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Abstract—A price-based demand response program is a viable
solution for distribution network operators (DNOs) to motivate
electricity consumers toward scheduling their load demand dur-
ing off-peak periods. This paper addresses the problem of load
scheduling in a demand response program, while accounting for
load demand uncertainty and the distribution network opera-
tional constraints. The centralized load control is a nonconvex
optimization problem due to the ac power flow equations. We
use convex relaxation techniques to transform the problem into
a semidefinite program (SDP), which is solved using online convex
optimization techniques to address the load demand uncertainty.
To tackle the issue of computational complexity, we use proximal
Jacobian alternating direction method of multipliers (PJ-ADMM)
to decompose the centralized problem into the customers’ load
scheduling subproblems. The decentralized algorithm is executed
by each customer to schedule its load demand in real-time.
Via simulations on the IEEE 37-bus test feeder, we show that
the proposed algorithm enables customers to approximate the
optimal load profile in the benchmark scenario without load
uncertainty, and the approximation is tight. Furthermore, we
show a negligible gap of 2.3% between the customers’ cost with
the proposed algorithm and the cost in the benchmark scenario.

I. INTRODUCTION

Rapidly increasing electricity demand renders peak load

management a critical and challenging issue for distribution

network operators (DNOs). Demand response solutions can

provide DNOs with a variety of peak load management strate-

gies, such as direct load control to reduce the operational cost

of the power grid [1]. A limitation of direct load control lies

in customer privacy concerns, as the customer’s overall energy

consumption profile must be exposed to the DNO. Moreover,

a centralized control scheme may incur significant computa-

tion and communication overhead. Recent advancements in

smart metering have motivated DNOs to implement demand

response programs with real-time pricing (RTP) [1]. These

enable customers to fully exploit the flexibility in their con-

sumption habits without invasion of their privacy. Furthermore,

household energy consumption controllers (ECCs) can make

demand response decisions on behalf of their corresponding

customers in a distributed and parallel fashion resulting in

lower computation requirements for the DNO.

There are various challenges in implementing a demand

response program with RTP in a distribution feeder. First, the

DNO must properly set energy price signals in real-time to

motivate customers toward load scheduling, while maintaining

grid-wide operational constraints (e.g., power balance equa-

tions, and bus voltage and branch flows limits). Second, an

ECC may be uncertain about the customer’s load demand and

preferences (e.g., desirable load, demand variation flexibility).

Third, a fast coordinating mechanism is required for real-time

information exchange among the DNO and ECCs, thereby

meeting the supply-demand balance continuously.
There have been some efforts in the literature to tackle

the aforementioned challenges. Mechanisms such as stochas-

tic approximation [2], robust optimization [3], reinforcement

learning [4], Bayesian game [5], stochastic game [6], and

online convex optimization [7] address the load uncertainties

in a demand response program with RTP. However, these

approaches do not consider the nonconvex constraints imposed

by the topology and operation of the distribution network.

A few works (e.g., [8]–[10]) have considered the distribu-

tion network operational constraints to study the coordination

among demand response participants. However, these studies

do not consider the uncertainties in the customers’ power

consumption and preferences.
In this paper, we propose a demand response framework

with RTP that incorporates (i) operational constraints imposed

by the distribution network, (ii) customer’s load demand and

preferences uncertainty, and (iii) fast decentralized optimiza-

tion algorithm. The ECCs make real-time load scheduling de-

cisions based on their past experiences and the control signals

from the DNO to satisfy the network’s operational constraints.

The main contributions of this paper are as follows:

• Distribution Network Constraints: We consider the full ac

power flow model and formulate the deterministic cen-

tralized load control problem as a nonconvex optimization

problem. Then, we apply convex relaxation techniques to

transform the problem into a semidefinite program (SDP).

• Addressing Load Uncertainty: We study the stochastic

centralized load control problem. The stochastic process

for variations in the customers’ load demand and pref-

erences may not be available. To address this challenge,

we apply online convex optimization techniques [11] that

do not require any knowledege on the stochatic process

for the uncertain parameters. In our demand response

framework, the DNO observes the actual values for the

uncertain parameters and performs a real-time demand

adjustment, which is formulated as an SDP. The DNO

also uses projected gradient method [12] to determine

the scheduled load demand for the next time interval.

• Decentralized Algorithm Design: To mitigiate the com-

putation complexity of the proposed centralized online

convex optimization model, we apply the alternating

direction method of multipliers (ADMM) approach to

decompose the problem into subproblems for the sub-

station and customers. In particular, we use proximal



Jacobian (PJ)-ADMM [13, Algorithm 4] with prox-linear

method [14]. We show that the proposed PJ-ADMM-

based algorithm converges to a global optimal solution

of the stochastic centralized load control problem.

• Performance Evaluation: We perform simulations on the

IEEE 37-bus test feeder. We consider a demand response

program with RTP scheme combined with inclining block

rate (IBR). Simulation results show that the load demand

during peak hours is reduced by 14% on average in the

demand response program. Results also show that the

scheduled load profile using the proposed algorithm with

uncertainty approximates the load profile in the bench-

mark scenario without uncertainty, and the approximation

is tight. Moreover, the gap between the total cost with

the proposed algorithm and the cost in the benchmark

scenario is 2.3%, which is negligible. Our algorithm

converges to the solution of the centralized problem in

15 iterations on average. When compared with the cen-

tralized approach and the variable splitting (VS)-ADMM-

based decentralized algorithm, our algorithm based on

PJ-ADMM has a lower running time per time slot.

II. SYSTEM MODEL

Consider a distribution feeder consisting of N buses. Let

N = {1, . . . , N} denote the set of buses, where bus N cor-

responds to the substation bus and bus n ∈ N− corresponds

to customer n, and N− = {1, . . . , N − 1}. Let L ⊆ N ×N
denote the set of transmission lines. Each bus is equipped

with an ECC. The ECC of each customer is responsible for

scheduling the energy consumption of that customer. The ECC

at the substation bus is responsible for controlling the active

and reactive power flow into the distribution feeder. Each

ECC is connected to the DNO via a two-way communication

network, which enables information exchange of the price and

energy demand for the corresponding bus. A demand response

program is established for a predetermined period of time (e.g.,

one day), which is divided into a set T = {1, . . . , T} of T time

slots, each with equal duration, e.g., 15 minutes per time slot.

Let Y denote the network admittance matrix. For bus

n ∈ N , let en denote the nth basis column vector in �
N

and Yn = ene
T
nY . Row n of matrix Yn is equal to row n

of the admittance matrix Y , and other entries of Yn are zero.

We use the lumped-element Π model for transmission lines.

Let ynm and ynm denote the series and shunt admittance

values at bus n for the line (n,m) ∈ L, respectively. We

define Ynm = (ynm + ynm)ene
T
n − ynmene

T
m, so that the

entries (n, n) and (n,m) of Ynm are ynm + ynm and −ynm,

respectively. Other entries of Ynm are zero. We further define

matrices Yn, Yn, Ynm, Ynm, and Mn as follows:

Yn =
1

2

[
Re{Yn + Y T

n } Im{Y T
n − Yn}

Im{Yn − Y T
n } Re{Yn + Y T

n }

]
,

Yn = −1

2

[
Im{Yn + Y T

n } Re{Yn − Y T
n }

Re{Y T
n − Yn} Im{Yn + Y T

n }

]
,

Ynm =
1

2

[
Re{Ynm + Y T

nm} Im{Y T
nm − Ynm}

Im{Ynm − Y T
nm} Re{Ynm + Y T

nm}

]
,

Ynm = −1

2

[
Im{Ynm + Y T

nm} Re{Ynm − Y T
nm}

Re{Y T
nm − Ynm} Im{Ynm + Y T

nm}

]
,

Mn =

[
eneT

n 0

0 eneT
n

]
.

Let Vn(t) denote the voltage phasor of bus n in time slot t.
Let v(t) = (Vn(t), n ∈ N ) denote the vector of bus voltages.

Let Nn ⊆ N denote the set of buses connected to bus n.

We construct the vector of bus voltages vn(t) for bus n
from vector v(t) such that the elements m ∈ Nn ∪ {n}
of vectors vn(t) and v(t) are equal, and other elements of

vector vn(t) are zero. For bus n, we define variable vector

xn(t) = [ (Re{vn(t)})T (Im{vn(t)})T ]T consisting of the

real and imaginary parts of vn(t) in time slot t. We define

variable matrix Wn(t) = xn(t)(xn(t))
T for bus n in time

slot t. We denote the active and reactive loads of customer

n ∈ N− in time slot t by Pn(t) and Qn(t), respectively. We

also denote the injected active power and reactive power into

the substation bus N in time slot t by PN (t) and QN (t),
respectively. Let |Vn(t)| denote the voltage magnitude of bus

n ∈ N in time slot t. Let Snm(t) denote the apparent power

flow through line (n,m) ∈ L in time slot t. With the notations

established above, for time slot t ∈ T , we can show that [15]

Pn(t) = −Tr{YnWn(t)}, n ∈ N− (1a)

Qn(t) = −Tr{YnWn(t)}, n ∈ N− (1b)

PN (t) = Tr{YNWN (t)}, (1c)

QN (t) = Tr{YNWN (t)}, (1d)

|Vn(t)|2 = Tr{MnWn(t)}, n ∈ N (1e)

|Snm(t)|2=Tr{YnmWn(t)}2+Tr{YnmWn(t)}2, (n,m)∈L.
(1f)

We use (1a)−(1f) to obtain the operational constraints im-

posed by the customers and distribution network. For customer

n, we assume that the load demand in time slot t ∈ T consists

of the uncontrollable load (i.e., base load) P b
n(t) and control-

lable load demand P c
n(t), i.e., we have Pn(t) = P b

n(t)+P c
n(t).

Let P des
n (t) denote the desirable active power load demand for

customer n in time slot t, had the customer not participated

in the demand response program. By participating in the

demand response program, customer n incurs a discomfort

cost dn(Pn(t)) in time slot t. It is used as a metric in monetary

unit to express the customer’s dissatisfaction with changing its

load profile from the desirable pattern to the scheduled pattern.

Similar to [16], we model the discomfort cost function as a

weighted Euclidean distance between the scheduled and the

desirable load demands. Let ωn(t), n ∈ N−, t ∈ T denote

a positive weighting coefficient measured in cents/kW2 to

reflect the customer’s discomfort caused by changing the load

demand from its desirable amount. The discomfort cost for

customer n ∈ N− in time slot t is obtained as

dn(Wn(t)) = ωn(t)
(
P des
n (t) + Tr{YnWn(t)}

)2
. (2)

The controllable load demand for customer n in time slot t
is within the minimum and maximum limits P c,min

n (t) and



P c,max
n (t), respectively. Thus, the total active load demand

of customer n in time slot t is within the limits Pmin
n (t) =

P b
n(t) + P c,min

n (t) and Pmax
n (t) = P b

n(t) + P c,max
n (t). We use

(1a) and obtain the following constraint for t ∈ T , n ∈ N−:

Pmin
n (t) ≤ −Tr{YnWn(t)} ≤ Pmax

n (t). (3)

Assume that ECC n can control the reactive power con-

sumption at bus n in time slot t such that it is within the

limits Qmin
n (t) and Qmax

n (t). We use (1b) to obtain the following

constraint for t ∈ T , n ∈ N−:

Qmin
n (t) ≤ −Tr{YnWn(t)} ≤ Qmax

n (t). (4)

The injected active power PN (t) and reactive power QN (t)
into the substation bus in time slot t are bounded by the

predetermined limits Pmax
N , Qmin

N , and Qmax
N , respectively. For

t ∈ T , we use (1c) and (1d) to obtain

0 ≤ Tr{YNWN (t)} ≤ Pmax
N , (5a)

Qmin
N ≤ Tr{YNWN (t)} ≤ Qmax

N . (5b)

Let V min
n and V max

n denote the lower and upper bounds on

the voltage magnitude at bus n, respectively. For t ∈ T , we

use (1e) to obtain

(V min
n )2 ≤ Tr{MnWn(t)} ≤ (V max

n )2, n ∈ N . (6)

Let Smax
nm denote the maximum apparent power flow through

the line (n,m) ∈ L. We substitute (1f) into |Snm(t)| ≤ Smax
nm ,

and by constructing its matrix form, for (n,m) ∈ L, we have[
(Smax

nm)2 Tr{YnmWn(t)} Tr{YnmWn(t)}
Tr{YnmWn(t)} 1 0
Tr{YnmWn(t)} 0 1

]
� 0. (7)

Let Wk,k′
n (t) denote the entry (k, k′) of matrix Wn(t).

For a neighboring bus m ∈ Nn, the values of Wn,n
m (t) and

Wn+N,n+N
m (t) are, respectively, equal to the square of real

and imaginary parts of complex-valued voltage phasor at bus n
in time slot t. Thus, for t ∈ T , we have

Wn,n
m (t) = Wn,n

n (t), m ∈ Nn, n ∈ N (8a)

Wn+N,n+N
m (t) = Wn+N,n+N

n (t), m ∈ Nn, n ∈ N . (8b)

III. CENTRALIZED LOAD CONTROL PROBLEM

In this section, we study the load control problem in the

demand response program. The reactive power control is

usually performed for the sake of voltage regulation. Without

loss of generality, we assume that the limits Qmin
n (t) and

Qmax
n (t), t ∈ T are known a priori by ECC n. However, we

take into account the uncertainty about parameters Pmin
n (t),

Pmax
n (t), ωn(t), and P des

n (t) for the active power consumption

of customer n in time slot t. Below, we formulate the cen-
tralized load control with and without the DNO’s uncertainty

about the active load demand and preferences of customers.

A. Deterministic Centralized Load Control

We assume that parameters Pmin
n (t), Pmax

n (t), ωn(t), and

P des
n (t) for customer n ∈ N− in time slot t ∈ T are known

a priori by the DNO. The objective function of the DNO’s

load control problem in time slot t is the total cost of all

customers in the feeder, i.e., the social cost. The cost of

customer n in time slot t includes the discomfort cost in (2)

and the electricity bill payment πn(t)Pn(t), where πn(t) is

the electricity price (cents per unit of active power) in time

slot t for customer n in the demand response program.

The discomfort cost in (2) is a quadratic function of Wn(t).
To obtain its SDP form, we introduce the auxiliary variable

θn(t), n ∈ N−, t ∈ T , such that dn(Wn(t)) ≤ θn(t). The

DNO’s objective function in time slot t is obtained as

f obj(t) =
∑

n∈N− (θn(t)− πn(t)Tr{YnWn(t)}) . (9)

We include the following constraint corresponding to inequal-

ity dn(Wn(t)) ≤ θn(t), t ∈ T into the constraint set of the

DNO’s problem:[
θn(t)/ωn(t) P des

n (t) + Tr{YnWn(t)}
P des
n (t) + Tr{YnWn(t)} 1

]
� 0, n ∈ N−.

(10)

The centralized load control problem in time slot t ∈ T is

as follows:

P1(t) : minimize
Wn(t), n∈N
θn(t), n∈N−

f obj(t)

subject to constraints (3)−(8b) and (10),

Wn(t) � 0, n ∈ N ,

rank(Wn(t)) = 1, n ∈ N .

Problem P1(t) is a nonconvex optimization problem due to

the rank-one constraint. We relax the rank constraint to obtain

the following SDP relaxation form of P1(t):

P2(t) : minimize
Wn(t), n∈N
θn(t), n∈N−

f obj(t)

subject to constraints (3)−(8b) and (10),

Wn(t) � 0, n ∈ N .

We can show practical distribution networks (including IEEE

test feeders) satisfy the sufficient conditions given in [15, Sec.

IV-C] for the network topology, constraints, and their corre-

sponding dual variables. Hence, the SDP relaxation gap be-

tween problems P1(t) and P2(t) is zero, i.e., the solution

matrices Wopt
n (t), n ∈ N to problem P2(t) are all rank one.

In practice, the DNO has uncertainty about the customers’

load demand and preferences. In the following, we apply on-

line convex optimization technique to address the uncertainty.

B. Stochastic Centralized Load Control
In the online convex optimization model, we consider the

DNO’s uncertainty about parameters Pmin
n (t), Pmax

n (t), ωn(t),
and P des

n (t) for customer n ∈ N− in time slot t. During

time slot t, the DNO receives information about the actual
values of the uncertain parameters from its customers, which

may be different from the predicted values. To cope with the

uncertainty, the DNO can decide to adjust the customers’ load

demands Pn(t), n ∈ N− by ΔPn(t), i.e., either purchase



power from the spot market with price πb(t) (if ΔPn(t) > 0)

or sell power to the spot market with price πs(t) (if ΔPn(t) <
0). We assume that πb(t) ≥ πs(t), and thus the monetary

transaction with the spot market is obtained as a piece-

wise linear function max{−πb(t)ΔPn(t), π
s(t)ΔPn(t)}. By

adjusting the load demands, the discomfort cost of customer n

becomes ωn(t)
(
P des
n (t)−

(
Pn(t) + ΔPn(t)

))2
.

We substitute Pn(t) + ΔPn(t) = −Tr{YnWn(t)}, n ∈
N− into the monetary transaction with the spot market and the

customers’ discomfort cost function. To transform the piece-

wise linear function into an SDP, we introduce an auxiliary

variable δn(t), and consider the following constraints:

− πb(t)
(
−Tr{YnWn(t)} −Pn(t)

)
≤ δn(t), n ∈ N− (11a)

πs(t)
(
−Tr{YnWn(t)} −Pn(t)

)
≤ δn(t), n ∈ N−. (11b)

The discomfort cost is obtained as a quadratic function of

matrix Wn(t). Recall that we introduced auxiliary variable

θn(t) for the discomfort cost of customer n ∈ N− and

included constraint (10). Hence, the total cost of DNO in the

online convex optimization model is obtained as:

f̃ obj(t) =
∑

n∈N− πn(t)Pn(t) + gobj(t), t ∈ T , (12)

where gobj(t) is the optimal value of the following optimization

problem under the given values of Pn(t), n ∈ N−:

P3(t) : minimize
Wn(t), n∈N
θn(t), δn(t), n∈N−

∑
n∈N

cn(t)

subject to constraints (3)−(8b) and (10)−(11b),

Wn(t) � 0, n ∈ N ,

where cn(t) = θn(t) + δn(t) for customer n ∈ N− and

cN (t) = 0 for substation bus N . Problem P3(t) is a convex

optimization problem. We can also show that it satisfies

the sufficient conditions given in [15, Sec. IV-C]. Thus, the

solution matrices Wopt
n (t), n ∈ N to problem P3(t) are all

rank one. Hence, the optimal values of ΔPn(t), n ∈ N− can

be determined under the given values of Pn(t), n ∈ N−.

Next the DNO computes the updated scheduled load de-

mands Pn(t + 1), n ∈ N− for time slot t + 1 using the

following projected gradient-based update rule [12]:

Pn(t+ 1) =
[
Pn(t)− α(t)

(
∇Pn(t)f̃

obj(t) + μn(t)
)]+

, (13)

where α(t) > 0 is the step size in time slot t, ∇Pn(t)f̃
obj(t) is

the gradient of f̃ obj(t). Also in (13), μn(t) = μn(t) − μ
n
(t),

where μn(t) and μ
n
(t) are the dual variables associated with

the upper and lower inequalities in (3), respectively. [·]+ is the

projection onto the positive orthant. Let f obj,opt(t) denote the

optimal value of problem P2(t).

Remark 1 (Competitive Analysis): Under the mild conditions

that f̃ obj(t), n ∈ N− are all Lipschitz and convex functions,

we can show that solving problem P3(t) and the update in

(13) achieve a regret R(T ) =
∑

t∈T (f̃
obj(t)− f obj,opt(t)) that

grows sublinearly in T . That is, R(T )/T tends to zero as T
approaches infinity [11, Ch. 5].

Algorithm 1 ECCs and DNO Interaction in time slot t.

1: ECC n ∈ N− randomly set Pn(1) in time slot t := 1.

Load adjustment phase:

2: Set i := 1 and ε := 10−3.
3: ECC n ∈ N initializes W1

n(t). DNO initializes λ1(t).
4: Repeat
5: DNO computes control signals Si

n(t) according to (15a)−(15d)
and sends to the ECC at bus n ∈ N .

6: ECC n solves problem Pi
3,n(t), and sends the updated vector

vi+1
n (t) of the bus voltages to the DNO.

7: DNO updates λi(t) according to (18).
8: i := i+ 1.
9: Until ||λi(t)− λi−1(t)|| ≤ ε.

Load scheduling phase:

10: ECC n ∈ N− determines Pn(t+ 1) according to (13).

IV. DECENTRALIZED ALGORITHM DESIGN

In this section, we develop a decentralized algorithm to

solve problem P3(t) and perform the update in (13) in a par-

allel fashion. Algorithm 1 describes the interactions between

the DNO and ECC n ∈ N− in time slot t. In time slot t = 1,

ECC n ∈ N− randomly initializes Pn(1) for the scheduled

load demand in Line 1. Lines 2 to 9 correspond to the load

adjustment phase, in which problem P3(t) is solved by the

ECCs at buses n ∈ N in an iterative and parallel fashion.

Problem P3(t) has a separable objective function and

coupling constraints (8a) and (8b). The VS-ADMM algo-

rithm [13, Algorithm 1] has been commonly used to develop

decentralized algorithms. However, the number of variables

and constraints substantially increases by introducing splitting

variable. To address this issue, we use PJ-ADMM [13, Algo-

rithm 4] with prox-linear method [14] that does not require

the splitting variables. We define the vector of Lagrange

multipliers λ(t) = (λn
m(t), λ

n

m(t), m ∈ Nn, n ∈ N ), where

λn
m(t) and λ

n

m(t) denote the Lagrange multipliers associated

with equality constraints (8a) and (8b) for buses n ∈ N and

m ∈ Nn in time slot t, respectively. We express (8a) and (8b)

in the form of g(t) = 0, where g(t) = (Wn,n
m (t)−Wn,n

n (t),
Wn+N,n+N

m (t)−Wn+N,n+N
n (t), m ∈ Nn, n ∈ N ).

Let i denote the iteration index in the load adjustment phase.

Lines 2 and 3 of Algorithm 1 describe the initialization in

iteration i = 1. The loop involving Lines 4 to 9 describes the

interactions between the DNO and ECC n ∈ N . In Line 5,

the DNO broadcasts control signal matrix Si
n(t) to ECC n,

where Si
n(t) is a 2N × 2N diagonal matrix. We use the

approach in [13, Algorithm 4] to obtain the nonzero entries

of the diagonal matrix Si
n(t) in iteration i. We develop the

augmented Lagrangian of P3(t) with parameter ρ > 0. We

decompose the augmented Lagrangian into N subproblems

corresponding to buses in set N . To the objective function

of the subproblem associated with bus n ∈ N , we add a

proximal term τn
2

∥∥wn(t) − wi
n(t)

∥∥2
2

with weight τn, where

wn(t) = (Wm,m
n (t),Wm+N,m+N

n (t), m ∈ Nn ∪ {n}) is

the vector of nonzero diagonal elements of matrix Wn(t).
The objective function of the subproblem for bus n ∈ N in



iteration i is obtained as follows:

f̃ obj,i
n (t) = cn(t)+Tr{Si

n(t)Wn(t)}+
τn
2

∥∥wn(t)−wi
n(t)

∥∥2
2
,

(14)

where the nonzero elements of matrix Si
n(t) are computed as:

Sn,n,i
n (t) = ρ

∑
m∈Nn

(
Wn,n,i

n (t)−Wn,n,i
m (t) +

λn,i
m (t)

ρ

)
, (15a)

Sn+N,n+N,i
n (t) =

ρ
∑

m∈Nn

(
Wn+N,n+N,i

n (t)−Wn+N,n+N,i
m (t)+

λ
n,i

m (t)

ρ

)
, (15b)

and for m ∈ Nn, we have

Sm,m,i
n (t) = ρ

(
Wm,m,i

n (t)−Wm,m,i
m (t)− λm,i

n (t)

ρ

)
, (15c)

Sm+N,m+N,i
n (t) =

ρ
(
Wm+N,m+N,i

n (t)−Wm+N,m+N,i
m (t)− λ

m,i

n (t)

ρ

)
. (15d)

To formulate the subproblem of bus n as an SDP, we define

an auxiliary variable vector βn(t) = (βm
n (t), βm+N

n (t), m ∈
Nn∪{n}) associated with the quadratic proximal term in (14).

The SDP form of (14) is obtained as follows.

f̃ obj,i
n (t) = cn(t) + Tr{Si

n(t)Wn(t)}
+

τn
2

∑
m∈Nn∪{n}

(
βm
n (t) + βm+N

n (t)
)
. (16)

For k=m and m+N, m∈Nn∪{n}, we include the following

constraint into the constraint set of subproblem n ∈ N :[
βk
n(t) wk

n(t)−wk,i
n (t)

wk
n(t)−wk,i

n (t) 1

]
� 0. (17)

Let ψn(t) = (Wn(t), βn(t), θn(t), δn(t)) denote the deci-

sion variable vector of customer n ∈ N− in time slot t ∈ T .

Let ψN (t) = (WN (t), βN (t)) denote the decision variable

vector of substation bus N in time slot t ∈ T . Let Ψn(t)
for customer n ∈ N− denote the feasible space defined by

constraints (3), (4), (6), (7), (10)−(11b), and (17). Also let

ΨN (t) for substation bus N denote the feasible space defined

by constraints (5a)−(7) and (17). In Line 6, ECC n ∈ N
solves the following optimization problem to determine the

updated variable vector ψi+1
n (t):

P i
3,n(t) : minimize

ψn(t)
f̃ obj,i
n (t)

subject to ψn(t) ∈ Ψn(t),

Wn(t) � 0.

Problem P i
3,n(t) is an SDP and can be solved efficiently.

We can show that the solution matrix Wi+1
n (t) to subprob-

lem P i
3,n(t) is rank-one [15, Sec. IV-C]. It guarantees that

Wn,n,i+1
n (t) and Wn+N,n+N,i+1

n (t) are equal to the square

of the real and imaginary parts of the bus voltage in time slot t.
Moreover, Wm,m,i+1

n (t) and Wm+N,m+N,i+1
n (t) are equal to

the square of the real and imaginary parts of the voltage at

neighbouring bus m ∈ Nn. Hence, in Line 6, ECC n can send

the updated vector vi+1
n (t) of the bus voltages to the DNO.

In Line 7, the DNO receives the updated information from

the ECCs and determines the updated vector of Lagrange

multipliers λi+1(t) as follows:

λi+1(t) = λi(t)− ηρgi+1(t), (18)

where η ∈ (0, 1) is a damping parameter. The iteration index

is updated in Line 8. The stopping criterion for the loop is

given in Line 9. Line 10 corresponds to the load scheduling

for the next time slot. ECCs n ∈ N− determine Pn(t + 1)
using (13) in a parallel fashion.

Remark 2 (Convergence Analysis): Suppose that parameters

ρ, η, and τn satisfy the inequality τn > ρN
2−η for all n ∈ N .

Then, the loop involving Lines 5 to 10 converges to the global

optimal solution of problem P3(t) [13, Lemma 2.2].

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

online demand response algorithm on the IEEE 37-bus distri-

bution feeder. The network data can be found in [17]. A time

period T represents 10 days. Each time slot is 15 minutes. To

model the active load pattern for a customer, we use a load

pattern from Ontario, Canada power grid database from Apr.

1, 2018 to Apr. 10, 2018 [18]. We scale the load profile for

each bus such that the average load demand in each day is

within 50% to 150% of the average load in [17]. The lower

bound Pmin
n (t) for the load demand of customer n is randomly

chosen between 65% and 90% of its desirable load in time slot

t. The upper bound Pmax
n (t) for customer n is randomly chosen

between 105% and 110% of its desirable load in time slot t.
We assume that the power factor of customer n varies within

interval [0.7, 0.95] to determine the limits Qmin
n (t) and Qmax

n (t)
for the reactive load in time slot t. Coefficients ωn(t), t ∈ T
for the discomfort cost function of customer n are randomly

selected from interval [0.1 cents / kW2, 0.5 cents / kW2]. We

consider RTP scheme combined with IBR. For customer n and

time slot t, we consider the block rate π1(t) for the portion

of load demand Pn(t) smaller than or equal to the threshold

lthn and the block rate π2(t) for the portion of load demand

Pn(t) above lthn [2]. The rates π1(t) and π2(t) during one

day are shown in Fig. 1. We set lthn to the average load of

customer n. For the spot market price in time slot t, we set

πb(t) = 2π2(t) and πs(t) = 0.5π1(t). We perform simulations

using MATLAB/CVX with MOSEK solver in a PC with

processor Intel(R) Core(TM) i5-3337U CPU@1.8 GHz.

We first show how Algorithm 1 enables a customer to

manage its load demand. For the sake of comparison, we

consider the benchmark scenario where the DNO has complete

information about the customers’ load demand and prefer-

ences. The DNO solves problem P2(t) to determine the

optimal scheduled load demands in time slot t ∈ T . In the

scenario with incomplete information, the customers execute

Algorithm 1. We set ρ = 0.1, η = 0.9, and τn > 0.1N, n ∈ N
to satisfy the condition in Remark 2. The step size α(t), t ∈ T
in (13) is set to γ/

√
t, where γ = 0.18 for our case study.
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Figure 1. Electricity price block rates for demand response during one day.

Consider customer at bus with index 714 as an example. Figs.

2(a) and (b) show the desirable load demand, the scheduled

load demand in the benchmark scenario, and the scheduled

load demand with incomplete information in day 1 and day 10,

respectively. Our results show that with load scheduling, the

customers’ load demand during peak hours (between 6 pm and

10 pm) is reduced by about 14% on average. Using Algorithm

1, the scheduled load demand approximates the optimal load

profile in the benchmark scenario. As a similarity measure of

the load profiles, we consider the average absolute difference

between the scheduled load demand with uncertainty and the

load demand in the benchmark scenario. Fig. 2(b) shows when

compared to day 1, the scheduled load demand in day 10 is a

tighter approximation of the optimal scheduled load demand.

In particular, the average absolute differences between the

scheduled load demand with uncertainty and the load demand

in the benchmark scenario for day 1 and day 10 are 2.63 kW

and 0.87 kW, respectively.

Next we study the changes in the total daily cost of all

customers in the feeder, i.e., the objective values (9) and (12)

during day 1 to day 10. Fig. 3(a) shows that the gap between

the total cost with uncertainty using Algorithm 1 and the

cost in the benchmark scenario is reduced from 10.9% in

day 1 to 2.3% in day 10. It implies that Algorithm 1 based

on online convex optimization converges to a near optimal

solution to problem P2(t) and the gap is small. We also

evaluate the convergence of the average regret R(T ′)/T ′ for

T ′ = 1, . . . , 960 time slots. Fig. 3(b) shows that R(T ′)/T ′

tends to zero as T ′ increases. That is, the average regret grows

sublinearly in T ′. Ten days (i.e., 960 time slots) are sufficient

for Algorithm 1 to converge to a near optimal solution of prob-

lem P2(t). We emphasize that the average regret R(T ′)/T ′

for 36 customers converges to 0.05 in the second day, which

implies that one customer incurs a negligible regret. These

results demonstrate the potential of Algorithm 1 based on

online convex optimization for practical applications.

Finally, we evaluate the average number of iterations in the

loop involving Lines 5 to 10 of Algorithm 1 with PJ-ADMM

approach, which can be interpreted as an indicator of the

number of message exchange between the customers and DNO

in the load adjustment phase. For the sake of comparison, we

consider the algorithm based on VS-ADMM [13, Algorithm

1], which has been commonly used in the literature (e.g., in

[19], [20]). We solve problem P3(t) in a centralized fashion

for day 1 and Fig. 4(a) shows the scheduled load demand

Figure 2. Scheduled load demand profile at bus with index 714 in (a) day 1,
and (b) day 10 with full information and incomplete information.
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Figure 3. (a) Total daily cost with complete and incomplete information; and
(b) the average regret versus time between day 1 and day 10.

profile for customer at bus with index 714 before and after

load adjustment. Consider the load demand at 7 pm, when

the customer adjusts its load demand from 8.9 kW to 11.5
kW. Fig. 4(b) depicts the load demand in each iteration of

the loop involving Lines 5 to 10 of Algorithm 1. Algorithm

1 with both the PJ-ADMM and VS-ADMM converges to the

solution of problem P3(t) in a reasonable number of iterations

(in 14 and 22 iterations, respectively). Nevertheless, the PJ-

ADMM is preferable to VS-ADMM as introducing the split-

ting variables increases the number of variables and constraints

in each subproblem, resulting in a higher average running

time for Algorithm 1 per time slot. Table I shows the average

running time per time slot for the centralized approach and

Algorithm 1 with the PJ-ADMM and VS-ADMM approaches

versus the number of buses in the network. When compared

with the centralized approach, results show that the proposed
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Figure 4. (a) Load demand profile before and after load adjustment during
day 1; (b) convergence of load demand in the load adjustment phase at 7 pm
using Algorithm 1 based on PJ-ADMM and VS-ADMM.

Table I
THE AVERAGE RUNNING TIME PER TIME SLOT FOR THE CENTRALIZED

APPROACH, AND ALGORITHM 1 WITH VS-ADMM AND PJ-ADMM.

Average Running Time per Time Slot (second)

Test System
Centralized
Approach

Algorithm 1 with
VS-ADMM

Algorithm 1 with
PJ-ADMM

37-bus 0.42 0.19 0.12

73-bus 1.1 0.68 0.4

361-bus 13.2 1.8 1.1

1801-bus 298.5 14.1 7.6

decentralized algorithm with either PJ-ADMM or VS-ADMM

has significantly lower average running time per time slot. The

reason is that the buses solve their subproblems in a parallel

fashion in Algorithm 1. When compared with the VS-ADMM,

Algorithm 1 based on PJ-ADMM has a lower running time

per time slot due to smaller number of required iterations to

converge as well as a lower running time per iteration.

VI. CONCLUSION

In this paper, we addressed the problem of load scheduling

in a demand response program. We formulated the DNO’s

centralized load control problem as an SDP using convex

relaxation techniques. We addressed the DNO’s uncertainty

about the load demand and preferences by using online con-

vex optimization techniques to solve the original centralized

load control problem. We applied PJ-ADMM approach to

developed an algorithm to solve the stochastic centralized

load control problem in a decentralized fashion. Simulation

results showed that when compared with the scenario without

the demand response, the load demand during peak hours is

reduced by 14% on average. Furthermore, the scheduled load

profile using the proposed algorithm approximates the optimal

load profile in the benchmark scenario without uncertainty, and

the approximation is tight. We showed that the average regret

grows sublinearly in the number of time slots, and the gap

between the total cost with the proposed algorithm and the

cost in the benchmark scenario is 2.3%, which is negligible.

When compared with the centralized approach and the VS-

ADMM technique, our algorithm based on PJ-ADMM has a

lower average running time per time slot. For future work,

we plan to extend the model by considering the operational

model of the customers’ electric appliances and the integration

of renewable generation in the network.
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