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Abstract—Non-orthogonal multiple access (NOMA) and
backscatter communication are two emerging technologies that
enable low power communication for the Internet of Things
(IoT) devices. In this paper, we consider a multicarrier NOMA
(MC-NOMA) backscatter communication system. The objective
is to maximize the aggregate data rate of the system by jointly
optimizing the reflection coefficients and subcarrier allocation.
The formulated problem is nonconvex and exhibits hidden
monotonicity structure. To obtain the optimal solution, we
propose an algorithm based on discrete monotonic optimization.
The proposed algorithm can be considered as a performance
benchmark. We also transform the nonconvex problem to another
problem by using difference of convex functions and successive
convex approximation and propose an algorithm to obtain a
suboptimal solution in polynomial time. Simulation results show
that the suboptimal scheme achieves an aggregate data rate close
to the proposed optimal scheme. Results also show that our
proposed schemes provide a higher aggregate data rate than
the orthogonal multiple access (OMA) scheme.

I. INTRODUCTION

Power-domain non-orthogonal multiple access (NOMA)
is an emerging technology for the fifth generation cellular
networks. NOMA can improve the spectral efficiency
compared to orthogonal frequency division multiple access
(OFDMA). With NOMA, signals from multiple users can
be multiplexed on the same resource block. Power and
subcarrier allocation to the users are two important design
criteria to enhance the performance of NOMA systems. In [1],
optimal power allocation to the NOMA users is obtained by
maximizing the aggregate throughput. In [2], joint subcarrier
and power allocation problem is formulated for uplink NOMA
and a suboptimal algorithm is proposed. In [3], joint power
and subcarrier allocation is considered in multicarrier (MC)
NOMA systems and an optimal solution is obtained by using
monotonic optimization. In [4], monotonic optimization is
used to solve a joint power and subcarrier allocation problem
in full-duplex MC-NOMA systems. In [5], the user pairing
problem is considered for uplink NOMA to maximize the total
sum rate for all of the subcarriers.

Recently, backscatter communication has gained wide
popularity as a low power communication technology for
the Internet of Things (IoT). In backscatter communication
systems, a backscatter transmitter (or passive tag) does
not generate any carrier signal. The device tunes its
antenna impedance to generate a reflection coefficient and
communicates with the backscatter receiver (or reader) by

modulating and reflecting the incident signal from the radio
frequency (RF) carrier emitter [6].

Backscatter system with NOMA as a multiple access
technique has been considered in some recent works. In [7],
power-domain NOMA is used in a backscatter communication
system. Simulation results show that backscatter system with
NOMA has a better performance compared to backscatter
system with time division multiple access (TDMA) in terms
of the number of successfully decoded bits in the reader.
In [8], a resource allocation problem is formulated for a
backscatter system with NOMA and dynamic TDMA. In the
aforementioned works, only backscatter system with single
carrier NOMA has been investigated.

In this work, we propose a backscatter system with
MC-NOMA. Our goal is to maximize the aggregate data rate
by jointly optimizing the reflection coefficients and subcarrier
allocation to the backscatter devices. The reflection coefficients
of backscatter devices are the adjustable parameters in the
backscatter system. The contributions in this paper are as
follows:

• We formulate the joint reflection coefficient selection
and subcarrier allocation problem for backscatter system
using MC-NOMA as a nonconvex problem with hidden
monotonicity structure.

• We use monotonic optimization technique and propose an
optimal scheme for selecting the reflection coefficients of
backscatter devices and subcarrier allocation. We design
an algorithm based on outer polyblock approximation
algorithm to obtain the optimal solution.

• Since the optimal approach has a non-polynomial time
complexity, we transform the objective function to
another function by using difference of convex functions
technique. We use successive convex approximation
algorithm to obtain a suboptimal solution in polynomial
time. Simulation results show that the aggregate data
rate obtained by the proposed suboptimal scheme is very
close to the optimal scheme. The proposed schemes using
MC-NOMA have a higher aggregate data rate than the
orthogonal multiple access (OMA) scheme.

The rest of this paper is organized as follows. In Section
II, the system model is described and the resource allocation
problem for the proposed system is formulated. Section III
presents the optimal and suboptimal schemes for solving
the formulated problem. Simulation results are presented in



Section IV. Conclusion is given in Section V.
In this work. we use boldface lower case letters to denote

vectors. R+ denotes the set of non-negative real numbers;
RN denotes the set of all N dimensional vectors with real
entries and RN+ denotes the non-negative subset of RN .
a 4 b indicates that vector a is component-wise smaller
than b. We present the circularly symmetric complex Gaussian
distribution with mean γ and variance σ2 by CN (γ, σ2); ∼
stands for “distributed as”; |.| denotes the absolute value of a
complex scalar. ed is used to denote the vector with 1 in the
d-th entry and 0 for all other entries.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an MC-NOMA backscatter system with a
reader and K single-antenna backscatter devices as shown in
Fig. 1. The reader is equipped with successive interference
cancellation (SIC) receiver. The frequency bandwidth is
divided into M orthogonal subcarriers. In this work, we focus
on uplink NOMA communication. We consider that at most
two backscatter devices operate on each subcarrier to limit
the co-channel interference [4]. Each backscatter device can
operate on only one subcarrier. Let K denote the set of
backscatter devices, i.e., K = {1, . . . ,K}. Let M denote
the set of subcarriers, i.e., M = {1, . . . ,M}. The reader
transmits a continuous wave signal with power P as the carrier
signal. The backscatter device k ∈ K modulates and reflects
the incident signal via a reflection coefficient. We denote the
magnitude of the reflection coefficient of backscatter device
k as ηk, which is a real value between zero and one. In
practice, backscatter devices have a set of impedances to
generate reflection coefficients with different magnitudes [7].
Let ξmk denote the information symbol of backscatter device
k on subcarrier m ∈ M with unit average power. Let hmk
denote the channel gain of backscatter device k on subcarrier
m. The channel gain is characterized by both path loss and
small-scale fading. We have hmk =

√
r−αk dmk , where rk is the

distance between backscatter device k and the reader, α is
the path loss exponent, and dmk ∼ CN (0, 1) is the small-scale
fading factor. The reflected signal of backscatter device k on
subcarrier m is given by xmk =

√
ηkPh

m
k ξ

m
k .

Consider that two backscatter devices k and l, where k, l ∈
K are selected to perform NOMA on subcarrier m ∈M. We
assume the global channel state information for all links in
the network is available in the reader. The received signal on
subcarrier m is as follows:

ym = hmk x
m
k + hml x

m
l + nm

=
√
ηkP (hmk )2ξmk +

√
ηlP (hml )2ξml + nm, (1)

where nm∼CN (0, σ2) denotes the additive white Gaussian
noise on subcarrier m in the reader. For backscatter devices
k and l operating on subcarrier m, consider that backscatter
device k experiences a better channel gain than backscatter
device l on subcarrier m, i.e., |hmk | > |hml |. Thus, the reader
first decodes the signal of backscatter device k, removes the
signal by SIC and then decodes the signal of backscatter device
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Fig. 1. An MC-NOMA backscatter system consisting of several backscatter
devices and a reader equipped with SIC receiver. Signals from two backscatter
devices k and l are multiplexed on subcarrier m using NOMA. The reader
sends the carrier signal and the backscatter devices send their data to the
reader by reflecting the carrier signal.

l. We consider binary integer variables smk,l ∈ {0, 1} as the
subcarrier allocation coefficients. The binary variable smk,l is
equal to 1 when the backscatter devices k and l are selected
to perform NOMA on subcarrier m, while backscatter device
k has a better channel gain and its signal is decoded first in
the reader, otherwise smk,l is equal to 0. The aggregate data
rate on subcarrier m is obtained by the sum of the data rate
of backscatter devices k and l, which is given by

Rmk,l=s
m
k,l

(
log2

(
1+

ηkP |hmk |4

ηlP |hml |4+σ2

)
+log2

(
1+

ηlP |hml |4

σ2

))
.(2)

We further define gmk =
P |hm

k |
4

σ2 and rewrite equation (2) as
follows:

Rmk,l = smk,l

(
log2

(
1 +

ηkg
m
k

1 + ηlgml

)
+ log2 (1 + ηlg

m
l )

)
. (3)

The joint reflection coefficient selection and subcarrier
allocation problem for the backscatter communication system
is formulated as follows:

maximize
ηk ,k∈K

smk,l,k,l∈K,m∈M

M∑
m=1

K∑
k=1

K∑
l=1

smk,l log2

(
1 +

ηkg
m
k

1 + ηlgml

)

+

M∑
m=1

K∑
k=1

K∑
l=1

smk,l log2 (1 + ηlg
m
l ) (4a)

subject to 0 ≤ ηk ≤ 1, k ∈ K (4b)
smk,l ∈ {0, 1}, k, l ∈ K,m ∈M (4c)
K∑
k=1

K∑
l=1

smk,l ≤ 1, m ∈M (4d)

M∑
m=1

K∑
l=1

smk,l +

M∑
m′=1

K∑
l′=1

sm
′

l′,k ≤ 1, k ∈ K (4e)

log2

(
1+

ηkg
m
k

1 + ηlgml

)
≥smk,lRmin, k, l∈K,m∈M

(4f)



log2(1+ηlg
m
l )≥smk,lRmin, k, l∈K,m∈M. (4g)

Constraint (4b) ensures that the magnitude of reflection
coefficients is between zero and one. Constraint (4d) ensures
that each subcarrier is assigned to at most two backscatter
devices. Constraint (4e) guarantees that at most one subcarrier
is assigned to each backscatter device. It also ensures that
each pair of backscatter devices is operating on at most one
subcarrier. The last two constraints guarantee that the data rate
of backscatter devices k and l on subcarrier m is greater than
the minimum data rate requirement, denoted as Rmin.

III. PROPOSED OPTIMAL AND SUBOPTIMAL SCHEMES

Problem (4) is a discrete nonconvex problem due to binary
variables and nonconvexity of the objective function. However,
it has a hidden monotonicity structure. Thus, one approach to
obtain the optimal solution of this problem is to apply discrete
monotonic optimization.

A. Discrete Monotonic Optimization

First, we present some definitions related to discrete
monotonic optimization problem [9]. Given any vector z ∈
RN+ , the box [0, z] is the set of all x ∈ RN+ satisfying
0 � x � z. A set G ⊂ RN+ is normal set if for any point
z ∈ G, [0, z] ⊂ G. A set H is called conormal set if x ∈ H
and x′ � x result x′ ∈ H. A set P ⊂ RN+ is called a
polyblock with vertex set V if it is the union of a finite number
of boxes [0, z], where z ∈ V . Given any non-empty normal
set Z ⊂ RN+ and any vector z ∈ RN+ , the projection of z
onto the upper boundary of the normal set Z is Φ(z) = λz,
where λ = max{α | αz ∈ Z} and α ∈ R+. Given any
point x ∈ [0,b], the lower A-adjustment of x is defined
as bxcA = max{x′ | x′ ∈ A ∪ {0},x′ � x}. A discrete
monotonic optimization problem has the following form:

maximize
z

f(z) (5a)

subject to z ∈ G ∩H ∩A, (5b)

where z is the optimization variable. The feasible set is the
intersection of a non-empty compact normal set G, a closed
conormal setH and set A including all possible discrete values
of z. Function f is a monotonic increasing function on RN+ .

B. Optimal Scheme

To transform problem (4) to the standard form of discrete
monotonic optimization problem, we rewrite Rmk,l in (3) as
follows:

Rmk,l = log2

(
1+

smk,lηkg
m
k

1 + smk,lηlg
m
l

)
+ log2

(
1+smk,lηlg

m
l

)
= log2

(
1+

η̃mk,l,kg
m
k

1+η̃mk,l,lg
m
l

)
+ log2

(
1+η̃mk,l,lg

m
l

)
= log2(umk,l) + log2(vmk,l), (6)

where η̃mk,l,k = smk,lηk, η̃mk,l,l = smk,lηl, u
m
k,l = 1+

η̃mk,l,kg
m
k

1+η̃mk,l,lg
m
l

and

vmk,l = 1 + η̃mk,l,lg
m
l . We define vector η̃ ∈ R2MK2

containing

all of the variables η̃mk,l,k and η̃mk,l,l, and also vector s ∈ RMK2

containing all of the variables smk,l. According to (6), problem
(4) can be rewritten as

maximize
η̃,s

M∑
m=1

K∑
k=1

K∑
l=1

log2

(
1 +

η̃mk,l,kg
m
k

1 + η̃mk,l,lg
m
l

)

+

M∑
m=1

K∑
k=1

K∑
l=1

log2(1 + η̃mk,l,lg
m
l ) (7a)

subject to 0 ≤ η̃mk,l,k ≤ 1, k, l ∈ K,m ∈M (7b)

0 ≤ η̃mk,l,l ≤ 1, k, l ∈ K,m ∈M (7c)

log2

(
1 +

η̃mk,l,kg
m
k

1 + η̃mk,l,lg
m
l

)
≥smk,lRmin,

k, l ∈K,m ∈M (7d)

log2

(
1+η̃mk,l,lg

m
l

)
≥smk,lRmin, k, l ∈K,m ∈M (7e)

constraints (4c), (4d), (4e).

We further define D = 2MK2 and z = (z1, . . . , zD) =
(u11,1, . . . , u

M
K,K , v

1
1,1, . . . , v

M
K,K). By defining these new

variables, problem (7) can be written as a discrete monotonic
optimization problem as follows:

maximize
z

T (z) (8a)

subject to z ∈ Z ∩ A, (8b)

where T (z) =
∑D
d=1 log2(zd) and Z = {z | 1 ≤ zd ≤

ad(η̃)
bd(η̃) ,0 � η̃ � 1, d ∈ {1, . . . , D}} is the set obtained by
removing constraints (4c), (4d), (4e), (7d), and (7e). Functions
ad(η̃) and bd(η̃) are defined as follows:

ad(η̃) =

{
1 + η̃mk,l,kg

m
k + η̃mk,l,lg

m
l , d = ∆,

1 + η̃mk,l,lg
m
l , d = ∆ + D

2 .
(9)

bd(η̃) =

{
1 + η̃mk,l,lg

m
l , d = ∆,

1 d = ∆ + D
2 ,

(10)

where ∆ = (m − 1)K2 + (k − 1)K + l. For any given
k, l ∈ K and m ∈ M, we can find the corresponding
d ∈ {1, . . . , D}. Finite set A = {z | 1 ≤ zd ≤ ad(η̃)

bd(η̃) , η̃ ∈
H, s ∈ S, d ∈ {1, . . . , D}} is the set containing the vectors
z which satisfy constraints (4c), (4d), (4e), and (7b)−(7e).
Sets H and S are the sets spanned by constraints (4c), (4d),
(4e), and (7b)−(7e). The function T (z) in (8a) is a monotonic
increasing function with respect to the variable z. Problem
(8) is in standard form of discrete monotonic optimization
problem. We propose an optimal algorithm based on outer
polyblock approximation algorithm. In this algorithm, we first
construct the polyblock P(1) with the vertex set V(1) including
the vertex z(1). To obtain z(1), we choose the maximum
possible values for um

(1)

k,l and vm
(1)

k,l , k, l ∈ K and m ∈ M
by selecting the value of one for the reflection coefficients
and removing the co-channel interference in each subcarrier.
Then the vertex z(1) is projected onto the boundary of set Z .
The resulting vertex, Φ(z(1)), may not be a valid vertex, i.e., it
may not satisfy constraints (4c), (4d), (4e), and (7b)−(7e). We



convert it to a valid vertex by lower A-adjustment operation
and obtain the new vertex πA(z(1)) = bΦ(z(1))cA. Before
constructing a smaller polyblock, D new vertices are generated
as V(1)

new = {v(1)
1 , . . . ,v

(1)
D }. The new vertex v

(1)
d is obtained

as v
(1)
d = z(1) −

(
z
(1)
d − πAd (z(1))

)
ed, where πAd (z(1))

is the d-th entry of πA(z(1)). To obtain the new vertex
set V(2), the vertices whose lower A-adjustment have an
objective value less than the current best value (CBV(1)) are
removed from V(1)

new. New polyblock P(2) is constructed by
the new vertex set. This polyblock still contains the feasible
set of problem (8). From V(2), we choose the vertex whose
lower A-adjustment has the maximum objective value as the
vertex whose projection is obtained in the next iteration, i.e.,
z(2) = arg max{T

(
πA(z)

)
| z ∈ V(2)}. We continue this

procedure until the new vertex set generated in the current
iteration is empty, i.e., V(i+1) = ∅. In other words, there is
no vertex whose lower A-adjustment has an objective value
greater than the current best value. Note that in each iteration,
CBV(i) and the current best solution (CBS(i)) are updated if
the objective value of πA(z(i)) is greater than CBV(i−1). The
outer polyblock approximation algorithm for solving problem
(8) is summarized in Algorithm 1. In each iteration of the
algorithm, the projection of z(i) onto the boundary of the set
Z is calculated as Φ(z(i)) = λz(i), where

λ = max{α | αz(i) ∈ Z}

= max
{
α | αz(i)d ≤

ad(η̃)

bd(η̃)
,0 � η̃ � 1

}
= max

0�η̃�1
min

1≤d≤D

ad(η̃)

z
(i)
d bd(η̃)

. (11)

Problem (11) is a fractional programming problem. It can
be solved by the Dinkelbach algorithm [10]. The projection
algorithm is summarized in Algorithm 2. When the optimal
solution (z∗) is obtained by the outer polyblock approximation
algorithm, we have the optimal reflection coefficients from
the projection algorithm. We also obtain the values umk,l and
vmk,l from the optimal solution z∗. Thus, we can determine the
optimal subcarrier allocation coefficients as follows:

smk,l =

{
1, umk,l > 1 and vmk,l > 1,

0, otherwise.
(12)

The proposed algorithm achieves the global optimal solution
of problem (8). However, this algorithm is computationally
complex and its complexity relies on the computation
complexity of the projection algorithm [9]. The complexity
of this algorithm increases exponentially with the number of
backscatter devices and the number of subcarriers. In the next
subsection, we propose a suboptimal scheme to obtain a local
suboptimal solution for problem (8) in polynomial time.

C. Suboptimal Scheme

In this subsection, we transform problem (4) to a convex
optimization problem by using difference of convex functions
and successive convex approximation. Since problems (4) and
(7) are equivalent, we consider problem (7) to design an

Algorithm 1: Outer Polyblock Approximation Algorithm

1 Initialize polyblock P(1) with the vertex set V(1) := {z(1)} and
set the entries of z(1) as
um(1)

k,l := 1 + gmk , v
m(1)

k,l := 1 + gml , k, l ∈ K,m ∈M
2 Set the iteration index i := 0, CBV(0):=−∞ and CBS(0):=0

3 while V(i+1) 6= ∅ do
4 i := i+ 1

5 Calculate the projection of z(i) onto the boundary of set Z ,
Φ(z(i)), by Algorithm 2

6 Obtain the lower A-adjustment of Φ(z(i)) as
πA(z(i)) := bΦ(z(i))cA

7 if T
(
πA(z(i))

)
≥ CBV(i−1) then

8 CBS(i) := πA(z(i))

9 CBV(i) := T
(
πA(z(i))

)
10 else
11 CBS(i) := CBS(i−1)

12 CBV(i) := CBV(i−1)

13 end
14 Obtain D new vertices as V(i)

new := {v(i)
1 , . . . ,v

(i)
D }, where

v
(i)
d := z(i) −

(
z
(i)
d − π

A
d (z(i))

)
ed

15 Generate V(i+1) := {v |v ∈ V(i)
new, T

(
πA(v)

)
>CBV(i)}

and construct new polyblock
16 From V(i+1), select

z(i+1) := arg max{T
(
πA(z)

)
| z ∈ V(i+1)}

17 end
18 z∗ := CBS(i)

Algorithm 2: Projection Algorithm

Input: z(i), set Z
Output: Φ(z(i)), η̃∗

1 Initialize λ1 := 0
2 Set iteration index n := 1 and error tolerance δ � 1
3 while True do

4 η̃∗n := arg max
0�η̃�1

{
min

1≤d≤D
{ad(η̃∗)− λnz

(i)
d bd(η̃∗)}

}
5 λn+1 := min

1≤d≤D

ad(η̃
∗
n)

z
(i)
d

bd(η̃
∗
n)

6 n := n+ 1

7 if min
1≤d≤D

(ad(η̃∗n−1)− λnz
(i)
d bd(η̃∗n−1)) ≤ δ then

8 terminate the while loop
9 else

10 continue
11 end
12 end
13 The projection of z(i) onto the boundary of set Z is

Φ(z(i)) = λnz
(i) and η̃∗ = bη̃∗n−1cH

algorithm to obtain a suboptimal solution. We note that the
variable η̃mk,l,k = smk,lηk is the product of two variables. To
make the product terms decomposable, we introduce additional
constraints to our problem as follows [3]:

η̃mk,l,k ≤ smk,l, k, l ∈ K,m ∈M (13a)

η̃mk,l,k ≤ ηk, k, l ∈ K,m ∈M (13b)

η̃mk,l,k ≥ ηk − (1− sk,l), k, l ∈ K,m ∈M (13c)

η̃mk,l,k ≥ 0, k, l ∈ K,m ∈M. (13d)



Besides, constraint (4c) is a nonconvex constraint. We rewrite
this constraint as follows [3]:

0 ≤ smk,l ≤ 1, k, l ∈ K,m ∈M (14a)
M∑
m=1

K∑
k=1

K∑
l=1

smk,l−
M∑
m=1

K∑
k=1

K∑
l=1

(smk,l)
2≤ 0. (14b)

Constraint (14b) is the difference of two convex functions and
is nonconvex. Constraints (7d) and (7e) are also nonconvex. To
handle these constraints, we add these constraints as penalty
terms to the objective function in the following form.

minimize
η̃,s

M∑
m=1

K∑
k=1

K∑
l=1

(
− log2(umk,l)− log2(vmk,l)

)
+β1

(
M∑
m=1

K∑
k=1

K∑
l=1

smk,l −
M∑
m=1

K∑
k=1

K∑
l=1

(smk,l)
2

)

−β2

(
M∑
m=1

K∑
k=1

K∑
l=1

log2

(
1+

η̃mk,l,kg
m
k

1 + η̃mk,l,lg
m
l

)
−smk,lRmin

)

−β3

(
M∑
m=1

K∑
k=1

K∑
l=1

log2

(
1+η̃mk,l,lg

m
l

)
−smk,lRmin

)
subject to (4d), (4e), (7b), (7c), (13a)−(13d), (14a), (15)

where β1 � 1, β2 � 1 and β3 � 1 are the penalty factors. In
problem (15), the term multiplied by β1 penalizes the objective
function for any smk,l that is not equal to 0 or 1. The terms
multiplied by β2 and β3 penalize the objective function for
any backscatter device that has a data rate less than Rmin. We
introduce additional functions and rewrite problem (15) in the
following form.

minimize
η̃,s

F (η̃) + β1(G(s)−Q(s))

+ β2 (J(η̃, s)− U(η̃)) + β3L(η̃, s)
subject to (4d), (4e), (7b), (7c), (13a)−(13d), (14a), (16)

where

F (η̃)=

M∑
m=1

K∑
k=1

K∑
l=1

− log2(1 + η̃mk,l,kg
m
k + η̃mk,l,lg

m
l ) (17)

G(s)=

M∑
m=1

K∑
k=1

K∑
l=1

smk,l (18)

Q(s)=

M∑
m=1

K∑
k=1

K∑
l=1

(smk,l)
2 (19)

J(η̃, s)=
M∑
m=1

K∑
k=1

K∑
l=1

−log2

(
1+η̃mk,l,kg

m
k +η̃mk,l,lg

m
l

)
+smk,lRmin(20)

U(η̃)=

M∑
m=1

K∑
k=1

K∑
l=1

− log2

(
1 + η̃mk,l,lg

m
l

)
(21)

L(η̃, s)=

M∑
m=1

K∑
k=1

K∑
l=1

− log2

(
1 + η̃mk,l,lg

m
l

)
+ smk,lRmin. (22)

All of the above functions are convex and problem (16) is
considered as difference of convex functions programming.

Thus, we can use successive convex approximation to obtain
a local optimal solution. Functions −Q(s) and −U(η̃) in the
objective function in (16) make the problem nonconvex. These
two functions are differentiable. Thus, we can approximate
them by an affine function using first-order condition for
convex functions. Consider j as an iteration index starting
from one. For any given s(j) and η̃

(j), we have

Q(s) ≥ Q(s(j)) +∇sQ(s(j))T (s− s(j)) (23)

U(η̃) ≥ U(η̃(j)) +∇η̃U(η̃(j))T (η̃− η̃
(j)), (24)

where

∇sQ(s(j))T(s−s(j)) =

M∑
m=1

K∑
k=1

K∑
l=1

2s
m(j)
k,l (smk,l−s

m(j)
k,l ) (25)

∇η̃U(η̃(j))T(η̃−η̃(j)) =

M∑
m=1

K∑
k=1

K∑
l=1

−
gml (η̃mk,l,l−η̃

m(j)
k,l,l )

(1+η̃
m(j)
k,l,l g

m
l )ln 2

. (26)

We replace Q(s) and U(η̃) in (16) by the right hand side of
(23) and (24) and obtain the following problem.

minimize
η̃,s

F (η̃)+β1(G(s)−Q(s(j))−∇sQ(s(j))T(s−s(j)))

+ β2(J(η̃, s)−U(η̃(j))−∇η̃U(η̃(j))T (η̃−η̃(j)))

+ β3L(η̃, s)
subject to (4d), (4e), (7b), (7c), (13a)−(13d), (14a). (27)

Problem (27) is a convex problem. Solving this problem for
any given s(j) and η̃

(j) gives an upper bound for the solution of
problem (16). By using successive convex approximation, we
can tighten the upper bound. The iterative algorithm to obtain
a local optimal solution for problem (27) is summarized in
Algorithm 3. This algorithm finds a tightened upper bound
for the solution of problem (16) within polynomial time.

Algorithm 3: Successive Convex Approximation
Algorithm

1 Initialize penalty factors β1 � 1, β2 � 1 and β3 � 1,
maximum number of iterations Imax, iteration index j := 1
and starting points s(1) and η̃(1)

2 while j ≤ Imax do
3 Solve problem (27) for given s(j) and η̃(j) and store the

subcarrier allocation and reflection coeffients as s and η̃
4 Set j := j + 1, s(j) := s and η̃(j) := η̃
5 end
6 s∗ := s(j) and η̃∗ := η̃(j)

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed schemes
is evaluated through simulations. The coverage area of the
reader is considered as a cell with two ring-shaped boundary.
The radii of inner and outer boundary are 20 m and 100 m,
respectively. The backscatter devices are distributed randomly
and uniformly in the coverage area of the reader. The path
loss exponent α is equal to 2.5. The variance of the noise σ2

is set to −100 dBm. We set the number of subcarriers and
the minimum data rate requirement of backscatter devices to
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Fig. 2. Average aggregate data rate versus the maximum transmit power of
the reader for K = 6.

M = 3 and Rmin = 3 bits/s/Hz, respectively. The results are
obtained by averaging over different channel and path loss
realizations.

Fig. 2 shows the average aggregate data rate versus the
maximum transmit power of the reader for K = 6 backscatter
devices. Results show that the average aggregate data rate
increases monotonically with the transmit power of the reader.
This is because the received signal-to-interference-plus-noise
ratio (SINR) of the backscatter devices is improved when
the maximum transmit power of the reader increases. The
suboptimal algorithm achieves an average aggregate data
rate very close to the optimal scheme. Fig. 2 also shows
the average aggregate data rate of a backscatter system
using OMA where at most one backscatter device operates
on each subcarrier. In this system, the optimal reflection
coefficient of a backscatter device operating on a subcarrier
has the value of one. We optimize the subcarrier allocation
to the backscatter devices. The average aggregate data rate
of backscatter system with MC-NOMA is higher than that of
backscatter system using OMA. In a backscatter system using
OMA, the spectrum resource is not utilized efficiently due to
orthogonal subcarrier allocation. As Fig. 2 shows, backscatter
system with MC-NOMA achieves a target aggregate data rate
with lower maximum transmit power of the reader compared
to the backscatter system using OMA.

Fig. 3 shows the average aggregate data rate versus the
number of backscatter devices for our proposed optimal and
suboptimal schemes as well as the OMA scheme. The average
aggregate data rate increases with the number of backscatter
devices. The MC-NOMA backscatter system achieves a higher
average aggregate data rate than a backscatter system using
OMA. This is because in an MC-NOMA backscatter system,
both frequency and power domain are exploited for multiple
access. Fig. 3 shows that the average aggregate data rate of an
MC-NOMA backscatter system increases faster than that of an
OMA backscatter system. This is because in an MC-NOMA
backscatter system, signals from multiple backscatter devices
are multiplexed on each subcarrier. Furthermore, the average
aggregate data rate obtained by the suboptimal scheme is very
close to the optimal scheme.
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Fig. 3. Average aggregate data rate versus the number of backscatter devices
for P = 22 dBm.

V. CONCLUSION

In this paper, we investigated an MC-NOMA backscatter
system. We formulated an aggregate data rate maximization
problem by jointly optimizing the reflection coefficients and
subcarrier allocation. The formulated problem is nonconvex
and exhibits hidden monotonicity structure. By using discrete
monotonic optimization, we developed an optimal scheme.
We also proposed a suboptimal scheme, which is based
on successive convex approximation and has polynomial
time complexity. Simulation results show that the proposed
suboptimal scheme achieves an aggregate data rate close to
the optimal scheme. Our proposed schemes have a higher
aggregate data rate than the OMA scheme.
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