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Abstract—Cognitive radio networks (CRNs) enable spectrum

channels to be used by secondary users (SUs) without interfering

with the transmission of primary users (PUs). Cooperation among

SUs in CRNs not only improves sensing performance but also

increases spectrum efficiency. In this work, we study a cooper-

ation strategy in multi-channel CRNs, which allows an energy-

constrained SU to selectively participate in cooperative sensing.

We consider CRNs where SUs can make distributed decisions on

cooperative sensing based on traffic demand. We formulate this

problem as a non-transferable utility (NTU) coalition formation

game problem, where each SU in a coalition has a coalition value

that takes into account traffic demand and energy efficiency. We

also propose a sequential coalition formation (SCF) algorithm

to find the coalition structure. Simulation results show that

our proposed algorithm achieves higher throughput and energy

efficiency with a lower computational complexity compared to

previously proposed coalition formation algorithm in [1].

I. INTRODUCTION

Cognitive radio networks (CRNs) provide a promising so-
lution to utilize the spectrum holes and improve the spectrum
efficiency. In CRNs, secondary users (SUs) are able to access
spectrum channels as long as they do not interfere with
the transmission of primary users (PUs). In order to better
utilize spectrum resources and guarantee the protection for
PUs’ transmission, SUs have to detect the channel availability
before accessing the channel. Due to the shadowing and path
loss, SUs may not be able to detect the channel accurately.
Therefore SUs work cooperatively to sense the channel and
share spectrum resources. This is called cooperative spectrum
sensing and access in CRNs. Cooperation among SUs in CRNs
improves both sensing performance and spectrum efficiency.
However, cooperation in CRNs also incurs overhead, such as
additional energy consumption spent on sensing. Therefore,
how to obtain a high throughput while maintaining a high
energy efficiency in CRNs is a challenging problem.

In the study of cooperation strategies in CRNs, several stud-
ies have been conducted to investigate throughput and energy
efficiency in CRNs. In [1], Saad et al. analyze the tradeoff
between spectrum sensing and spectrum access. They propose
a joint cooperative spectrum sensing and access strategy to
maximize each SU’s utility, which takes into account sensing
time and expected throughput. In [2], a cooperative sensing
scheduling scheme is proposed to maximize the system utility
of multi-channel CRNs. The utility function considers both
sensing performance and energy efficiency. In [3], a spec-
trum sensing and access problem in multi-channel CRNs is

formulated as a hedonic coalition formation game problem,
in which the coalition payoff captures energy efficiency and
sensing accuracy. A distributed algorithm is proposed to obtain
the stable coalition structure of this game. In [4], an energy
efficient transmission scheme is proposed to maximize energy
efficiency in CRNs, in which the transmission power, sensing
time, energy detection threshold, and the number of SUs are
optimized. In [5], Zhang et al. propose a scheduling strategy to
maximize aggregate utility of CRNs by appropriately assigning
different SUs to multiple channels. The utility function, which
is related to both sensing performance and network throughput,
provides a reward to successful transmission and incurs a
cost to failed transmission. In [6], Bayhan et al. consider
the traffic demand of SUs and channel characteristics when
distributing spectrum resources among SUs. They propose a
centralized polynomial-time heuristic algorithm to find the
optimal scheduling method that can maximize the system
energy efficiency.

Although many strategies have been proposed to improve
either the energy efficiency or throughput of SUs in CRNs,
most of them do not consider individual traffic demand of each
SU. They assume that SUs always have data to send and the
spectrum channel is fully utilized when it is assigned to SUs,
which, however, may not be the case in practice. The traffic
demand of each SU varies from one to another and changes
from time to time. The traffic demand of an SU depends on
its application, e.g., an SU with a video streaming application
usually has a higher traffic demand than an SU running a best-
effort application. Also, the traffic demand may change over
time, e.g., an SU with an environmental monitoring application
aims to report the change of environmental factors (e.g.,
temperature). Its traffic demand changes with the environment
along the time. Therefore, it is important to take the traffic
demand of SUs into consideration when studying spectrum
sensing and access in CRNs. Although traffic demand is taken
into account in [6] and [7], they only study spectrum allocation
without considering the spectrum sensing. Moreover, they
aim at maximizing the aggregate utility instead of studying
a cooperation strategy from the perspective of individual SU.

Most of the existing works assume that all SUs are supposed
to participate in cooperative sensing (e.g., [2], [8]). In energy-
constrained CRNs, for an SU having no data to transmit during
a time slot, it is better to stay idle and save energy for next
transmission instead of joining in cooperative sensing. There-



fore, it is reasonable to let the SU make its individual decision
on cooperation according to its traffic demand. Although the
work in [9] applies evolutionary game theory to cooperation
strategy design in CRNs and it assumes that SUs can choose
to participate in cooperative sensing with a probability, it does
not consider the energy efficiency and traffic demand of SUs.

In this paper, we study a traffic demand-based joint cooper-
ative spectrum sensing and access strategy for individual SU
in CRNs. Both throughput and energy efficiency are taken
into account in this strategy. In our proposed cooperation
strategy, SUs with low energy efficiency can refuse to perform
cooperative sensing in order to conserve energy. This allows an
energy-constrained SU to work more efficiently in CRNs. We
apply the coalition formation game approach to analyze this
problem, in which each SU is modeled as a player to maximize
its individual utility that captures the expected throughput
and energy efficiency. A sequential coalition formation (SCF)
algorithm is proposed to obtain the final coalition structure. In
summary, the main contributions are as follows:

• We study a cooperation strategy in CRNs with multiple
channels, where each SU makes an individual decision on
participating in cooperative spectrum sensing and access
based on its traffic demand.

• We formulate this problem as a non-transferable utility
(NTU) coalition formation game, in which each SU
receives payoff according to its traffic demand and energy
efficiency. We propose an SCF algorithm to determine the
final coalition partition.

• Simulation results show that our proposed SCF algorithm
obtain a final partition that has a higher throughput and
energy efficiency than the Nash-stable partition obtained
by a previously proposed algorithm in [1]. Moreover,
our proposed algorithm has a lower complexity than the
algorithm in [1].

The rest of this paper is organized as follows. Section II
describes the system model. In Section III, we formulate a
coalition formation problem and present a sequential coalition
formation algorithm. Performance evaluation and comparison
through simulation are presented in Section IV. Conclusion is
given in Section V.

II. SYSTEM MODEL

We consider CRNs with N secondary users (SUs) and M

primary users (PUs). Each SU corresponds to a transmitter-
receiver pair and each PU transmits data via a licensed chan-
nel. There are M licensed channels. Let N = {1, 2, . . . , N}
denote the set of SUs and M = {1, 2, . . . ,M} denote the set
of PUs. Assume that CRNs work in a time slotted manner
and the slot duration is T . At the beginning of each slot, SUs
perform sensing before accessing the available channels and
the sensing duration is ⌧ . Each SU has a different amount
of data in its buffer waiting to be transmitted and only the
SUs participating in sensing can obtain access for channel
use. Each SU selectively joins in cooperative sensing based
on the knowledge of the traffic demand and channel capacity.

We assume that during the sensing stage, each SU can only
sense one channel. This assumption is also made in [2] and [3].
In order to avoid interference between transmission of different
SUs, we assume that a channel can only be accessed by one SU
at a time. Let Sj denote the set of SUs choosing to sense and
access channel j 2 M. We use Pf,i,j and Pd,i,j to denote the
false alarm probability and detection probability of SU i 2 N
when it detects channel j 2 M, respectively. The detection
probability is the probability that the channel is detected as
busy when it is indeed busy. The false alarm probability is the
probability that the channel is detected as busy when it is idle.
Since we use the cooperative sensing method, in each coalition
there is a fusion center collecting sensing results from SUs
and making a decision on the channel availability. The fusion
center uses OR rule to decide the availability of channels [10].
The false alarm probability and detection probability of the set
of SUs Sj choosing to detect channel j 2 M are given as

Pf,j = 1−
Y

i2Sj

(1− Pf,i,j), (1)

and
Pd,j = 1−

Y

i2Sj

(1− Pd,i,j). (2)

Let Wt,i denote the transmit power of SU i and Bj denote
the bandwidth of channel j. SU i can achieve a transmission
rate of Ri,j over the channel j as

Ri,j = Bj log2

✓
1 + |gi|2

Wt,i

σ

2
n

◆
, (3)

where gi denotes the channel gain of transmission link of SU
i and σ

2
n is the noise power.

We use PI,j to denote the probability that the channel j

is idle. Since the slot duration T is very short, we assume
that the information bits in SU i’s buffer are Di, which is
a constant during a time slot. This assumption is also made
in [6] and [7]. In order to encourage SUs with high traffic
demand to participate in sensing and accessing channels, we
give SUs chances to access channel according to their traffic
demands. The probability that SU i 2 Sj can access channel
j when this channel is detected as idle can be modeled as

Pi(Sj) =
DiP

k2Sj
Dk

. (4)

We assume that SUs do not cheat at reporting the informa-
tion of traffic demand when cooperating with other SUs. The
behaviour of dishonest SUs is beyond the scope of this paper
and may be analyzed in future work using mechanism design.

Given that SU i obtains access to an available channel
j, since SU i cannot transmit more than the number of
information bits in its buffer, the transmission time for SU
i, denoted as ti,j , is

ti,j = min

⇢
Di

Ri,j
, T − ⌧

�
. (5)



The probability that channel j is correctly detected as idle is
PI,j(1−Pf,j). The expected throughput that SU i can achieve
if it chooses to sense and access channel j is

Ui(Sj) =
PI,j(1− Pf,j)Pi(Sj)Ri,jti,j

T

. (6)

We also consider the power consumption of SU i, which
includes power consumption of sensing and transmission.
There are two cases that SU will perform transmission over
channel j. The first case is that channel j is busy and it is
detected as idle, which has a probability of (1−PI,j)(1−Pd,j).
The second case is that channel j is idle and it is detected as
idle, which has a probability of PI,j(1−Pf,j). Therefore, the
power consumption Ei can be modeled as

Ei(Sj) =
�
((1− PI,j)(1− Pd,j) + PI,j(1− Pf,j))

⇥ Pi(Sj)Wt,iti,j +Ws,i⌧
 
⇥ 1

T

,

(7)

where Ws,i denotes the sensing operation power of SU i.
In addition to throughput, we consider energy efficiency

as another factor that affects SUs’ decisions on cooperative
sensing. The energy efficiency of SU i in coalition Sj is
defined as throughput over power consumption, which is

⌘i(Sj) =
Ui(Sj)

Ei(Sj)
. (8)

The objective of each SU is to maximize its throughput
while keeping its energy efficiency above the lower bound
value ⌘min. That is, during a time slot, each SU aims to
transmit the data in its buffer as much as possible under
the condition that its energy efficiency is not smaller than
a predefined lower bound. When the traffic demand of an
energy-constrained SU is very low, it may have to spend too
much energy in order to transmit just several information data
bits if it joins in cooperative sensing. In this case, where
the cost of cooperation outweighs the payoff, this SU simply
refuses to perform sensing and saves energy for transmission
next time.

III. COALITION FORMATION

In this section, we formulate the individual cooperation
strategy problem as an NTU coalition formation game. We
propose a sequential coalition formation algorithm to obtain a
final coalition structure.

According to coalitional game terminology, we refer to the
set of SUs N as the set of players in this game, and denote the
coalition value function as v. Then, this coalitional game is
described by the pair of (N , v). This is an NTU game, because
in this game the payoff of a coalition cannot be assigned a real
value, instead different players receive different payoffs within
each coalition. The value of a coalition S is defined by a |S|-
dimensional vector. That is v(S) = (xi(S), 8 i 2 S), where
xi(S) represents the payoff that SU i receives in coalition S

and is given as

xi(S) =

(
Ui(S), if ⌘i(S) ≥ ⌘min,

0, otherwise.
(9)

Note that the coalition value of an SU is the expected
throughput if its energy efficiency is higher than or equal to
the lower bound ⌘min, and is equal to zero otherwise. Each SU
can only choose to sense and access one of the M channels.
All the SUs that choose the same channel form a coalition.
We denote the coalition sensing and accessing channel j 2 M
as Sj . In addition, we define the set of the SUs that choose
to quit sensing as SM+1 and the payoff of each SU in SM+1

is zero.
From (4) and (6), with more SUs joining one coalition,

an SU in this coalition gets less chance to access channel,
which may lead to a lower payoff. Therefore, the grand
coalition, which includes all SUs in a coalition, is not the
optimal partition for this coalitional game. In order to study
this coalition formation problem, we define the preference of
player i over different coalitions as follows:

Definition 1 [11]: SU i 2 N prefers coalition Sk over Sm,
where Sk, Sm ✓ N , is equivalent to xi(Sk) ≥ xi(Sm). This
relation can be represented as

Sk ⌫i Sm , xi(Sk) ≥ xi(Sm). (10)

Since the objective of an SU is to obtain a higher payoff by
leaving or joining a coalition, the SU would leave its current
coalition and join a new coalition if it prefers the new coalition
over its current coalition according to Definition 1. A move of
any SU will result in a new partition. Therefore, we study the
stability of coalition partition by introducing the concept of
Nash-stable partition, which is defined as follows:

Definition 2 [12]: A coalition partition ⇧ of N is
Nash-stable if 8 i 2 N S⇧(i) ⌫i Sk[{i} for all Sk 2 ⇧[{;},
where S⇧(i) denotes the set S 2 ⇧ such that i 2 S.

According to Definition 2, a coalition partition is Nash-
stable if no player has an incentive to leave its current coalition
and join a new coalition. Therefore, all players will stay in
their current coalition in a Nash-stable partition. Since there
are (M + 1)

N possible partitions given that the number of
SUs and the number of channels are finite, we can use the
exhaustive search algorithm to find all possible Nash-stable
partitions of this coalitional game. However, the exhaustive
search algorithm leads to a high computational complexity
because the number of possible partitions grows exponentially
with the number of SUs. Thus, we propose an algorithm with
low complexity to obtain the final partition in the next section.

A. Sequential Coalition Formation (SCF) Algorithm

We propose the SCF algorithm, which is originated from the
concept introduced in [13]. The sequential game of coalition
formation is defined by the coalition value function v and the
rule of order ⇢, which means the coalition structure is formed
step by step and at each step only one player can propose a
coalition structure. Players make moves one by one according
to the rule of order ⇢. Once a player has joined a coalition
S, it has to remain in this coalition, which means the next
active player can only make a coalition proposal among the
remaining players.



In the proposed algorithm, the rule of order ⇢ is determined
by traffic demand of SUs. That means the SU with the highest
traffic demand is the first one to make a move. Since SUs act
selfishly, we assume that at each step the only active SU simply
cares about its own payoff and chooses the best coalition to
join. The active SU makes a decision based on the current
coalition structure and remains in that coalition once it has
joined a coalition. The coalition partition is formed step by
step by each SU. Thus, the sequential coalition formation
involves N iterations. Let ⇧(k) denote the partition formed in
the k

th iteration. In (k + 1)

th iteration, SU k + 1 becomes
active. It can either join any coalition in ⇧

(k) or form a
singleton coalition, which yields the new partition ⇧

(k+1) in
(k + 1)

th iteration.
The proposed SCF algorithm is shown in Algorithm 1. At

first, SUs communicate the traffic demand information with
each other (lines 1 to 3) and the traffic demand information
vector D is obtained (line 4). Q(X ) is a sorting function that
maps a vector X to a |X |-dimensional vector. It returns a
vector with each element representing the sorted index of each
X ’s element in descending order. For example, for Y = Q(X ),
where X = (x1, x2, x3, x4) and x2 ≥ x3 ≥ x1 ≥ x4, Y =

(2, 3, 1, 4), which means x2 ranks first, x3 ranks second, x1

ranks third and x4 ranks fourth in the sequence. The rule of
order ⇢ is a vector obtained through sorting D by applying
function Q(D) (line 5). At the beginning of the sequential
coalition formation, we form the initial partition by letting all
SUs join quit sensing set SM+1 (line 6). After that, SUs make
coalition formation decision one by one according to ⇢. For
example, the SU with the highest traffic demand makes the
first choice. During each iteration, we first set the payoff of
active SU i, which is originally in quit sensing set, to zero (line
8). Then SU i calculates its payoff in potential new coalition
according to (9) (line 11) and compares it with its current
payoff (line 12). It leaves its current coalition and joins a new
coalition if it prefers the new coalition. Thus, a new partition is
formed (line 13), and its payoff is updated (line 14). After N
iterations, the final partition ⇧

(N) and corresponding coalition
payoff xi are obtained (line 19).

To better explain our proposed SCF algorithm, we have the
following example. Consider a CRN with N = {1, 2, 3, 4}
and M = {1, 2}. We denote S3 as the quit sensing coalition.
Without loss of generality, we assume that D3 ≥ D4 ≥ D2 ≥
D1. Thus, we obtain ⇢ = (3, 4, 2, 1) by calculating Q(D).
According to SCF algorithm, all SUs are in the quit sensing
coalition S3 initially. In the first iteration, SU 3 makes the first
choice (i.e., ⇢(1) = 3). Assume that SU 3 prefers channel 1
over channel 2, then SU 3 chooses channel 1 to sense and
access. SU 4 ranks second according to ⇢. Thus, SU 4 makes
the second choice. Assume that x4({4}2) ≥ x4({3, 4}1) ≥
x4(S3), SU 4 chooses to join coalition S2. For SU 2, which
ranks third, assume that x2({3, 2}1) ≥ x2({4, 2}2) ≥ x2(S3).
SU 2 joins coalition S1. SU 1 is the last one to make a
decision. It can choose to join {3, 2}1 or {4}2 or stay in quit
sensing coalition S3. Assume that the energy efficiency of SU
1 is lower than the energy efficiency lower bound no matter

Algorithm 1 Sequential Coalition Formation (SCF) Algorithm
in Cognitive Radio Network

1: for each i 2 N do

2: SU i broadcast its traffic demand Di to other SUs and
receives information from other SUs

3: end for

4: D := (D1, D2, . . . , DN )

5: ⇢ := Q(D)

6: Set ⇧(0)
:= {{1, 2, . . . , N}(0)M+1}

7: for i = 1 to N do

8: Set x⇢(i) := 0

9: for j = 1 to M do

10: Set ⇧(i)⇤
:=

�
⇧

(i−1) \{S(i−1)
M+1 , S

(i−1)
j }

 S
{S(i−1)

M+1 \
{⇢(i)}, S(i−1)

j

S
{⇢(i)}}

11: Calculate x⇢(i)(S
(i−1)
j

S
{⇢(i)}) according to (9)

12: if x⇢(i)(S
(i−1)
j

S
{i}) ≥ x⇢(i) then

13: Set ⇧(i)
:= ⇧

(i)⇤

14: Set x⇢(i) := x⇢(i)(S
(i−1)
j

S
{i})

15: end if

16: end for

17: end for

18: Calculate xi(S), 8 i 2 S and S 2 ⇧

(N)

19: Output ⇧(N) and xi, 8 i 2 N

it joins {3, 2}1 or {4}2, SU 1 chooses to stay in coalition S3

and quits sensing during this time slot. Therefore, the final
partition is ⇧

(4)
= {{3, 2}1, {4}2, {1}3}.

IV. PERFORMANCE EVALUATION

In this section, we compare the performance between our
proposed SCF algorithm and the switch rule-based coali-
tion formation (SRCF) algorithm [1] from the perspective
of aggregate throughput and energy efficiency, respectively.
Moreover, we compare the computational complexity of these
two algorithms by analyzing their running time.

Unless stated otherwise, we consider a CRN with ten SUs
and six PUs (i.e., six licensed channels). The transmitter and
receiver of each SU is randomly placed in a 100 m ⇥ 100

m square region. We model the channel gain of the link of
SU i as |gi|2 = 1/d

γ
i , where di is the distance between

the transmitter and receiver of SU i, and γ is the path loss
exponent. We set γ to 2. According to IEEE Standard 802.22,
we set the detection probability of every SU at each channel as
0.9 and the false alarm probability as 0.1. The probability that
the channel is idle is randomly chosen between [0.5, 1]. The
number of packets generated by each SU during a time slot
follows Poisson distribution with an average rate of λ = 0.2

packet per time slot, and each packet is 20 kb.
The list of parameters is shown in Table I. We run the simu-

lation on a computer that is equipped with Intel(R) Core(TM)2
Duo P7350 CPU 2.00 GHz processor and 2.00 GB RAM. We
use MATLAB as simulation tool in the Windows 7 operation
system. The performance of algorithms are compared under
the same parameters setting.



TABLE I
LIST OF SIMULATION PARAMETERS

Parameter Value

Number of SUs N 10
Number of PUs (licensed channels) M 6
Path loss exponent γ 2
Bandwidth of channel j Bj 100 kHz
Probability that channel j is being idle
PI,j

[0.5, 1]

False alarm probability of SU i when it
detects channel j Pf,i,j

0.1

Detection probability of SU i when it
detects channel j Pd,i,j

0.9

Noise power δ2n 0.01 mW
Transmission power of SU i Wt,i 100 mW
Sensing power of SU i Ws,i 50 mW
Slot duration T 100 ms
Sensing duration ⌧ 5 ms
Average number of packets generated
by SU during a time slot λ

0.2 packet per time slot

The lower bound of the energy effi-
ciency ⌘min

50 kbit/Joule

When we apply the SRCF algorithm [1], different initial par-
titions may lead to different Nash-stable partitions. Therefore,
we randomly set the initial partition and run SRCF algorithm
50 times to obtain 50 Nash-stable partitions. We calculate the
average payoff of each SU and obtain the average coalition
value of these Nash-stable partitions, which we denote as
the average Nash-stable partition. To better compare SCF
algorithm and SRCF algorithm, we analyze the results of
average Nash-stable partition in following simulation.

Figure 1 shows the aggregate throughput of SUs in CRNs
when we increase the number of PUs M (i.e., the number of
channels) from 1 to 10. Results show that our proposed SCF
algorithm has a better performance than the SRCF algorithm
in terms of aggregate throughput. For both algorithms, the
aggregate throughput increases with M at first. This is because
the throughput is constrained by channel resources when M is
small. Thus, with more channels become available, the traffic
demand of SUs is satisfied and a higher aggregate throughput
can be obtained. However, when M is large, increasing M

further does not improve aggregate throughput too much,
because the aggregate throughput is constrained by the traffic
demand of SUs when channel resources are abundant.

Figure 2 shows the aggregate throughput of SUs as the
number of SUs N increases from 2 to 20. Results show that
performance of SCF algorithm is similar to or better than that
of SRCF algorithm in terms of aggregate throughput. In our
proposed SCF algorithm, SUs with high traffic demand are
given priority to sense and access good channels (i.e., channel
with high probability of being idle). Therefore the spectrum
resources are utilized with a high efficiency. However, in SCF
algorithm, SUs act selfishly and the channel resources can be
occupied by SUs with low traffic demand. Thus, the aggregate
throughput of SUs for SRCF algorithm is less than that for
SCF algorithm. Besides, the number of SUs N increases the
aggregate throughput when N varies from 2 to 20.

Figure 3 shows the average energy efficiency of SUs when
we increase the number of PUs M from 1 to 10. In SRCF
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Fig. 1. Aggregate throughput versus the number of PUs M for N = 10.
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Fig. 2. Aggregate throughput versus the number of SUs N for M = 6.

algorithm, all SUs are supposed to participate in cooperative
sensing. SUs with low traffic demand spend energy on sensing
but may obtain a low throughput. However, in our proposed
SCR algorithm, SUs with energy efficiency lower than the
⌘min choose to quit sensing and save energy for transmission
next time. Thus, the average energy efficiency for SCF algo-
rithm is higher than that for SRCF algorithm. Besides, for both
algorithms, the energy efficiency increases with M when M is
small. This is because SUs that participate in sensing obtain a
low throughput when channel resources are insufficient, which
leads to a low energy efficiency. As more channels become
available, SUs achieve higher throughput and thus obtain a
higher energy efficiency.

To provide an idea of the complexity of our proposed SCF
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Fig. 3. System energy efficiency versus the number of PUs M for N = 10.

algorithm compared with SRCF algorithm, we evaluate the
running time of these two algorithms as the number of SUs
N increases from 2 to 30. Results in Figure 4 show that the
running time of the SRCF algorithm is almost three times that
of our proposed SCF algorithm. Our proposed SCF algorithm
involves only N iterations. During each iteration, the active SU
only has to calculate coalition payoff M times before choosing
the best coalition to join. However, for SRCF algorithm, in
order to reach a Nash-stable partition, each SU has to calculate
and compare its coalition payoff in M different coalitions
whenever there is a change of partition. Thus, the complexity
of SRCF algorithm is higher than our proposed SCF algorithm.
Therefore, SRCF algorithm performs worse than our proposed
SCF algorithm in terms of running time. When N = 30, our
proposed SCF algorithm outperforms SRCF algorithm by over
60% in terms of running time.

V. CONCLUSION

In this paper, we studied the cooperation strategy in CRNs
with multiple channels from the perspective of traffic demand
of SUs. We proposed a joint cooperative spectrum sensing and
access scheme, which allows energy-constrained SUs work
more efficiently through selectively participating in coopera-
tion. An NTU coalition formation game was formulated to
study this cooperative sensing problem, in which each SU
makes individual decision on joining in coalition to maximize
a payoff that takes into account the expected throughput
and energy efficiency. Since exhaustive search method leads
to high computational complexity, we proposed a sequen-
tial coalition formation (SCF) algorithm. Simulation results
showed that our proposed SCF algorithm obtains the final
partition that outperforms the Nash-stable partition by the
switch rule-based coalition formation (SRCF) algorithm in [1]
in terms of aggregate throughput, energy efficiency, as well as
computational complexity.
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Fig. 4. Running time of algorithms versus the number of SUs N for M = 6.
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