in time slot t is given by

Γn(t) =
xn(t)P

max
∣∣∣hD,n(t) + gH(t)Ψ(t)hR,n(t)

∣∣∣2∑
j∈N\{n}

xj(t)Pmax
∣∣∣hD,j(t) + gH(t)Ψ(t)hR,j(t)

∣∣∣2+ σ2

.

The achievable throughput (bits/time slot/Hz) of user n in time
slot t can be determined as follows

Rn(x(t),Ψ(t)) = log2(1 + Γn(t)).

We formulate the following aggregate throughput maximiza-
tion problem by jointly optimizing the uplink scheduling of
the users and the phase-shift matrix of the IRS in each time
slot t ∈ T :

maximize
x(t),Ψ(t)

∑
n∈N

Rn(x(t),Ψ(t))

subject to constraints (1), (2), (4).
(5)

Problem (5) is a mixed-integer nonlinear optimization problem
due to the binary control variables x(t) and the fractional
objective function. In time slot t ∈ T , problem (5) can be
decomposed into two subproblems for the user scheduling
and phase-shift control, respectively. In particular, given the
phase-shift matrix Ψ(t), the subproblem for user scheduling
in time slot t is as follows:

maximize
x(t)

∑
n∈N

Rn(x(t))

subject to constraints (1) and (2).

(6)

Problem (6) is a combinatorial optimization problem, in which
we have in total

(
N
M

)
feasible user scheduling selections

in each time slot. This problem is NP-complete and the
optimal solution is difficult to obtain. Given x(t), the second
subproblem for phase-shift matrix optimization is as follows:

maximize
Ψ(t)

∑
n∈N

Rn(Ψ(t))

subject to constraint (4).
(7)

Subproblem (7) can be transformed into a multi-ratio fraction-
al programming problem [10] by using semidefinite relaxation



to tackle constraint (4). The details of solving subproblem (7)
are shown in the Appendix. Based on the decomposition, a
suboptimal solution of problem (5) can be obtained by solving
subproblem (7) for all feasible solutions of subproblem (6).
The iterative process is required to be repeated whenever the
base station obtains new channel realizations of the users.
This iterative process is computational expensive. In the
next section, we propose an NCO-based approach that can
obtain a near-optimal solution for problem (5) with a lower
computational complexity.

III. NCO-BASED THROUGHPUT MAXIMIZATION FOR
IRS-AIDED SYSTEMS

In this section, we first introduce a general stochastic policy
for solving problem (5). We then propose an NCO-based
algorithm to efficiently learn a near-optimal stochastic policy.

A. Stochastic Policy for Uplink Scheduling

We use vector vn(t) to collect the channel information of
user n along with the channel gain between the IRS and the
base station in time slot t. In particular, this user-specific
vector vn(t) for user n is given by

vn(t) = (hD,n(t),hR,n(t), g(t)), n ∈ N . (8)

We use set V(t) = {v1(t), . . . ,vN (t)} to collect the user-
specific vectors in time slot t. Problem (5) in time slot t can
be solved with the following steps:

Step 1: Find a subset U(t) which consists of M diffe-
rent vectors from set V(t). That is, find a subset U(t) =
{u1(t), . . . ,uM (t)} such that ul(t) ∈ V(t) and ul(t) ̸=
ul′(t), ∀l ̸= l′, l, l′ ∈ {1, . . . ,M}. Given subset U(t), we
obtain the corresponding user scheduling x(t) in time slot
t by setting xn(t) = 1 if vn(t) ∈ U(t). Otherwise, we set
xn(t) = 0. This is equivalent to finding a feasible solution of
subproblem (6).

Step 2: After determining subset U(t), a reward r(U(t))
is revealed. This reward is given by the maximum aggregate
throughput, i.e., r(U(t)) = maxΨ(t)

∑
n∈N Rn(Ψ(t)) subject

to constraint (4), with the user scheduling specified by the
subset U(t). This is equivalent to solving subproblem (7).

Note that the optimal solution of problem (5) can be
obtained by finding the subset U(t) of V(t) with the maximum
reward r(U(t)). In time slot t ∈ T , the stochastic policy
for solving such problem can be defined by the conditional
probability of selecting a particular subset U(t) under given
V(t), i.e., p(U(t) | V(t)). Using the chain rule, this probability
can be factorized as follows [7]

p(U(t) | V(t)) =
M∏
l=1

p(ul(t) | V(t),u1(t), . . . ,ul−1(t)). (9)

The stochastic policy in (9) shows that, to determine the user
scheduling in time slot t, the base station selects M different
vectors from set V(t) sequentially. That is, the base station
selects the first vector based on set V(t) and then selects the
second vector based on set V(t) and the previously selected
vector. This process is repeated until U(t) contains M vectors.
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Fig. 2. The network structure of the encoder module. The encoder module
learns the embeddings of the vectors by passing the channel information
through a linear projection layer, an attention layer [9], and an MLP layer.

B. NCO-based Algorithm: Encoder Module

Using NCO, the stochastic policy in (9) for obtaining the
maximum expected reward can be learned and parameterized
by the DNN modules with learnable parameters Φ. The
parameterized policy is denoted by pΦ(U | V). As we aim
to learn the generalized policy that can be applied to solve
problem (5) with any possible channel realizations in any time
slots, we drop the notation for time slot t.

To obtain pΦ(ul | V,u1, . . . ,ul−1), the DNN module takes
the channel information of the users as input and approximate
the desired conditional probability. To this end, we first use an
encoder DNN module to learn the underlying structures and
abstractions of the channel information, which are referred to
as the embedding of the users [7]. The DNN structure for the
encoder module is shown in Fig 2. For vector vn ∈ V , its
dh-dimensional embedding vE

n can be determined based on
the following linear projection:

vE
n = WE vn + bE, (10)

where the weights WE ∈ Rdh×di and biases bE ∈ Rdh×di
are learnable parameters, di is the size of vn, and dh is a
constant. After linear projection in (10), we use the attention
mechanism [9] to capture the inter-user interference and the
combinatorial structure of the optimization problem. The
attention mechanism can be considered as an information
exchange process between the embeddings of vectors, such
that the embedding of a particular vector not only represents
its own channel features, but also reflects how it relates to the
other vectors. This step is important for the DNN module to
learn about the interference between the users. To this end, we
generate three additional vectors, namely, key kn, query qn,
value zn, for each vector based on its embedding as follows:

kn = WK
en v

E
n , qn = WQ

en v
E
n , zn = W Z

en v
E
n , (11)

where matrices WK
en,W

Q
en ∈ Rdk×dh and W Z

en ∈ Rdz×dh
are learnable parameters, and dk, dz are constants. Using the
attention mechanism, the embedding of a vector may receive
values from the embeddings of other vectors. To determine
the value that embedding vE

n received from embedding vE
j ,

we compute the compatibility δn,j ∈ R of the two vectors
based on the query qn of vE

n and the key kj of vE
j :

δn,j =
qT
nkj√
dk

. (12)



The attention weights an,j ∈ [0, 1] can be obtained using the
following softmax function:

an,j =
eδn,j∑

j′∈N eδn,j′
. (13)

The values that vE
n received from the embeddings of other

vectors can be determined as follows:

z′
n =

∑
j∈N

an,jzj . (14)

We construct a new embedding v̂E
n of vector vn by combining

the original embedding vE
n with the received values z′

n:

v̂E
n = vE

n + z′
n. (15)

The final embedding of vector vn, which is denoted by vFE
n ,

is obtained by passing the embedding v̂E
n through a multilayer

perceptron (MLP) module. The MLP module has one hidden
layer with dimension de. We denote the learnable parameters
of the MLP module as ΦMLP. The aggregate embedding of
all vectors in V is determined by the average of the final
embeddings of all vectors, which is [7]

vE
G =

1

N

∑
n∈N

vFE
n . (16)

The parameters in the encoder module Φen is given by

Φen = (WE, bE,WK
en,W

Q
en,W

Z
en,Φ

MLP). (17)

The outputs of the encoder module are the final embeddings
of the vectors as given by (15) and (16).

C. NCO-based Algorithm: Decoder Module

We employ another DNN module called the decoder mod-
ule to generate the stochastic policy based on the final embed-
dings provided by the encoder module. The decoder module
maintains a context embedding. The motivation of introducing
the context embedding is to account for the conditions in (9)
when generating the conditional probabilities. In particular,
the context embedding for generating the conditional proba-
bility pΦ(ul | V,u1, . . . ,ul−1) is given by

vE
c =

{
[vE
G, vu0

, M ], if l = 1,

[vE
G, v

FE
ul−1

, M − l + 1 ], if l > 1,
(18)

where [·, ·, ·] is the concatenation operator, vFE
ul−1

is the
embedding of the previously selected vector. vu0

serves as
a placeholder to maintain the constant size of vE

c when the
base station aims to determine the first scheduled user. The
last element in (18), i.e., M−l+1, is the number of remaining
vectors that can be added into the subset.

To obtain the stochastic policy in the decoder module, we
compute the compatibility of the context embedding in (18)
with each of the remaining vectors that can be potentially
added into the subset. We obtain the query of the context
embedding, the keys and values of the vectors as follows:

qc = WQ
de v

E
c , kn = WK

de v
FE
n , zn = W Z

de v
FE
n , (19)

where matrices WQ
de ∈ Rdh×dc , WK

de ∈ Rdh×dk , and
W Z

de ∈ Rdh×dz project the context embedding and the final
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Fig. 3. The network structure of the decoder module. The decoder module
generates the conditional probabilities based on the final embedding provided
by the encoder module and the context embedding.

embeddings of the vectors back to dh dimensions. dc is the
size of vE

c . These matrices are learned by the decoder module.
The compatibilities of context embedding with the remaining
vectors in V can now be determined by

δc,n =

{
α tanh

(
qT
c kn√
dk

)
, if vn has not been selected,

−∞, otherwise,
where α is a constant. We use α tanh() to clip the compati-
bility within [−α, α] to improve the performance [7]. The
motivation of setting the compatibilities between the context
embedding and the previously selected vectors to −∞ is to
prevent the base station from selecting duplicate vectors. The
conditional probability for selecting vector vn as the l-th
vector in the subset is then given by

p(ul = vn | V,u1, . . . ,ul−1) =
eδc,n∑

n′∈N eδc,n′
. (20)

With the conditional probability in (20), the stochastic pol-
icy pΦ(U | V) can be obtained based on (9). The learnable
parameters in the decoder module is given by

Φde = (WK
de,W

Q
de,W

Z
de). (21)

The overall learnable parameters are collected as follows:
Φ = (Φen, Φde). (22)

D. Learning Algorithm Based on REINFORCE

The stochastic policy generated by the encoder and decoder
modules is characterized by the learnable parameters Φ, i.e.,
pΦ(U | V). To maximize the aggregate throughput, we need to
find the parameters Φ, such that the expected reward of the
subset, which is selected by policy pΦ(U | V), is maximized.
This leads to the following optimization problem:

min
Φ

L(Φ | V) , EU∼pΦ(U | V)

[
− r(U)

]
, (23)

where L(Φ | V) is referred to as the loss function. To de-
termine the loss function, we feed the vectors in V into the
DNN modules and determine the subset U . The reward r(U)
can be determined by solving subproblem (7) with the user
scheduling given by U . We then use the REINFORCE [11]
algorithm to perform gradient descent and obtain the optimal
learnable parameters Φ. The gradient is given by

∇L(Φ | V) = −EU∼pΦ(U|V)

[
r(U)∇ log pΦ(U|V)

]
. (24)

With the gradient in (24), we use Adam optimizer [12] to
solve problem (23) and update the learnable parameters Φ.
This is referred to as the training phase of the DNN modules.



Algorithm 1 Training Algorithm in Each Training Iteration
1: Obtain a minibatch consisting of B different channel realizations

of the users, and determine the corresponding vector set VB .
2: for each V ′ ∈ VB do
3: Feed the vectors in V ′ into the DNN modules and determine

the subset U .
4: Determine the reward r(U) by solving subproblem (7) and

obtain the loss function L(Φ | V ′).
5: end for
6: Determine the aggregate loss over the minibatch as L(Φ | VB) =

1
B

∑
V′∈VB

L(Φ | V ′).
7: Determine the gradient based on (24), and update Φ by solving

problem (23) using Adam optimizer [12].

TABLE I
SIMULATION PARAMETERS

Parameter Value
Dimensions of the attention layer dh, dk , dz 256

Dimension of the hidden layer in the MLP module de 512
Learning rate in training phase 0.0001

Minibatch size B 512
Constant α for clipping the compatibility 10

Number of channel realizations used for evaluation 10000

The training algorithm is shown in Algorithm 1. During
training, the DNN modules are applied to solve problem (5)
with different channel realizations. In each training iteration,
we train the DNN module using one minibatch, which consists
of problem (5) under B different channel realizations. For
each of the B channel realizations in the minibatch, we
determine the corresponding vector set V ′. We use set VB to
collect the B vector sets in the minibatch. The loss function is
first determined for each V ′ ∈ VB , and then averaged over the
whole minibatch. With the loss function, Φ are updated based
on (23) and (24). After training, the computation complexity
of online execution of the proposed algorithm per time slot is
O(N2 + CFP), where CFP is the computational complexity
of solving subproblem (7) using fractional programming.

IV. PERFORMANCE EVALUATION

We simulate an IRS-aided system where the distance be-
tween the IRS and the base station is 200 meters. The users are
randomly and uniformly distributed within [10, 150] meters of
the IRS. We assume the channels between the users and the
base station are blocked [3]. The reflecting channels follow
Rician fading distribution. We set the Ricean-K factor to 6
[13]. The maximum transmit power Pmax is set to 30 dBm,
and the noise power is set to −90 dBm. The settings for NCO-
based algorithm are shown in Table I. We compare with the
following algorithms:

• Exhaustive search (ES)-based user scheduling with dis-
cretized phase-shift control: The base station iterates
through all possible user scheduling selections. The phase
shift control variables are discretized with step size
2π/20 and ES is performed to obtain the maximum
aggregate throughput.

• ES-based user scheduling with fractional programming
(FP)-based phase-shift control: Apart from ES-based user
scheduling, the base station obtains a suboptimal phase-
shift matrix using FP as shown in the Appendix.
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• Greedy user scheduling with FP-based phase-shift con-
trol: The base station schedules the M users with the
largest

∣∣∣hD,n(t)+gH(t)hR,n(t)
∣∣∣2, n ∈ N and employs

FP-based phase-shift control.
• Random scheduling with discretized phase-shift control:

The base station randomly selects M users from the N
users and applies discretized phase-shift control.

• Random scheduling with fixed phase-shift matrix: Apart
from random scheduling, the phase shifts of all reflecting
elements are set to 0.

Fig. 4 shows the evolution of the aggregate throughput
versus training iterations. After 8000 training iterations (i.e.,
minibatches), the proposed NCO-based algorithm achieves an
aggregate throughput that is 98.2% of the ES algorithm. The
aggregate thoughput of the proposed algorithm is 36% higher
than the random scheduling algorithm with discretized phase
shift control. The results also show that, the performance of
the proposed FP-based phase shift algorithm is comparable to
the discretized phase shift control.

We vary the number of users and evaluate the perfor-
mances in Fig. 5. The proposed algorithm is evaluated after
20000 training iterations. The results show that, the aggregate
throughput of the proposed algorithm is 38% higher than that
of the random scheduling with discretized phase shift control
when the number of users N = 22. We observe that, IRS-
aided systems benefits from properly scheduling the users and
controlling the phase shift of the IRS.

Fig. 6 shows the impact of the number of reflecting
elements LR on the aggregate throughput. Only FP-based
phase-shift control is performed due to the high computational
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complexity of the discretized phase-shift control under larger
LR. The proposed algorithm and random scheduling algorithm
benefit from having more reflecting elements on the IRS. The
greedy scheduling algorithm suffers performance degradation
due to the increase in the interference as the received signal
powers of the scheduled users may be relatively high.

For the computational complexity, we evaluate the runtime
of different algorithms for 10 consecutive time slots on the
same computing server. We set N = 10, M = 2, and
LR = 4. The runtime for the online execution of the proposed
algorithm, the random scheduling, and the ES-based user
scheduling with FP-based phase-shift control is 23.0, 22.1,
and 999.7 sec, respectively. We observe that the computational
complexity of the proposed algorithm is significantly lower
than the ES-based algorithm and is close to the random
scheduling algorithm.

V. CONCLUSION

In this paper, we proposed an NCO-based algorithm for the
joint user scheduling and phase-shift control for throughput
maximization in IRS-aided systems. We decomposed the
formulated problem into two subproblems: a combinatorial
optimization subproblem for user scheduling, and an FP
subproblem for phase-shift optimization. We utilized NCO
to learn a stochastic policy for determining the near-optimal
user scheduling. We then used FP to solve the phase-shift
optimization problem. Simulation results showed that the
proposed algorithm can achieve an aggregate throughput that
is close to the computational-expensive ES algorithm, and is
higher than several heuristic algorithms. For future work, we
will consider throughput optimization for IRS-aided systems
where each base station is equipped with multiple antennas.

APPENDIX

We denote the set of the M scheduled users as M. We
drop the notation for time slot t here for simplicity. We define
λ = (e−jψ1 , . . . , e−jψLR , ρ) ∈ CLR+1, where ρ ∈ C and
|ρ|2 = 1. We further define Λ = λλH to replace the control
variable. This leads to the following constraints [5]:

Diag(Λ) = ILR+1, (25)
rank(Λ) = 1, (26)

where Diag(Λ) denotes the diagonal matrix whose diagonal
elements are the same as that of Λ, and ILR+1 is an (LR +
1)× (LR + 1) identity matrix.

For user m ∈ M, we define
Θm =

[ (
diag(hHR,m)g

)T
h∗D,m

]T
. (27)

The SINR of user m ∈ M can now be rewritten as follows:

Γm =
Pmax Tr(ΛTΘmΘH

m)∑
j∈M\{m} P

max Tr(ΛTΘjΘ
H
j ) + σ2

. (28)

We use FP [10] to tackle the multi-ratio fractional objective
function in subproblem (7). We apply the quadratic transform
[10] and obtain the following problem

maximize
Λ

∑
m∈M

log2

(
1 + 2ym

√
Pmax Tr(ΛTΘmΘH

m)

− y2m
(∑
j∈M\{m}

Pmax Tr(ΛTΘjΘ
H
j ) + σ2

))
subject to constraints (25), (26),

(29)
where ym is resulted from the quadratic transform for each
scheduled user. The optimal ym for fixed Λ is given by

y⋆m =

√
Pmax Tr(ΛTΘmΘH

m)∑
j∈M\{m} P

max Tr(ΛTΘjΘ
H
j ) + σ2

, m ∈ M.

For fixed ym, m ∈ M, we use semidefinite relaxation to
tackle constraint (26) and problem (29) is now a convex op-
timization problem that can be solved using standard solvers.
A suboptimal solution of problem (29) can be obtained by
iteratively optimizing ym, m ∈ M and Λ [10].
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