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Abstract—In smart grid, demand response is a viable approach

to motivate users towards shifting the demand during the peak

load periods. Each user can also benefit by reducing its total cost.

In most of the existing studies, the demand response program

is modeled as a one-shot game among myopic users, who aim

to minimize their cost in one period of time. In this paper,

we show that the Nash equilibrium (NE) in the one-shot game

can be inefficient in reducing the peak load demand and the

users’ cost. We address the inefficiency of the NE by modeling

the demand response program as a repeated game. A grim-

trigger strategy is proposed to determine the subgame perfect

equilibrium. To address the issue of fairness, we partition the

set of users into groups. In each time period, only one group

of users are required to participate in the demand response

program. Simulation results show that the proposed demand

response repeated game can benefit both the users, by reducing

their long-term cost, and the utility company, by reducing the

peak-to-average ratio in the aggregate load demand.

I. INTRODUCTION

Demand response programs aim to reduce the peak load by
encouraging the users to either shift or reduce their demand
voluntarily. In smart grid, each household is equipped with an
energy management system (EMS) responsible for scheduling
the energy usage of the users. The success of the demand
response program depends in part on the users’ active role in
managing their energy usage.

Game theory is a viable approach to model the interaction
among the participating users in the demand response program.
In most of the existing studies (e.g., [1]–[4]), the demand
response program is modeled as a one-shot game among
myopic users. That is, the game models the interaction among
the users in one period of time (e.g., in one day) and the
users aim to minimize their cost in that period. In [1], the
one-shot demand response game is used to jointly minimize
the aggregate cost of the system and the peak-to-average ratio
(PAR) in the aggregate load demand. However, the users’
dissatisfaction from load shifting is not studied in this work.
In [2], the dissatisfaction of the users is modeled by using a
discomfort cost function for each user. However, the efficiency
and fairness of the Nash equilibrium (NE) are not studied. In
[3], a billing mechanism is proposed to minimize the aggregate
cost of the system. The proposed billing mechanism is shown
to be fair in charging the users.

In the aforementioned studies, the inefficiency of the NE
in one-shot demand response game is not addressed. That
is, there may exist an alternative strategy profile which has

a lower cost for the users than in the NE. For example, in
[4], it is shown that the cost of the users can be lower in
the competitive market equilibrium as compared with the one-
shot NE. One way to address the inefficiency of the NE is to
play the game repeatedly [5]–[7]. In [5], the demand response
program is formulated as a repeated game to minimize the
aggregate cost of all users. In [6], the demand response
program is modeled as a repeated game with critical peak
pricing (CPP) scheme to minimize the aggregate cost of all
users. In [7], the users’ interaction in the demand response
program is modeled as a repeated game with incomplete
information. It is shown that there exists a unique Bayesian NE
that minimizes the aggregate cost of all users. In the repeated
games, the players are foresighted. That is, they have long-
term plan to reduce their cost [8]. One advantage is that the
set of Nash equilibria can include cooperative strategies based
on predetermined agreement. Thus, it can lead to a lower cost
for all users in long-term. The agreement among the users
is a set of rules to modify the users’ load pattern. A user
does not follow the agreement can be punished according to
some predetermined rules [9]. Another advantage is that, the
repeated game model can capture the long-term interaction
among the users as the utility companies typically design the
demand response program for a long period of time, e.g.,
several months to several years.

In this paper, we design a repeated demand response game
to motivate cooperation among the users. The contributions of
this paper are as follows:

• We first show that the NE for a one-shot demand response
game can be inefficient with real-time pricing (RTP)
scheme. We formulate a repeated demand response game
to address the inefficiency of the NE.

• We design a grim-trigger strategy to determine the sub-
game perfect equilibrium (SPE). To maintain fairness
between users, the users are divided into groups in the
proposed strategy. In each time period, only one group of
users participate in the demand response program. Users
in other groups consume electricity as they desire.

• Simulations are performed on a smart grid with 2100
users. When compared with the one-shot game, results
show that the repeated demand response game can reduce
the user’s average cost up to 20% and the PAR up to 30%.

Our method can partly be compared with [6]. The problem



addressed in this paper is different from [6] in two respects.
First, the repeated demand response game in [6] is formulated
for CPP scheme. The proposed approach cannot be used in
an electricity market with RTP scheme. On the other hand,
we formulate the demand response game with RTP scheme.
Second, the demand response program in [6] is designed from
the users’ perspective to minimize the aggregate cost of all
users. In contrast, our proposed demand response program is
from the utility company’s perspective to achieve a desired
value for the PAR in the aggregate load demand.

The rest of this paper is organized as follows. In Section II,
we determine the NE for the one-shot and repeated demand
response games. In Section III, we propose a grim-trigger
strategy to determine the SPE. In Section IV, we evaluate the
performance of the proposed repeated demand response game
through simulations. Conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider a utility company serving N residential users. Let
N = {1, . . . , N} denote the set of users. Each household
is equipped with an EMS connected to the utility company
via a two-way communication network. A day is divided into
H time slots with equal length. Let H = {1, . . . , H} denote
the set of time slots. For user i 2 N , we assume that the
load demand at time slot h 2 H consists of uncontrollable
load (i.e., base load) and controllable load demand. Lighting
and TV are examples of uncontrollable loads. The washing
machine and dish washer are examples of controllable loads.
Let bi,h and xi,h denote the uncontrollable load and control-
lable load for user i at time slot h, respectively. Let vector
xi = (xi,1, . . . , xi,H) denote the controllable load profile for
user i. Let vector x = (x1, . . . , xN ) denote the controllable
load profile for all users. Let Li =

P
h2H (xi,h + bi,h) denote

the aggregate load demand for user i in one day. The aggregate
load at time h is denoted by lh =

P
i2N (xi,h + bi,h). Let

ph(lh) denote the electricity price at time slot h. Similar to [4],
the price function ph(lh) at time h is modeled as an increasing
and convex function of the aggregate load lh. In the following
subsection, the one-shot demand response game is modeled.

A. One-shot Demand Response Game

A demand response game can be formulated to determine
the optimal daily controllable load profile for price anticipating
users. The price function ph(lh) at time slot h is informed
by the utility company to the users through a communication
infrastructure. The users are assumed to be myopic. They aim
to minimize their short-term (typically, one day) cost. The
interaction among the myopic users can be modeled as a one-
shot game denoted by tuple G1 (N , {⌦i}i2N , {ci}i2N ). The
users are the players. ⌦i is the strategy space for user i. It
indicates the possible vectors that the controllable load profile
xi can take. Hence,

⌦i =

(
xi

����
X

h2H
(xi,h + bi,h)= Li, xi,h � 0, 8h 2 H

)
, (1)

where the aggregate load Li and base load bi,h, h 2 H for
user i are known a priori. The users only shift their load
demand from one time slot to some other time slots. Thus, the
daily aggregate load Li for user i is unchanged. Let x�i =
(x1, . . . , xi�1, xi+1, . . . , xN ) denote the vector of controllable
load profiles for all users except user i. The function ci in
game G1 is the cost function for user i. The cost for user
i includes the energy payment and the discomfort cost. It is
defined as follows:

ci(xi, x�i) =
X

h2H
ph(lh)(xi,h + bi,h) + di(xi), i 2 N . (2)

In (2), ci is a function of both xi and x�i since the price
ph(lh) at time h is a function of the aggregate load lh. The
function di(xi) is the discomfort cost for user i. It is used as
a metric in monetary unit to express the dissatisfaction of the
user with changing its load profile from the desired pattern to
the scheduled pattern. Let ai,h denote the desired controllable
load demand for user i at time slot h, which is equal to the
controllable load demand before participating in the demand
response program. Thus, ai,h is known a priori by user i.
Similar to [6], the discomfort cost function is modeled as a
weighted Euclidean distance between the scheduled and the
desired controllable load profiles. That is

di(xi) =
X

h2H
!i,h |xi,h � ai,h| , i 2 N , (3)

where !i,h, i 2 N , h 2 H are the weighting coefficients
measured in cents/kW to reflect the user’s discomfort caused
by changing the demand from its desired amount. A larger
!i,h indicates that user i has a lower preference to change the
load level at time slot h.

Let x

NE = (xNE
1 , . . . , x

NE
N ) denote the controllable load pro-

file for all users in the NE. The vector x

NE
i = (xNE

i,1, . . . , x
NE
i,H)

for user i 2 N is the solution of the following optimization
problem when the load profiles of other users’ are fixed.

minimize
xi

X

h2H

⇣
ph(lh)(xi,h + bi,h) + !i,h |xi,h � ai,h|

⌘

subject to xi 2 ⌦i. (4)

The price function ph(.) is increasing and convex by assump-
tion. Thus, problem (4) is a convex optimization problem.
An iterative algorithm can be used to determine the NE for
the one-shot game [4], [10]. Let lNE

h =
P

i2N
⇣
xNE
i,h + bi,h

⌘

denote the aggregate load demand at time slot h in the NE.
Let h and h denote the time slots, in which lNE

h becomes
maximum and minimum, respectively. That is, h 2 argmax lNE

h
h2H

and h 2 argmin lNE
h

h2H
. In Theorem 1, we show that there exists

a load profile with lower cost for all users as compared with
the cost in the NE.

Theorem 1: If all users shift a sufficiently small amount of
controllable load from time slot h to time slot h, then all the
users will have a lower daily cost than in the NE.



Proof : Let ✏ denote a sufficiently small positive number. Let
�ci(xi, x�i) denote the change in the cost of user i, when all
users shift ✏ amount of load from time slot h to time slot h.
We obtain

�ci(xi, x�i) =

ph
�
lNE
h

�N✏
��
xi,h � ✏+ bi,h

�� ph
�
lNE
h

� �
xi,h + bi,h

�

+ !i,h

⇣��xi,h � ✏� ai,h
��� ��xi,h � ai,h

��
⌘

+ ph
�
lNE
h +N✏

��
xi,h + ✏+ bi,h

�� ph
�
lNE
h

� �
xi,h + bi,h

�

+ !i,h

⇣��xi,h + ✏� ai,h
�����xi,h � ai,h

��
⌘
. (5)

At time slot h, we have xi,h  ai,h. At time slot h, we have
xi,h � ai,h. Thus, we can determine the sign of the absolute
values in (5). By rearranging equation (5), we have

�ci(xi, x�i) =
⇣
ph

�
lNE
h

�N✏
�� ph

�
lNE
h

�⌘�
xi,h + bi,h

�

� ✏ ph
�
lNE
h

�N✏
�
+ ✏ !i,h

+
⇣
ph

�
lNE
h +N✏

�� ph
�
lNE
h

�⌘�
xi,h + bi,h

�

� ✏ ph
�
lNE
h +N✏

�
+ ✏ !i,h. (6)

By taking the derivative of �ci(xi, x�i) with respect to ✏, we
obtain
d�ci(xi, x�i)

d ✏
=�N

dph (lh)

d lh

���
lh=lNE

h

�
xi,h + bi,h

�� ph
�
lNE
h

�

+N
dph (lh)

d lh

���
lh=lNE

h

�
xi,h + bi,h

�
+ ph

�
lNE
h

�

+ !i,h + !i,h. (7)

In the NE, no user has an incentive to unilaterally deviate
from its strategy. Hence, the change in the cost of user i is zero
when it shifts a sufficiently small amount of load from time
h to h. Similar to the aforementioned approach, we obtain

� d ph
�
lh
�

d lh

���
lh=lNE

h

�
xi,h + bi,h

�� ph
�
lNE
h

�
+ !i,h

+
d ph

�
lh
�

d lh

���
lh=lNE

h

�
xi,h + bi,h

�
+ ph

�
lNE
h

�
+ !i,h = 0. (8)

Substituting (8) into (7), we obtain

d�ci(xi, x�i)

d ✏
=(N � 1)

⇣
� d ph

�
lh
�

d lh

���
lh=lNE

h

�
xi,h + bi,h

�

+
d ph

�
lh
�

d lh

���
lh=lNE

h

�
xi,h + bi,h

�⌘
. (9)

Since the price function ph(.) is increasing and con-
vex, its derivative is increasing. For lNE

h
� lNE

h , we have
d ph(lh)

d lh

���
lh=lNE

h

� d ph(lh)
d lh

���
lh=lNE

h

. Besides, the peak load is

greater than the off-peak load. Thus,
�
xi,h + bi,h

� � �
xi,h +

bi,h
�
. Hence, d�ci(xi,x�i)

d ✏ is non-positive for N � 2. More-
over, �ci(xi, x�i) approaches zero, when ✏ approaches zero.
Thus, �ci(xi, x�i) is non-positive for N � 2 and sufficiently
small ✏. The proof is completed. ⌅

Theorem 1 states that if users cooperate with each other,
then they can modify their load pattern to incur a lower cost
than in the one-shot NE. If we model the demand response as a
repeated game, then we can determine the corresponding Nash
equilibria with cooperative strategy. In the next subsection, we
present the repeated demand response game.

B. Repeated Demand Response Game

In the repeated demand response game, the users are
foresighted and aim to minimize their cost in long-term. To
determine the cost, we first introduce the stage game, the game
history and the strategy of a user. Let T = {1, 2, . . . , T}
denote the set of T time periods that the repeated game is being
played. A time period can represent one day. The stage game is
the game played at each time period [8]. In our model, the one-
shot demand response game is the stage game. The superscript
t in an arbitrary parameter yt indicates the value of parameter
y in time period t. Let ⌦t

i denote the strategy space for user
i in time period t 2 T . For t = 1, ⌦t

i corresponds to the
strategy space in the one-shot demand response game defined
in (1). ⌦t

i for time period t > 1 can be defined similarly. Let
⌦t�1, t > 1, denote all possible t� 1 histories of the strategy
profiles. Thus, we can express ⌦t�1 as

⌦t�1 =
Y

i2N
⌦1

i ⇥ · · ·⇥
Y

i2N
⌦t�1

i . (10)

Let the sequence Xi ⌘ {x

t
i}Tt=1 denote the strategy profile

for user i in the repeated game with T time periods, where
x

t
i : ⌦

t�1 ! ⌦t
i is the controllable load profile in time period

t. We assume that the game has perfect information. That is,
the entire past history is known to all users. The repeated game
with imperfect information is beyond the scope of this paper.
The interested reader is referred to [11] for more details.

In general, the users have no common knowledge on the
ending time of the game. This game is called an infinitely
repeated game. Each user considers a probability q 2 [0, 1] for
the game to be continued in the next period. This probability
can be reflected in a discount factor �. Besides, the users may
value a dollar received today more than a dollar received later.
Let s denote the interest rate. The present value of the money
is inversely proportional to the interest rate. That is, if s is
high, then the value of the money will depreciate quickly [12].
Thus, � can be expressed as � = q

1+s .

The cost function in time period t is denoted by cti
�
x

t
i, x

t
�i

�
.

For time period t = 1, cti(.) is defined in (2). Let vector X�i =
(X1, . . . ,Xi�1,Xi+1, . . . ,XN ) denote the strategy profile for
all users except user i. The discounted cost for user i is denoted
by cdisc

i (Xi,X�i). It is defined as

cdisc
i (Xi,X�i) =

X

t2T
�t�1cti

�
x

t
i, x

t
�i

�
, i 2 N . (11)

After T periods, we define an average discounted cost for
user i as

cdisc
i (Xi,X�i) =

1� �

1� �T
cdisc
i (Xi,X�i). (12)



That is, if user i incurs cost cdisc
i (Xi,X�i) at all time periods

1  t  T , then its discounted cost will be equal to
cdisc
i (Xi,X�i). For an infinitely repeated game, T approaches
1. Thus, cdisc

i (Xi,X�i) = (1 � �)cdisc
i (Xi,X�i). Let X

NE =
(XNE

1 , . . . ,X

NE
N ) denote the strategy profile for all users in the

NE. In the infinitely repeated game, user i aims to determine
the strategy profile X

NE
i that minimizes its discounted cost

(11). Since cdisc
i (Xi,X�i) = (1 � �)cdisc

i (Xi,X�i) and �
is given, minimizing the discounted cost is equivalent to
minimizing the average discounted cost. The optimal strategy
profile X

NE
i , i 2 N is the solution of the following optimiza-

tion problem when the strategy profiles of other users are fixed.

minimize
Xi

cdisc
i (Xi,X�i)

subject to x

t
i 2 ⌦t

i, t 2 T . (13)

We use the SPE solution concept in the proposed repeated
game. A subgame is a subset of the game that contains
all possible actions starting from time period t 2 T . A
strategy profile is an SPE if and only if it is an NE in every
subgame [9]. For an infinitely repeated game, we can construct
a particular strategy, namely the grim-trigger strategy, that can
lead to the SPE [9]. In the grim-trigger strategy, the players
start by cooperating and continue to cooperate as long as
everyone has cooperated in the past. If one player does not
cooperate, then the others will punish this player either forever
or for a specific period of time. In the next section, we propose
a grim-trigger strategy for the repeated demand response game.

III. EQUILIBRIUM STRATEGY DESIGN

We propose a demand response program based on the grim-
trigger strategy that can lead to the SPE. In the proposed grim-
trigger strategy, the users modify their controllable load pattern
to reduce the peak load demand in a cooperative manner. To
address the issue of fairness between users, the utility company
divides the users into groups. One group of users participate
in the demand response program in each time period and
cooperate to reduce the peak load. Moreover, each group of
users participate in the program periodically, e.g., once a week
or every other day. The non-participating groups of users can
consume electricity according to their desired pattern.

The proposed grim-trigger strategy is summarized in Algo-
rithm 1. In Line 1, the time period t is set to 1. The utility
company selects an integer number M > 1 and partitions
the set of the users into M non-overlapping and non-empty
groups denoted by S1, . . . , SM . To maintain fairness between
users, the utility company can divide the users to M equal-
sized groups randomly. In Line 2, the utility company informs
each EMS about the user’s group number and the number of
users’ groups M . Users in group Sr, 1  r  M , participate
in the demand response program periodically in time periods
t = kM + r, where k is a non-negative integer. For example,
for M = 7, the users are divided into seven groups. If t = 1 is
Monday, then the users in group S2 participate in the demand
response program every Tuesday. The loop in Lines 3 to 7
describes the action of the users in each time period. In Line

Algorithm 1 Executed by EMS i 2 N .
1: Initialization: set t := 1. The utility company selects M and divides the

users to M non-overlapping and non-empty subsets S1, . . . , SM .
2: Receive the the number M and the group number from the utility company.
3: Repeat

4: Set !t
i,h := 0 for all h 2 H if user i is participating. Otherwise,

set !t
i,h := 106 for all h 2 H.

5: Use an iterative algorithm to determine the NE strategy for updated !t
i,h.

6: t := t+ 1 at the end of time period t.
7: Until at least one user deviates from the agreement in Lines 4 and 5.
8: Play the one-shot demand response game at remaining time periods.

4, the participating user i sets !t
i,h = 0 for all time slots

h 2 H. Otherwise, it sets !t
i,h to a sufficiently large number

(e.g., !t
i,h = 106) for all time slots h 2 H. In Line 5, all

users play the one-shot demand response game with updated
!t
i,h in time period t. An iterative algorithm similar to one

given in [4, Theorem 7] can be used to determine the load
profile of user i in the one-shot NE in time period t. When
participating user i sets !t

i,h = 0, then the user modifies its
controllable load profile without considering its discomfort
cost. Therefore, the participating user shifts its controllable
load demand from peak time slots to reduce the peak load
demand in a cooperative manner. On the other hand, a non-
participating user consumes electricity according to its desired
pattern to avoid a high discomfort cost. In Line 6, the time
period is updated at the end of time period t.

The EMS of each participating user’s household can collect
data about the controllable load demand of the user at the
beginning of each time period and communicate to the utility
company by using a two-way communication network. Then,
the utility company can communicate the aggregate control-
lable load demand of the participating users to all users. The
participating users cooperate to shift their load from peak time
slots as much as possible. Thus, their aggregate controllable
load pattern can be predicted by all users when no participating
user deviates from the proposed cooperative strategy. In Line 7,
the users can monitor the aggregate controllable load pattern
of the participating users at the end of each time period to
detect any deviation. It is possible that some participating
users deviate out of necessity, e.g., they need to increase
the load for some periods not anticipated before. Hence, the
users tolerate deviation from the cooperative strategy to some
degree. For example, they can consider a threshold level for
the aggregate controllable load in peak time slots. At the end
of each time period, if the aggregate controllable load level is
greater than the threshold value, then deviation is detected. In
Line 8, if a deviation is detected, then user i selects the one-
shot NE strategy. This punishment strategy can motivate the
participating users to cooperate since the cost of the deviating
user is higher in the one-shot game than the cost in the repeated
game.

From the Folk theorem [13], if the discounted factor � is
sufficiently close to 1, then the proposed grim-trigger strategy
leads to the SPE. We denote the threshold value of the
discounting factor by �th. That is, for � � �th, no user has
incentive to deviate unilaterally. In Algorithm 1, the users will



punish the deviating user forever. However, it is also possible
for the users to forgive after passing some periods of time and
return to the proposed cooperative strategy. We will further
demonstrate the effect of forgiveness in the next section.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
repeated demand response game with RTP scheme. Consider
a smart grid with a utility company serving N = 2100
users. A time period represents one day. The day is divided
to H = 24 one-hour time slots. For RTP scheme, we use
the electricity market database [14] for Ontario, Canada, to
approximate the price as a linear function pth(l

t
h) = �t

hl
t
h,

where �t
h = 4 ⇥ 10�4 cents/kW and lth is measured in

kilowatts. Similar to [6], the weighting coefficients !t
i,h for

the users’ discomfort function are randomly selected from
interval [10 cents/kW, 20 cents/kW]. Unless stated otherwise,
the users consider probability q = 0.95 for the stage game to
be continued in the next period. The Canada daily interest rate
s = 0.0029% (1% for one year) is used to calculate � [15].
Thus, � = 0.949.

For the sake of simplicity, we model the load profile of
the users for one day, and we assume that it is repeated
periodically for the other days. The model can be generalized
by considering the load profile for any periodic time horizon
such as one week. To model the load pattern for a user,
we use a load pattern for about 5 million households from
Ontario, Canada power grid database in March 25, 2015 [14].
We compute the average load for each household. Then, the
load demand of a user at each time slot is selected from
a normal distribution with the mean value of the computed
average load for each household and the standard deviation
of 0.3 kW. The amount of controllable load xi,h at time slot
h is chosen randomly between 20% to 40% of its total load
at each time slot [6]. The generation capacity of the utility
company is sufficient to meet the aggregate load demand. The
desired controllable load demand is the load without demand
response. Fig. 1(a) shows the aggregate and the base load
profiles without demand response program.

First, we consider the one-shot demand response game to
model the interaction among the myopic users. All the users
modify their load profiles in a non-cooperative manner. We
have determined the NE using an iterative algorithm proposed
in [4, Theorem 7]. The aggregate load profile in the NE is
shown in Fig. 1(b). In the one-shot NE, the peak load is only
reduced by about 4%. In fact, the myopic users prefer not to
modify their load pattern to avoid a high discomfort cost.

In the second scenario, we consider a repeated demand
response game with the proposed grim-trigger strategy for
M = 2, 5, and 7. Fig. 1(b) shows that, for M = 2, 5,
and 7, the peak load demand is reduced by about 20%, 15%,
and 10%, respectively. Hence, comparing with the one-shot
demand response game, the repeated game approach has better
performance in reducing the peak load demand, although only
1
M of the users participate in each day. In fact, the participating
users cooperate with each other and modify their load pattern
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Fig. 1. (a) The aggregate and base load profiles without demand response.
(b) The aggregate load profile for the one-shot game and repeated demand
response game with number of groups M = 2, 5, and 7.
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to reduce the peak load demand. Fig. 2(a) shows the PAR
in the aggregate load demand for the one-shot game and the
repeated game with M = 2 to M = 7. For the higher values
of M , the number of participating users in each time period is
lower. Thus, the PAR increases gradually when M increases.
The PAR is maximum for the one-shot game since the users
modify their load pattern in a non-cooperative manner. Fig.
2(b) shows �th for M = 2 to 7. When M increases, each user
participates more frequently and incurs a higher discomfort
cost, thus �th increases gradually. When the utility company
selects the number of groups M , it has to consider a trade-
off between the value of the PAR and the value of the �th.
For example, the utility company can select M = 2 when
� = 0.949, since for M = 2, we have �th = 0.88 and � > �th.

Fig. 3 shows the convergence of the average discounted
cost for user 1 in group S1 for the one-shot game and the
repeated demand response game with M = 2, 5, and 7. It can
be observed that in the repeated demand response game, the
user’s average discounted cost converges to a value from 8%
(for M = 7) to 20% (for M = 2) lower than the user’s average
discounted cost in the one-shot game. In fact, in the repeated
demand response game, the participating users ignore their
discomfort cost and shift all their controllable load demands
from the peak hours to the off-peak hours. On the other hand,
in the one-shot demand response game, the users consider a
trade-off between their payment and their discomfort cost.
Therefore, they modify their load pattern as long as their
discomfort cost is not high.

Finally, we show that selecting the NE strategy as a
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Fig. 4. The average discounted cost for user 1 in group S1 in the repeated
demand response game with number of groups M = 2 when user 1 deviates
from the equilibrium strategy.

punishment can motivate the participating users to cooperate
if � � �th. Fig. 4 shows the convergence of the average
discounted cost for user 1 in group S1 for M = 2 with
�th = 0.88 and � = 0.95, 0.88, and 0.8. We assume that
any deviation can be detected by all users. If � � �th and
user 1 deviates in the first day, then it has a lower cost in
that day since its discomfort cost becomes zero. However,
other users can punish user 1 by choosing their one-shot NE
strategy in the following days. The discounted cost of user
1 increases gradually and converges to a value higher than
or equal to the average discounted cost when it cooperates.
Hence, deviation is not profitable for user 1. Similarly, we
can show that deviation for all users is not profitable when
� � �th. Therefore, the proposed grim-trigger strategy is the
SPE. Moreover, other users do not need to punish user 1
forever. The intersection point of the curves for the discounted
cost with and without deviation shows that after one week, the
average discounted cost of the deviating user 1 is equal to the
average discounted cost if user 1 cooperates. Hence, in the
eighth day, other users can forgive and cooperate again since
deviation is not profitable for user 1. Fig. 4 also shows that if
� < �th and user 1 deviates, then its average discounted cost
converges to a lower value than its cost without deviation.
Hence, user 1 can benefit from deviation. Since there exist at

least one user that benefits from deviation, the users are not
in the SPE. In summary, for � < �th, at least one user has
incentive to deviate. For � � �th, the proposed grim-trigger
strategy with or without forgiveness can lead to the SPE.

V. CONCLUSION

In this paper, we addressed the inefficiency of the NE in
the one-shot demand response game by modeling the demand
response program as an infinitely repeated game. A grim-
trigger strategy is proposed to determine the SPE. To maintain
fairness between the users in the proposed strategy, the set of
users is partitioned into groups. In each time period, only one
group of users participate in the program. Besides, the threat
of being punished for deviation motivated users to reduce the
peak load demand in a cooperative manner. Simulation results
showed that the proposed repeated demand response game can
benefit both the users, by reducing their discounted cost, and
the utility company, by reducing the PAR in the aggregate
load. We also showed that the proposed grim-trigger strategy
can lead to the SPE even if other users forgive the deviating
user after passing some periods of time. For future work, we
plan to extend the model by considering the load uncertainty
and time of use for the household’s electrical appliances.
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