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Abstract—With the fast development of deregulated electricity

markets, a user can enter a contract with a utility company

that offers the best rates among multiple competing utility

companies. Meanwhile, a utility company is motivated to increase

its market share by offering demand response programs with

real-time pricing (RTP), which can help its customers to manage

their energy usage and save money. In this paper, we focus on

the demand response program in deregulated markets for data

centers, which are often flexible in scheduling their workloads.

We capture the stochastic workload process in a data center as

a multiclass queuing system. We model the coupled decisions of

utility company choices and workload scheduling of data centers

as a many-to-one matching game with externalities. Analyzing such

a game is challenging, as there does not exist a general algorithm

that guarantees to find a stable outcome, where no player has

an incentive to unilaterally change its strategy. We show that the

data center matching game admits an exact potential function,

whose local minima correspond to the stable outcomes of the

game. We develop an algorithm that can guarantee to converge

to a stable outcome. Compared with the scenario without utility

company choices and demand response, simulations show that

our proposed algorithm can reduce the cost of data centers by

15.4% and increase the revenue of those utility companies with

lower tariffs by up to 82%. The peak-to-average ratio (PAR) of

the customers’ load demand is also reduced by 7.2%.

I. INTRODUCTION

Recent advances in small-scale power plants and the in-
tegration of communication technologies into the power net-
works have enabled utility companies to enter the deregulated
electricity markets [1]. In such a market, a customer is
free to purchase electricity from one of several competing
utility companies. Meanwhile, the utility companies can take
advantage of such flexibility and choose their retail prices.
This motivates the utility companies to deviate from today’s
common practice of flat-rate pricing and implement real-time
pricing (RTP) [2], [3]. By implementing a demand response
program with RTP, the utility companies can benefit from a
smoother energy demand profile, and achieve a higher revenue
by attracting more customers. The customers, on the other
hand, can take advantage of the lower prices.

In this paper, we focus on the choices of utility company as
well as demand response of a special type of customers � data
centers. Data center owners often closely monitor and control
the demand of their information technology (IT) equipment
(e.g., servers, routers) and cooling facilities. Many typical
workloads in data centers (e.g., high complexity scientific
computations, and data analytics) are delay-tolerant, and hence
may be rescheduled to off-peak hours [4]. This motivates

a recent rich body of literature on the demand response
algorithm design for data centers (e.g., [5]–[9]).

We can classify the related literature into two main threads.
The first thread is concerned with the solution approaches for
the workload management problem in data centers. Different
techniques such as stochastic optimization [5] and convex
optimization [6], [7] are used to tackle the workload man-
agement problem. In these works, the energy price of the
utility company is fixed and the focus is to solve a cost
minimizing problem for the data centers. The second thread
is concerned with modeling the active pricing decisions of the
utility companies for data centers. Wang et al. in [8] applied
a two-stage optimization method to model the interactions of
a utility company’s pricing optimization and the data centers’
energy demand optimization. The approach in [8] may not be
directly applied to the case with multiple data centers. Tran
et al. addressed a related problem in [9], where the utility
companies need to obtain the closed-form solution to the data
centers’ cost minimization problem. This may not be always
feasible in practice.

In this paper, we study the emerging deregulated markets,
where multiple utility companies compete to supply electricity
to the same group of geographically dispersed data centers.
Each data center can choose which utility company to sign the
contract and schedule its workloads to minimize its payment. If
the utility companies adopt the RTP scheme, the data centers’
payments will depend on the amount and the time of their
electricity consumptions. Thus, the decisions of data centers
are coupled among each other and with the pricing decisions
of the utility companies. We capture the data centers’ coupled
decisions of utility company choices and workload scheduling
as a many-to-one matching game. The underlying mechanism
is a matching with externalities [10], as the payments of the
data centers choosing the same utility company depend on the
workload scheduling of each other. We characterize the stable
outcome of the game, where no data center has an incentive
to change its matched utility company and workload schedule
unilaterally. Such characterization is quite challenging, as
there does not exist a general algorithm that can guarantee
to find a stable outcome in matching with externalities.

The contributions of this paper are as follows:
• Data Center Workload Model: We approximate the work-

loads’ arrivals and executions in a data center over
the contract period by a multiclass queuing system.
Such a model enables us to schedule the number of



operating servers, meanwhile satisfying the quality-of-
service (QoS) requirements in executing different service
requests.

• Solution Method and Algorithm Design: We characterize
an exact potential function of the matching game, and
show that the stable outcomes of the game correspond to
the local minima of the potential function. We develop
an algorithm that can be executed by the data centers and
utility companies in a distributed fashion. We prove that
the algorithm converges to a stable outcome of the game.

• Performance Evaluation: We perform simulations on a
market with 50 data centers and 10 utility companies.
The results show that the proposed algorithm reduces the
cost of data centers and the peak-to-average ratio (PAR)
in the aggregate demand of data centers connected to the
same utility company by 15.4% and 7.2%, respectively.
Furthermore, the utility companies that offer lower energy
prices can increase their revenue by up to 82%, as they
can attract more data centers as customers.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, we propose a
matching game model for the data centers interaction. We also
develop a distributed algorithm to obtain a stable outcome.
In Section IV, we evaluate the performance of the proposed
algorithm. Section V concludes the paper.

II. SYSTEM MODEL

Consider a system with D data centers and U utility compa-
nies. Let D = {1, . . . , D} and U = {1, . . . , U} denote the set
of data centers and the set of utility companies, respectively.
Data center d 2 D can purchase electricity from a utility
company in a predetermined set Ud ✓ U . Utility company
u 2 U is able to serve a predetermined subset of data centers
denoted by Du ✓ D. Sets Ud, d 2 D and Du, u 2 U are
determined based on the the topology of the network and the
geographic locations of the utility companies and data centers.

Fig. 1 (a) shows a system with five data centers and three
utility companies. Fig. 1 (b) shows the corresponding bipartite
graph representation. Each data center d possesses an energy
management system (EMS), which is connected to the utility
companies in set Ud via a two-way communication network.
The EMS enables exchanging information such as the energy
consumption of the corresponding data center and the energy
price for entering a bilateral contract. In deregulated markets,
a data center can enter a bilteral contract with one utility
company to purchase electricity. Meanwhile, a utility company
can supply electricity to multiple data centers. We can capture
the contracts between data centers and utility companies as a
many-to-one matching [11], which is defined as follows.

Definition 1: A many-to-one matching among the data centers
and utility companies is a function m : D [ U!P(D [ U),
where m(u) ✓ Du represents the set of data centers served by
utility company u 2 U , and m(d) ✓ Ud with |m(d)| = 1
represents the utility company choice of data center d 2 D.
Here, |·| denotes the cardinality and P is the power set of a set.

Fig. 1. (a) A system composed of five data centers equipped with EMS and
three utility companies; (b) the corresponding bipartite graph representation;
(c) a feasible many-to-one matching.

Fig. 1 (c) shows a feasible many-to-one matching. Although
short-term contracts are not common for residential customers
in today’s deregulated markets, large loads such as data centers
can enter a contract with utility companies for a period from
a few hours to several days [4], [12]. We assume that a data
center can enter a short-term contract (e.g., one day) with
a utility company. Without loss of generality, we consider
the same contract period for all data centers. We divide the
intended contract period into a set T = {1, . . . , T} of T time
slots with an equal length, e.g., one time slot is 15 minutes.

In matching m, utility company u sets its retail price
pr
u(t), t 2 T , for the contracts with the data centers in set

m(u). Data center d specifies its demand profile ed(t), t 2 T ,
to be supplied by its utility company choice m(d).

1) Contract Pricing Model: In general, a utility company
purchases electricity from the wholesale market with a price
p(t), t 2 T , determined from the demand-supply balance
in the wholesale market. The utility companies may offer
dynamic electricity rates to the flexible large loads such as
data centers. In the dynamic pricing scheme, the retail price of
utility company u depends on the time of energy consumption,
as well as the total energy demand from its customers. In
particular, the retail price of utility company u 2 U in time
slot t 2 T and matching m is an increasing function of the
total energy demand eu(t) = eother

u (t)+
P

d2m(u) ed(t), where
eother
u (t) denotes the demand in time slot t for the customers

other than the data centers served by utility company u.
The retail price is greater than the wholesale price, in order
to guarantee a positive profit for the utility company. We
consider the linear approximation of the retail price (around
the wholesale price) as follows [13]:

pr
u(eu(t),m) = p(t)+ u(t) eu(t), u 2 U , t 2 T , (1)

where u(t), u 2 U , t 2 T , are nonnegative coefficients with
the unit of $ / MWh2. The utility companies can determine
u(t) according to the cost of supplying electricity.

The dynamic pricing scheme in (1) motivates data center d
towards scheduling its energy demand ed(t), t 2 T to benefit
from the retail price fluctuations. Next, we describe how a data
center can manage its energy demand.

2) Data Center’s Operation Model: A data center offers
different service classes (e.g., video streaming, data analytics)
to its customers. Let Cd = {1, . . . , Cd} denote the set of
service classes that are offered in data center d 2 D, where
Cd = |Cd|. To meet the QoS requirements, the delay in



executing a workload is limited within a certain range. Let
�c,d denote the delay that the execution of a workload of
service class c 2 Cd can tolerate. A small �c,d corresponds to
the interactive services that are inflexible due to stringent delay
requirements, such as web search, online gaming, and video
streaming. A large �c,d corresponds to the delay-tolerant
services, such as scientific applications, data analytics, and
file processing [5].

We now discuss how a data center can schedule the number
of operating servers to meet the QoS requirements. We assume
that both the workloads’ inter-arrival time and execution time
follow the exponential distribution [8], [9]. For data center d,
a workload requesting service class c 2 Cd arrives with an
average rate of �c,d(t), t 2 T , workloads per time slot. Let
�c,d denote the average time it takes for a server in data center
d to execute a workload requesting service class c. Let nd(t)
denote the average number of operating servers of data center
d in time slot t. If all the servers in data center d execute the
workloads of service class c, the corresponding average execu-
tion rate in time slot t is obtained as µc,d(t) =

nd(t)
�c,d

. However,
the servers in data center d execute Cd service classes. Let
⇢d(t) =

P
c2Cd

�c,d(t)
µc,d(t)

denote the server utilization of data
center d in time slot t. The proportion of time that the servers
are busy to execute the workloads of service classes other
than c is ⇢d(t) � ⇢c,d(t), where ⇢c,d(t) =

�c,d(t)
µc,d(t)

. Hence, the
proportion of time that the servers are busy to execute the
workloads of service class c is 1 � (⇢d(t) � ⇢c,d(t)). Thus,
we can model a data center by a multiclass M/M/1 queuing
system, where the execution rate of the workloads of service
class c is µc,d(t) = (1� (⇢d(t)� ⇢c,d(t)))µc,d(t).

We can show that a workload of service class c experiences
the maximum expected waiting time either at the beginning
or at the end of each time slot t [14]. The waiting time at the
beginning of time slot t depends on the number of workloads
whose jobs have not been completed yet. For simplicity, we
will consider the steady state approximation of the average
number of workloads at the end of time slot t � 1. Hence,
an incoming workload of service class c experiences the
average waiting time of

�
1 + �c,d(t�1)

µc,d(t�1)��c,d(t�1)

�
/µc,d(t) at

the beginning of time slot t. To satisfy the delay requirement, it
should be less than or equal to �c,d. We can rewrite µc,d(t�1)
and µc,d(t) in terms of nd(t � 1) and nd(t), respectively.
We can approximate ⇢d(t�1)�⇢c,d(t�1)

⇢d(t)�⇢c,d(t)
⇡ 1 due to the small

changes in the proportion of time that the servers are busy to
execute the workloads of service classes other than c over
two consecutive time slots. By performing some algebraic
manipulations, for time slots t� 1, t 2 T , we obtain

(�c,d/�c,d)

nd(t)
+

P
c2Cd

�c,d�c,d(t� 1)

nd(t� 1)
 1, c 2 Cd, d 2 D. (2)

Inequality (2) implies that if the number of servers in time slot
t� 1 is small, then the number of workloads with incomplete
jobs increases. Hence, the number of servers in time slot
t should be sufficiently large to meet the maximum delay
constraint at the beginning of time slot t.

We use the steady state condition to approximate the waiting
time of an incoming workload of service class c at the end of
time slot t. Thus, we need to satisfy 1

µc,d(t)��c,d(t)
 �c,d.

By performing some algebraic manipulations, we can rewrite
the delay requirement as
�c,d

�c,d
+

X

c2Cd

�c,d�c,d(t)  nd(t), c 2 Cd, d 2 D, t 2 T . (3)

In data center d, the number of operating servers is upper
bounded by nmax

d . That is

nd(t)  nmax
d , d 2 D, t 2 T . (4)

Let Eidle
d and Epeak

d denote the average idle energy consump-
tion and the peak energy consumption per time slot of a server
in data center d, respectively. The average energy demand of
data center d 2 D in time slot t 2 T can be obtained by

ed(t) = ⌘d(t)nd(t)
⇣
Eidle

d + (Epeak
d � Eidle

d

�
⇢d(t)

⌘
, (5)

where ⌘d(t) is the power usage effectiveness (PUE) of data
center d in time slot t. The typical value of ⌘d(t) for a data
center is between 1.5 and 2 [15].

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

Let ad = (nd(t), t 2 T ) denote the scheduling decision
vector of data center d. Based on the pricing scheme in (1),
the contract payment of data center d to utility company u =
m(d) depends on the matching m and the joint decision vector
a = (ad, d 2 D) of all data centers. Hence, we have

cd(a,m) =
P

t2T ed(t) pr
u(eu(t),m). (6)

The decision making of data centers are interdependent. We
capture the interactions among the data centers as a many-to-
one matching game, which is defined as follows [11]:
Game 1 Data Center Many-to-One Matching Game:

• Players: The set of all data centers D.
• Strategies: For data center d, the utility company choice

m(d) 2 Ud and scheduling decision ad satisfy constraints
(2)�(5). We denote the strategy of data center d by
the tuple sd = (ad,m(d)). Let Sd denote the feasible
strategy space for data center d defined by (2)�(5) and
constraint m(d) 2 Ud. Let s = (sd, d 2 D) denote the
joint strategy profile of data centers. Let s�d denote the
strategy profile of all data centers except data center d.

• Costs: Data center d incurs a cost cd(sd, s�d) as in (6),
which is a function of strategy profile sd of data center
d and the strategy s�d of other data centers.

Notice that the cost of a data center d depends on the
demand schedules of other data centers that are matched to
the same utility company as d. Hence, our game is a matching
game with externalities [10], [11]. The outcome of the game
is a matching m and the joint scheduling decision profile a of
the data centers. The outcome is stable when no data center
will incur a lower cost from changing either its matched utility
company or its action profile unilaterally [11].



Definition 2: A stable outcome of the matching game is the
feasible strategy profile s? = (s?d, d 2 D) such that for d 2 D

cd(s
?
d, s

?
�d)  cd(s, s

?
�d), s 2 Sd. (7)

A data center’s best response strategy is the choice that
minimizes its own cost, assuming that the strategies of other
data centers are fixed. That is

sbest
d (s�d) 2 arg min

sd2Sd

cd(sd, s�d), d 2 D. (8)

A stable outcome is a fixed point of the best responses of
all data centers. That is, sbest

d (s?�d) = s?d for all d 2 D.
Problem (8) for data center d involves choosing a utility

company, and it is a nonconvex optimization problem with dis-
crete variables. However, under the given matching m, the ob-
jective function (6) and constraints (2)�(5) can be expressed as
posynomials. Hence, problem (8) is a geometric program [16],
which can be transformed into a convex optimization problem
with variables ad. There are two steps involved in solving
problem (8) for data center d under a given strategy profile
s�d: (a) solving a convex optimization problem for a fixed
matching m, and (b) comparing the objective value for all
utility company choices for data center d.

In general, a stable outcome may not exist in a matching
game with externalities [10]. We prove the existence of a
stable outcome for Game 1 by constructing an exact potential
function [17]. Such a function is defined as follows:
Definition 3: A function P (s) is an exact potential for Game 1,
if for any feasible strategy profiles s = (sd, s�d) and es =
(esd, s�d), we have

cd(sd, s�d)� cd(esd, s�d) = P (sd, s�d)� P (esd, s�d). (9)

A potential function P (s) tracks the changes in the data cen-
ter’s cost when its strategy changes. In the following theorem,
we characterize an exact potential function for Game 1. There
is no generic method of constructing a potential function, and
it requires exploring the structure of the problem.
Theorem 1 Game 1 admits an exact potential function

P (s) =
P

u2U
P

t2T

⇣P
d2m(u)

⇣�
p(t)+u(t)eother

u (t)
�
ed(t)

+ u(t) e
2
d(t)

⌘
+ u(t)

P
d<d02m(u) ed(t) ed0(t)

⌘
. (10)

The proof can be found in Appendix A. Under a given
matching m, the potential function (10) is a convex function
of a. Let am denote the global minimum of P (s) under a
given matching m. Let M denote the set of tuples (am,m)
for all matchings m. In Theorem 2, we show that the stable
outcomes of the matching game are in set M.
Theorem 2 Game 1 has at least one stable outcome. All stable
outcomes are in set M.
The proof can be found in Appendix B. One can use the
existing algorithms based on the best response update to
determine a stable outcome [18]. These algorithms, however,
often suffer from a low convergence rate, as only one single
data center updates its strategy per iteration. We propose
Algorithm 1 that can be executed by the data centers and utility

Algorithm 1 The Data Center Matching Game Algorithm.
1: Set i := 1 and ⇠ := 10�3.
2: Randomly assign each data center d2D to a utility company

m1(d) 2 Ud, and initialize action profile a1
d.

3: Send parameters u(t), t 2 T , to the data centers in set Du.
4: Repeat

5: Each data center d sends eid(t), t 2 T to utility company mi(d).
6: Each utility company u updates retail prices pr,i

u (eiu(t),m
i) for

t 2 T using (1) and sends to the data centers in set Du.
7: Each data center d chooses a utility company in set Ud by

computing its best response strategy in (8).
8: Each data center d sends termination request to its current

utility company if it is different from the chosen one.
9: Each utility company u accepts at most one termination request.
10: Each data center d sends connection request to its chosen utility

company if its termination request has been accepted.
11: Each utility company u accepts at most one connection

request randomly.
12: Each data center d with an accepted connection request updates

mi+1(d) with the chosen utility. Otherwise, mi+1(d) :=mi(d).
13: Each data center d, that changes its utility company, updates

its action profile with its best response, i.e., ai+1
d := abest,i

d .
14: Each utility company u communicates the retail price for the

updated matching mi+1 to the data centers in Du.
15: Each data center d, that does not change its utility company,

updates ai+1
d according to (11).

16: i := i+ 1.
17: Until No data center wants to change its strategy, i.e., mi = mi�1

and ||ai � ai�1|| < ⇠.

companies in a distributed and parallel fashion to converge to
a stable outcome. Let i denote the iteration index. The EMS
of the data centers are responsible for the computations and
message exchange. Fig. 2 shows the schematic of matching
update in iteration i for five data centers and three utility
companies in Fig. 1 (b). Our algorithm involves the initiation
phase and matching phase.
• Initiation phase: Lines 1 to 3 describe the initialization for
the data centers and utility companies.
• Matching phase: The loop from Lines 4 to 17 describes the
matching phase. It includes the following parts:

a) Information exchange: Lines 5 and 6 describe the
information exchange between the data centers and utility
companies about the energy demands and retail prices. This
step is shown in Fig. 2 (a).

b) Utility company choice: Lines 7 to 11 describe how data
center d chooses a utility company and how utility company
u responses to the requests of the data centers. For example,
Fig. 2 (b) shows that data centers 2, 3, and 4 send termination
request to utility company 2. Data center 5 sends termination
request to utility company 3.

We allow a utility company to accept at most one termi-
nation request and at most one connection request in each
iteration. A utility company accepts the requests at random,
since it is indifferent between data centers. Fig. 2 (b) shows
that utility company 2 accepts the termination request from
data center 2. Utility company 3 accepts the termination
request from data center 5. Fig. 2 (c) shows that data centers
2 and 5 send connection requests to utility companies 1 and 2,
respectively. Fig. 2 (d) shows the updated matching structure.



Fig. 2. Matching update procedure in Algorithm 1. (a) Information exchange
among data centers and utility companies in matching mi; (b) termination
requests from data centers; (c) connection requests from data centers; (d)
updated matching mi+1.

c) Strategy update: Lines 12 to 15 describe how data center
d updates its strategy sid = (ai

d, m
i(d)). If data center d

changes its matching, then it updates its scheduling decision
according to its best response. By receiving the updated price
for the new matching, each data center d that has not changed
its utility company will update its decision vector as follows.

ai+1
d =

⇥
ai
d � �i

drai
d
cd

�
ai
d,a

i
�d,m

i+1
� ⇤

}
, (11)

where �i
d > 0 is a diminishing step size with

P1
i=0 �

i
d =

1 and
P1

i=0(�
i
d)

2 < 1, and [·]} is the projection onto the
feasible space defined by (2)�(5). In Algorithm 1, data centers
use their best response strategies and update equation (11) for
their utility company choice and workload scheduling. Each
utility company accepts at most one termination request and
at most one connection request in each iteration. We have
Theorem 3 Algorithms 1 globally converges to a stable
outcome of the data center matching game.
The proof can be found in Appendix C.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the stable
outcome of the matching game. We set the contract period
to be one day. We divide a day into T = 96 time slots,
where each time slot is 15 minutes. We consider the electricity
market with 10 utility companies serving 50 data centers, and
each data center can choose a utility company from a random
subset of seven utility companies. We use the wholesale
market price on Oct. 10, 2016 of the Ontario’s wholesale
market [19]. The high price period is from 12 pm to 6 pm.
Parameters u(t) for utility companies u = 1, 2, . . . , 10 are set
to 0.224, 0.208, . . . , 0.08 $/(MWh)2 for t 2 T , respectively.

To simulate the arrival rate of the workloads in a data center,
we use the dataset from [20]. Each data center offers five
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Fig. 3. (a) Total number of servers; (b) total energy demand of data center 1
over one day with and without demand response; (c) contract payment of data
centers 1 to 10 with and without demand response.

service classes, and the workloads requesting service class c =
1, . . . , 5 can be delayed by at most �c,d = 0.05, 2, 12, 15, 20
time slots, respectively. For service classes c = 1, . . . , 5, we
set �c,d to 0.5, 10, 30, 50, 100 time slots, respectively. We
consider nmax

d = 20,000 homogeneous servers with power
ratings Eidle

d = 150W and Epeak
d = 300W per time slot in

each data center d. Parameters PUEd(t), t 2 T are chosen at
random from interval [1.5, 2] for each data center. The step
size in iteration i is set to be �i

d = 1/(10 + 0.03⇥ i).
We discuss how Algorithm 1 enables a data center to man-

age its energy demand. For the sake of comparison, we con-
sider the scenario without demand response, where each data
center randomly chooses a utility company and determines
the number of servers based on constraints (2)�(4) without
considering the price values. This is a nontrivial scenario, as
a data center can delay the execution of a workload. Let us
consider data center 1 as an example. Fig. 3 (a) shows that
with demand response, the number of operating servers in data
center 1 decreases during the peak hours, e.g., it is reduced
from 17,000 to 14,000 around 4 pm. Fig. 3 (b) shows that the
energy demand of data center 1 is reduced by 11.5% (from 7
MWh to 5.5 MWh during peak hours). Fig. 3 (c) shows that
the contract payment of data centers is reduced by 15.4% on
average as a result of server scheduling.

We discuss how Algorithm 1 affects the PAR of the ag-
gregate demand and the revenue of the utility companies. We
compare the PAR of the utility companies in the scenarios
with and without data centers demand response. Fig. 4 (a)
shows that, with data centers demand response, the PAR of
the utility companies is reduced by 7.2% on average. A lower
PAR improves the performance of the utility companies during
peak hours. The revenue of utility companies depends on the
matching structure. For the sake of comparison, we consider a
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scenario where data centers randomly enter contracts with util-
ity companies. In the stable outcome obtained from Algorithm
1, the number of data centers connected to utility companies
1 to 10 are 2, 2, 3, 4, 4, 4, 6, 6, 8, and 11, respectively. A
utility company with a lower u(t) can attract more data
centers as customers. When compared to the scenario without
utility company choice, Fig. 4 (b) shows that the revenue of
the utility companies with a higher u(t) decreases and the
revenue of the utility companies with a lower u(t) increases
(up to 82%). Thus, the results of Algorithm 1 is consistent with
the utility companies’ competition in deregulated markets.

Finally, we evaluate the convergence of Algorithm 1. Fig.
5 depicts the convergence of the potential function in one of
our simulations with a random initial condition. The potential
function decreases in each iteration and converges to a stable
outcome in 30 iterations. The running time until convergence
is 47 seconds. Regarding the computational complexity, in
Line 7 of Algorithm 1, data center d solves |Ud| optimization
problems to determine its best response strategy. Hence, the
per-iteration complexity of Algorithm 1 for data center d is
independent of the number of data centers and depends only
on the number of utility companies in set Ud, i.e., O(|Ud|).

V. CONCLUSION

In this paper, we studied the data centers’ problem of
choosing utility companies and scheduling workload in a
deregulated electricity market. We modeled the interaction
among data centers as a many-to-one matching game with ex-
ternalities. We constructed an exact potential function, whose
local minima correspond to the stable outcomes of the game.
We developed an algorithm to determine a stable outcome.
Simulation results showed that the data centers can decrease
their cost by 15.4% with the proposed algorithm, as they

can purchase electricity from their preferred utility companies
and reduce their demands during peak hours. Meanwhile, the
utility companies can achieve 7.2% reduction in the PAR.
Those utility companies that offer lower tariffs can increase
their revenue by up to 82%. For future work, we plan to
extend the model by considering the competition among utility
companies through price optimizations.
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APPENDIX

A. Proof of Theorem 1

To prove Theorem 1, we substitute (10) into the right-hand
side of (9) and substitute (6) into the left-hand side of (9) for
strategies s and es, and show that the results are the same. Data
center d changes its utility company choice from u to eu, and
its decision profile from ad to ead. Thus, the energy demand
of data center d is changed from ed(t) to eed(t) in time slot
t 2 T . By substituting (10) into the right-hand side of (9) for
s = (sd, s�d) and es = (esd, s�d), we obtain

P (sd, s�d)� P (esd, s�d) =
P

t2T

⇣�
p(t) + u(t) eother

u (t)
�
ed(t) + u(t) e2d(t)

+ u(t)
P

d02m(u)\d ed(t) ed0(t)

�
�
p(t) + eu(t) e

other
eu (t)

�
eed(t)� eu(t) ee2d(t)

� eu(t)
P

d02em(eu)\d eed(t) ed0(t)
⌘
. (12)

In (12), the terms related to the data centers other than data
center d cancel each other. Substituting (6) into the left-hand
side of (9) for s = (sd, s�d) and es = (esd, s�d), we have

cd(sd, s�d)� cd(esd, s�d) =P
t2T

�
ed(t) pr

u(eu(t),m)� eed(t) pr
eu(eeu(t), em)

�
. (13)

By substituting the retail price (1) into (13), the cost change
for data center d will be equal to the potential function change
in (12). This completes the proof. ⌅

B. Proof of Theorem 2

We first show that the global minimum of the potential
function (10) is a stable outcome. Let s? = (am? ,m?) be the
global minimum of P (s). Thus, if data center d changes its
action profile to ad or its utility company to m(d) unilaterally,
then the value of the potential function increases. The change
in the exact potential function is equal to the change in the cost
of the deviating data center d. Hence, the cost of data center d
increases as well. Consequently, no unilateral deviation from



s? can reduce the cost of any data center, and hence s? is a
stable outcome of Game 1. As the exact potential function (10)
has at least one global minimum, we know that the matching
game has at least one stable outcome.

Next we show that an arbitrary stable outcome (a,m) is in
set M. We prove this by contradiction. Suppose that a stable
outcome (a,m) is not in set M. Hence, we have a 6= am. By
definition, am is the global minimum of the potential function
under matching m. We also know that P (a,m) is a convex
function of a. Thus, a unilateral change of ad for any data
center d in the opposite direction of the gradient rad P (a,m)
will reduce the potential function, and thus the cost of that data
center. It contradicts the supposition that (a,m) is a stable
outcome. Hence, (a,m) is in set M. ⌅

C. Proof of Theorem 3

Since the potential function (10) is lower-bounded by zero,
it is sufficient to show that the potential function decreases
in each iteration of Algorithm 1. Line 17 of Algorithm 1
guarantees that if the algorithm converges, the result is a stable
outcome. Next we provide the sketch of the proof.

Step a) Consider iteration i of Algorithm 1. We prove by
induction that the potential function decreases when k data
centers update their utility company choices simultaneously,
where k � 1 is an arbitrary number. The base case (i.e.,
k = 1) corresponds to the unilateral change in the strategy
of one data center. From (9), the potential function decreases,
when the cost of a data center decreases. In the induction step,
we consider k = d and suppose that the potential function
decreases when d data centers change their utility company
choices. We prove that the potential function decreases when
k = d+ 1 data centers change their utility company choices.
We divide the set of d+1 data centers into two sets with d data
centers and one data center, respectively. We use the induction
supposition for k = d to show that when d data centers change
their utility company choices, the potential function decreases.

Now, assume that data center d+ 1 decides to leave utility
company mi(d+1) in iteration i to connect to utility company
mi+1(d + 1). In Algorithm 1, a utility company accepts at
most one termination request from data centers per iteration.
Thus, data center d+1 is the only one leaving utility company
mi(d + 1). Utility company mi(d + 1) may accept a new
connection request from other data centers, which increases
its total demand. Thus, the payment of data center d + 1
to utility company mi(d + 1) will increase after updating
the matching of other data centers. On the other hand, in
Algorithm 1, a utility company accepts at most one connection
request from data centers per iteration. Hence, data center d+1
is the only one that connects to utility company mi+1(d+1).
Utility company mi+1(d+1) may accept a termination request
from other data centers, which further decreases its total
demand. Thus, the payment of data center d to utility company
mi+1(d) will further decrease after updating the matching
of other data centers. Consequently, the cost of data center
d+ 1 decreases even other d data centers change their utility
company choices. The exact potential function decreases when

the cost of data center d + 1 decreases. By the principle of
induction, the potential function decreases, when multiple data
centers change their utility company choices.

Step b) Under a given matching mi+1, (9) implies that
rai

d
cd

�
ai
d,a

i
�d,m

i+1
�
= rai

d
P
�
ai
d,a

i
�d,m

i+1
�
. If data

centers use (11) for the update, the potential function varies in
the opposite direction of its gradient. Under a given matching,
P (·) is a convex function of ai and has a Lipschitz continuous
derivative. Thus, for sufficiently small step sizes, the opposite
gradient direction is a decreasing direction. ⌅

REFERENCES

[1] “2016 top markets report smart grid,” Int.’l Trade Administration, U.S.
Department of Commerce,” Annual Report, Apr. 2016.

[2] Alberta Energy. [Online]. Available:
http://www.energy.alberta.ca/Electricity/679.asp.

[3] Galvin Electricity Initiative. [Online]. Available:
http://www.galvinpower.org/power-consumers/act/real-time-illinois.

[4] R. Basmadjian, J. F. Botero, G. Giuliani, X. Hesselbach, S. Klingert, and
H. D. Meer, “Making data centres fit for demand response: Introducing
GreenSDA and GreenSLA contracts,” accepted for publication in IEEE
Trans. on Smart Grid, 2017.

[5] Z. Liu, A. Wierman, Y. Chen, and B. Razon, “Data center demand
response: Avoiding the coincident peak via workload shifting and local
generation,” in Proc. of IEEE ACM Int.’l Conf. on Measurement and
Modeling of Computer Systems, New York, NY, Jun. 2013.

[6] Y. Guo and M. Pan, “Coordinated energy management for colocation
data centers in smart grids,” in Proc. of IEEE SmartGridComm, Miami,
FL, Nov. 2015.

[7] T. Chen, Y. Zhang, X. Wang, and G. B. Giannakis, “Robust workload
and energy management for sustainable data centers,” IEEE J. Sel. Areas
in Commu., vol. 34, no. 3, pp. 651–664, Mar. 2016.

[8] H. Wang, J. Huang, X. Lin, and H. Mohsenian-Rad, “Proactive demand
response for data centers: A win-win solution,” IEEE Trans. on Smart
Grid, vol. 7, no. 3, pp. 1584–1596, Dec. 2015.

[9] N. Tran, D. Tran, S. Ren, Z. Han, E. Huh, and C. Hong, “How
geo-distributed data centers do demand response: A game-theoretic
approach,” IEEE Trans. on Smart Grid, vol. 7, no. 2, pp. 937–947,
Mar. 2016.

[10] K. Bando, R. Kawasaki, and S. Muto, “Two-sided matching with
externalities: A survey,” Journal of the Operations Research Society of
Japan, vol. 59, no. 1, pp. 35–71, Jan. 2016.

[11] A. E. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game-
Theoretic Modeling and Analysis. Cambridge University Press, 1992.

[12] E. Hausman, R. Hornby, and A. Smith, “Bilateral contracting in dereg-
ulated electricity markets,” The American Public Power Association,
Synapse Energy Economics, Tech. Rep., Apr. 2008.

[13] N. Forouzandehmehr, M. Esmalifalak, H. Mohsenian-Rad, and Z. Han,
“Autonomous demand response using stochastic differential games,”
IEEE Trans. on Smart Grid, vol. 6, no. 1, pp. 291–300, Jan. 2015.

[14] K. L. Rider, “A simple approximation to the average queue size in the
time-dependent M/M/1 queue,” Journal of the ACM, vol. 23, no. 2, pp.
631–367, 1976.

[15] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United States data
center energy usage report,” Ernest Orlando Lawrence Berkeley National
Laboratory, CA, Tech. Rep. DE-AC02-05CH1131, 2016.

[16] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” Optimization and Engineering, vol. 8, no. 1,
pp. 67–127, Apr. 2007.

[17] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 3124–143, May 1996.

[18] S. Durand and B. Gaujal, Complexity and Optimality of the Best
Response Algorithm in Random Potential Games. Berlin, Heidelberg:
Springer, 2016.

[19] Independent Electricity System Operator (IESO). [Online]. Available:
http://www.ieso.ca.

[20] World Cup 98 web hits. [Online]. Available:
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.


