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Abstract—Data centers often support a range of delay-tolerant
workloads with adjustable execution time under a prespecified
service level agreement. This potential for workload management
has motivated utility companies to deploy demand response
programs to encourage data centers toward shifting workload
execution away from peak load periods. In this paper, we focus
on data centers’ demand response considering the uncertainties
in the arrival rates of the workloads, local renewable generation,
and time-varying electricity prices. The centralized workload
scheduling is shown to be a convex optimization problem. We
deploy an online convex optimization framework to solve the
centralized problem without any knowledge of the stochastic
process that uncertain parameters follow. It also enables us to de-
sign a decentralized algorithm to address the high computational
complexity of the centralized approach as well as the data centers’
coupled decision making under the real-time pricing scheme. We
perform extensive simulations to demonstrate the lower running
time of the decentralized algorithm compared to the centralized
approach. Data center demand response benefits the utility com-
pany by 12.4% reduction in the peak load demand. It also benefits
a data center by 12.2% reduction in the average daily cost.

I. INTRODUCTION

The issue of energy efficiency poses a crucial challenge to
today’s data centers owing to the growing requirements for
data storage and analysis services. In this regard, practical en-
ergy management solutions are required for optimal workload
execution while meeting the service level agreement (SLA)
requirements [1]. The savings from reducing the electricity
bill payment can be reinvested in information technology (IT)
resources and expansion planning of the data center. Mean-
while, utility companies can benefit from lower power demand
during peak time periods when the cost to produce or the price
to purchase electricity is high. A demand response program
with real-time pricing (RTP) scheme is an attractive solution
for utility companies to steadily encourage data centers toward
adjusting power demand through workload scheduling [2].

There are challenges in development and deployment of a
demand response program for data centers. First, the uncer-
tainty in the workloads’ arrival rates forces a dynamic provi-
sioning of virtual machines (servers) to optimally schedule the
workloads execution under a prespecified SLA requirement.
Second, most data centers are equipped with local renewable
generators (e.g., photovoltaic (PV) panels, wind turbines) [3].
The uncertainty in the renewable generation makes it more
challenging to achieve the optimal workload schedule. Third,
the utility company and data centers require a real-time
information exchange mechanism to deal with the dynamic
prices changes in an RTP scheme.

Data center demand response is an active research area.
Recent work has focused on the design of coordination mech-

anisms between the utility companies and data centers in a
demand response program using different techniques such as
Stackelberg game [4], reverse auction [5], and bargaining [6].
These papers assumed complete information about the work-
load characteristics and renewable generation. Other works
focused on the uncertainty in workloads arrival rates and re-
newable genearion and proposed energy management solutions
for data centers using robust optimization [7] and portfolio
optimization [8], [9]. These studies relied on information about
the stochastic process for uncertain parameters, which may
not be available in practice. Moreover, there are works that
deal with designing online energy management algorithms for
data centers using stochastic optimization [10], reinforcement
learning [11], and Lyapunov optimization [12]–[14]. These
approaches often rely on limiting assumptions such as the
Markovian characteristic of stochastic processes.

In this paper, we investigate the data center demand re-
sponse problem by deploying an online convex optimization
framework to deal with the uncertainty in the workload arrival
rates and renewable generation. This paper is an extension of
our previous work [15] by designing an online decentralized
workload scheduling algorithm for data centers. The algorithm
enables real-time workload scheduling in a parallel fashion
based on the control signals from the utility company. This
paper also extends our previous work [16] by considering a
time-varying queue to model the workloads of a data center in
the underlying online convex optimization framework. We also
study the impact of a time-varying constraint associated with
the required number of virtual machines on the design of an
online workload scheduling algorithm. The key contributions
of this paper are summarized as follows:
• Addressing Uncertainty: The stochastic processes for the

workloads arrival rates and the renewable generation may
not be available. We present an online convex optimiza-
tion framework [17] to solve the centralized stochastic
workloload scheduling problem. Thus, the utility com-
pany does not require information about the stochas-
tic processes for the uncertain parameters. The utility
company receives the realized values of the unknown
parameters and determines the bill payment and the
penalty for workload execution delay. Subsequently, the
utility company schedules the virtual machines in the next
time interval using a projected gradient method.

• Decentralized Algorithm Design: The proposed central-
ized workload scheduling method suffers from a high
computational burden, and hence may not be viable for
real-time implementation in a system with a large number
of data centers. We address the computation complexity



by developing a decentralized algorithm, where the data
centers solve their corresponding optimization problem in
a parallel fashion. The proposed decentralized algorithm
achieves the centralized problem’s optimal solution with a
significantly lower running time, especially as the number
of data centers grows.

• Reduction in Peak Load Demand and Average Daily Cost:
We conduct simulations on a test system with ten data
centers participating in a demand response program. Sim-
ulation results for the scenarios with complete informa-
tion show that the data center demand response benefits
both the utility company by 12.4% decrease in the peak
load demand, and a data center by 12.2% decrease in its
average daily cost. The proposed algorithm with uncer-
tainty enables the data centers to approximate the optimal
number of virtual machines, such that they incur only a
2.15% higher average daily cost.

The remainder of this paper is organized as follows. Section
II introduces the model of a data center. In Section III, we
present an online convex optimization framework to solve the
stochastic workload scheduling problem. We also develop a
decentralized workload scheduling algorithm for data centers.
The performance of the proposed decentralized algorithm is
evaluated in Section IV. We conclude the paper in Section V.

II. SYSTEM MODEL

Consider a network comprising a set D = {1, . . . , D} of D
data centers. We assume that the utility company and a data
center can exchange information about the electricity price and
power consumption through a bi-directional communication
infrastructure. The time period is divided into T equal time
slots. Let T = {1, . . . , T} denote the set of time slots. Let
Cd = {1, . . . , Cd} denote the set of Cd classes of services
supported by data center d ∈ D. For data center d, we consider
the exponential distribution with mean 1/λc,d(t) for the inter-
arrival time of the workloads requesting service c ∈ Cd in time
slot t ∈ T . We also consider the exponential distribution for
workload execution time in a data center [4], [9]. We apply
the approach in [15] to obtain the workload’s execution rates.
Consider data center d ∈ D. We define parameter σc,d as the
average time that a single virtual machine spends to execute a
workload requesting service c. Hence, with nd(t), t ∈ T
virtual machines, the workloads of class c are executed with a
rate µc,d(t) = nd(t)/σc,d per time slot. As it is shown in [15],
we can use an M/M/1 queue with the workloads’ average
arrival rate λc,d(t) and execution rate µc,d(t) = µc,d(t)

(
1 −∑

c′∈Cd λc′,d(t)/µc′,d(t)+λc,d(t)/µc,d(t)
)

to characterize the
workloads requesting service c ∈ Cd in time slot t ∈ T .
Using µc,d(t) = nd(t)/σc,d, we can express the execution
rate µc,d(t), c ∈ Cd as follows:

µc,d(t) =
1

σc,d

(
nd(t)−

∑
c′∈Cd σc′,d λc′,d(t)

)
+ λc,d(t). (1)

The underlying M/M/1 queueing system is stable if µc,d(t) >
λc,d(t). That is, the first term in (1) should be positive. Hence,

for small ε > 0 (e.g., ε = 1), we obtain∑
c∈Cd

σc,d λc,d(t) + ε ≤ nd(t), d ∈ D, t ∈ T . (2)

Considering the maximum number of available virtual ma-
chines nmax

d in data center d ∈ D, in time slot t, we have [15]

0 ≤ nd(t) ≤ nmax
d . (3)

The offered services in a data center can be divided into
interactive services and delay-tolerant flexible services ac-
cording to the workload maximum sojourn time under the
SLA between a data center and its customers. The interactive
services should be executed in a timely fashion. Whereas, the
delay-tolerant flexible services can tolerate a relatively large
execution time (e.g., several minutes) [2]. For data center d,
let δc,d denote the maximum sojourn time for the workloads
requesting service c. Without loss of generality, we assume
that δc,d, c ∈ Cd is less than one time slot. We can apply the
workload model in [15] to deal with the execution time greater
than one time slot. Let τc,d(t) denote the sojourn time of a
workload requesting service c from data center d in time slot t.
We define the decision variable pc,d(t) ∈ [0, 1] as the upper
bound for the probability that τc,d(t) exceeds δc,d. We have

Pr (τc,d(t) ≥ δc,d) ≤ pc,d(t), c ∈ Cd, d ∈ D, t ∈ T , (4)

where Pr(·) is the probability function. Consider the queue for
the workloads requesting service c in time slot t. The sojourn
time of the workloads follows an exponential distribution with
mean µc,d(t)− λc,d(t) [18]. Then (4) for c ∈ Cd, d ∈ D, t ∈
T , can be expressed as

exp
(
−δc,d

(
µc,d(t)− λc,d(t)

))
≤ pc,d(t), (5)

where exp(·) is the exponential function. By substituting (1)
into (5) and performing some algebraic manipulations, for c ∈
Cd, d ∈ D, t ∈ T , we obtain

σc,d
δc,d

ln

(
1

pc,d(t)

)
+
∑
c′∈Cd

σc′,d λc′,d(t) ≤ nd(t), (6)

where ln(·) is the natural logarithm function. To express (6) as
a linear inequality, we define an auxiliary variable αc,d(t) =
ln
(
1/pc,d(t)

)
, c ∈ Cd, t ∈ T . Constraint (6), for c ∈ Cd, d ∈

D, t ∈ T , can be rewritten as follows:
σc,d
δc,d

αc,d(t) +
∑
c′∈Cd

σc′,d λc′,d(t) ≤ nd(t). (7)

The power demand Pw
d (t), t ∈ T for workload execution

in data center d ∈ D can be obtained in terms of the average
idle power rating P idle

d and the peak power rating P peak
d of a

virtual machine. For data center d, let ηd(t) > 1 denote the
power usage effectiveness in time slot t ∈ T [3]. We have [15]

Pw
d (t) = ηd(t)

(
P idle
d nd(t)+(P peak

d −P idle
d )

∑
c∈Cd

σc,dλc,d(t)
)
. (8)

Suppose that data center d has local renewable genera-
tion [3] with the output power P r

d (t), t ∈ T . The net power



consumption of data center d can be expressed as:

P net
d (t) =

[
Pw
d (t)− P r

d (t)
]+
, d ∈ D, t ∈ T , (9)

where [·]+ = max{0, ·}. Data center d incurs the electricity bill
payment cb

d(t) and the penalty cp
d(t) for the delay in executing

the incoming workloads. The expected total cost per time slot
for a data center can be obtained as follows:

cd(t) = cb
d(t) + cp

d(t), d ∈ D, t ∈ T . (10)

For the bill payment component in (10), o encourage data
centers toward workload scheduling, an RTP scheme with
inclining block tariffs structure using two block rates π1(t)
and π2(t) can be deployed [2]. Let lth(t) denote the threshold
value for the aggregate demand P net(t) =

∑
d∈D P

net
d (t). If

P net(t) ≤ lth(t), then the bill payment in time slot t ∈ T for
data center d ∈ D in (10) is obtained as

cb
d(t) = P net

d (t)π1(t). (11)

If P net(t) > lth(t), then for d ∈ D and t ∈ T , we have

cb
d(t)=

lth(t)

P net(t)
P net
d (t)π1(t)+

P net(t)−lth(t)

P net(t)
P net
d (t)π2(t). (12)

For the penalty component in (10), suppose that data center
d is charged a penalty πp

c,d(t), c ∈ Cd if the workload’s request
is delayed more than δc,d. The values of πp

c,d(t), c ∈ Cd, t ∈ T
are set according to the SLA requirements between the data
center d and its customers. For service c in data center d, the
average number of workloads that their requests are delayed
more than δc,d is λc,d(t) exp(−δc,d(µc,d(t)−λc,d(t))). Hence,
the expected penalty of data center d ∈ D for not meeting the
SLA requirements in time slot t ∈ T is obtained as follows:

cp
d(t) =

∑
c∈Cd

πp
c,d(t)λc,d(t) exp

(
−δc,d

(
µc,d(t)−λc,d(t)

))
. (13)

Substituting (1) into (13), for d ∈ D, t ∈ T , we obtain

cp
d(t) =∑

c∈Cd

πp
c,d(t)λc,d(t) exp

(
− δc,d
σc,d

(
nd(t)−

∑
c′∈Cd

σc′,d λc′,d(t)
))
. (14)

The exponential function is strictly increasing. Considering
inequality (7), for cost minimization, we can rewrite (14) as

cp
d(t) =

∑
c∈Cd

πp
c,d(t)λc,d(t) exp

(
− αc,d(t)

)
. (15)

III. PROBLEM FORMULATION

In this section, we formulate the workload scheduling prob-
lem for data centers. The intermittent renewable generation
and workloads’ arrival rates lead to uncertain net power de-
mand in a data center. Furthermore, the data centers’ workload
scheduling decisions are coupled through the bill payment
in (11) and (12).

A. Centralized Workload Scheduling

Suppose that the utility company has complete information
about the output power P r

d(t) of renewable generator and the

workload’s arrival rate λc,d(t), c ∈ Cd for data center d ∈ D.
The objective function of the utility company is the expected
social cost. Using (11) and (12), the total bill payment∑
d∈D c

b
d(t), t ∈ T can be expressed as a piecewise linear

function of the aggregate demand. We express the objective
function of the utility company in time slot t as follows:

f obj(t) = max
{
π1(t)

∑
d∈D

P net
d (t), π2(t)

∑
d∈D

P net
d (t)− ω(t)

}
+
∑
d∈D

cp
d(t), (16)

where ω(t) = lth(t)(π2(t) − π1(t)). We introduce auxiliary
variables θd(t), d ∈ D, t ∈ T associated with the projection
in (9). We also introduce the auxiliary variable ϑ(t), t ∈ T
for the piecewise linear term in (16). With these in place, the
objective function (16) can be rewritten as follows:

f̃ obj(t) = ϑ(t) +
∑
d∈D

cp
d(t). (17)

The following constraints are included into the constraint set
of the centralized workload scheduling problem:

π1(t)
∑
d∈D θd(t) ≤ ϑ(t), t ∈ T , (18a)

π2(t)
∑
d∈D θd(t)− ω(t) ≤ ϑ(t), t ∈ T , (18b)
Pw
d (t)− P r

d (t) ≤ θd(t), d ∈ D, t ∈ T , (18c)
0 ≤ θd(t), d ∈ D, t ∈ T . (18d)

In time slot t, we denote the decision vector of data center
d by φd(t) =

(
(αc,d(t), c ∈ Cd), nd(t)

)
. The centralized

workload scheduling problem in time slot t ∈ T is as follows:

P1(t) : minimize
ϑ(t),φd(t), θd(t), d∈D

f̃ obj(t)

subject to constraints (2), (3), (7), (8), and (18a)−(18d).

The utility company can solve the convex optimization prob-
lem P1(t) with complete information about the uncertain pa-
rameters. In practice, however, the utility company has un-
certainty about the workloads’ arrival rates and renewable
generation in a data center. We use an online convex opti-
mization framework [17] to deal with the uncertainty in the
output power P r

d(t), t ∈ T of the renewable generator and the
workload’s average arrival rates λc,d(t), c ∈ Cd, t ∈ T for
data center d ∈ D. The utility company schedules the number
of virtual machines nd(t), t ∈ T on behalf of data center d.
The realized values of the uncertain parameters are revealed
to the utility company during time slot t. Under the given
number of virtual machines nd(t), d ∈ D, the utility company
solves the following convex optimization problem to obtain
θd(t), αc,d(t), c ∈ Cd, d ∈ D, and ϑ(t):

P2(t) : minimize
ϑ(t), θd(t), αc,d(t), c∈Cd, d∈D

f̃ obj(t)

subject to constraints (7), (8), and (18a)−(18d).

Subsequently, the utility company computes the number of
virtual machines nd(t + 1), d ∈ D for time slot t + 1 in
two steps. First, it determines the gradient of the objective



function with respect to nd(t). Let γ1,d(t) and γ2,c,d(t), c ∈
Cd, and γ3,d(t) denote the dual variables associated with
constraints (2), (7), and (18c) in problem P1(t), respec-
tively. Substituting (8) into (18c), the utility company can
compute the gradient of the objective function with respect
to nd(t) as ∇nd(t) f̃

obj(t) = −γ1,d(t) −
∑
c∈Cd γ2,c,d(t) +

γ3,d(t) ηd(t)P
idle
d . Next, the utility company can update nd(t)

using the following projected gradient-based update rule [19]:

nd(t+ 1) =
[
nd(t)− ξd(t)∇nd(t) f̃

obj(t)
]
℘
, (19)

where ξd(t)>0 is a diminishing step size in time slot t, and
[·]℘ is the projection onto the interval defined by (3). The util-
ity company can compute dual variables γ2,c,d(t), c ∈ Cd and
γ3,d(t) by solving problem P2(t). However, the time-varying
constraint (2) is not included in the constraints set of problem
P2(t). To determine γ1,d(t), we rewrite (2) in the form
gd(nd(t)) ≤ 0, where gd(nd(t)) =

∑
c′∈Cd σc′,d λc′,d(t) −

nd(t). The first-order approximation of function g(nd(t+ 1))
around nd(t) can be obtained as

Γd(t) = gd(nd(t)) +∇nd(t) gd
(
nd(t))(nd(t+ 1)− nd(t)

)
=
∑
c∈Cd

σc,d γc,d(t)− nd(t+ 1). (20)

The utility company updates γ1,d(t) as follows [20]:

γ1,d(t+ 1) =
[
γ1,d(t) + ζd(t) Γd(t)

]+
, (21)

where ζd(t)>0 is a diminishing step size in time slot t.
Remark 1: Consider the optimal value f̃ obj,opt(t) of prob-

lem P1(t). We can use the results in [17, Ch. 5] and [20] for
a Lipschitz and convex function f̃ obj(t) and linear function
gd(nd(t)) as well as diminishing step sizes ξd(t) and ζd(t)
to guarantee that solving problem P2(t) and performing the
updates in (19) and (21) achieve a sublinear regret R(T ) =∑
t∈T (f̃ obj(t)− f̃ obj,opt(t)) and sublinear feasibility functions

Fd(T ) = [
∑
t∈T gd(nd(t))]

+, d∈D. In other words, R(T )/T
and Fd(T )/T, d ∈ D tend to zero as T approaches infinity.

B. Decentralized Algorithm Design

In a centralized approach, the utility company requires
complete information about the realized values of the re-
newable generation and workloads’ arrival rate for all data
centers. In practice, however, these information may not be
available to the utility company. Under the given number of
virtual machines nd(t), d ∈ D, we can decompose problem
P2(t) into D optimization problems corresponding to data
centers d ∈ D. This enables us to design the decentralized
Algorithm 1 in order to solve P2(t) along with the updates
(19) and (21) in a distributed fashion. In Algorithm 1, Line
1 describes the initiation phase. In Line 2, data center d ∈ D
observes the realized λc,d(t), c ∈ Cd and computes Pw

d (t)
using (8). Data center d ∈ D also observes the realized
renewable generation P r

d(t) and determines θd(t) as follows:

θd(t) =
[
Pw
d (t)− P r

d (t)
]+
. (22)

Algorithm 1 Interactions between Data Center d ∈ D and
Utility Company in Time Slot t ∈ T .

1: Data center d randomly sets nd(1) and sets γ1,d(t) = 0 in time
slot t := 1.

2: Data center d determines θd(t) according to (22) and sends it to
the utility company.

3: Data center d solves problemP2,d(t) to obtain αc,d(t), c∈Cd.
4: Utility company determines ϑ(t) according to (23).
5: Utility company sends the control signal π(t) to the data centers.
6: Data center d determines nd(t+ 1) using (19).
7: Data center d computes γ1,d(t+ 1) using (21).

Data center d ∈ D sends θd(t) to the utility company. It solves
the following optimization problem to determine αc,d(t), c ∈
Cd in Line 3:

P2,d(t) : minimize
αc,d(t)≥ε δc,d/σc,d, c∈Cd

cp
d(t)

subject to constraint (7).

Constraint αc,d(t) ≥ ε δc,d/σc,d, c ∈ Cd is necessary to guar-
antee the stability of the queue associated with the workloads
requesting service c ∈ Cd in time slot t. In Line 4, the utility
company determines ϑ(t) as follows:

ϑ(t) = max
{
π1(t)

∑
d∈D

θd(t), π2(t)
∑
d∈D

θd(t)− ω(t)

}
. (23)

In Line 5, the utility company sets the control signal π(t) to
π1(t) if

∑
d∈Dθd(t) ≤ lth(t) or to π2(t) if

∑
d∈Dθd(t) >

lth(t). It broadcasts π(t) to data center d ∈ D. In Line 6,
data center d ∈ D computes γ2,c,d(t), c ∈ Cd (from solving
problem P2,d(t)) and sets γ3,d(t) to the control signal π(t). It
determines the updated number of virtual machines in the next
time slot using (19). Data center d ∈ D uses (21) to update
the dual variable γ1,d(t) in Line 7. Using Algorithm 1, data
centers achieve the solution to problem P2(t).

IV. PERFORMANCE EVALUATION

The system level performance evaluation of Algorithm 1
consists of ten data centers, and a time period of 10 days, each
of which is divided into 96 equal time slots with duration of 15
minutes. Fig. 1(a) shows the electricity price block rates π1(t)
and π2(t) during one day. Parameter lth is set to 9 MW in each
time slot. Penalties πp

c,d(t), c ∈ Cd, d ∈ D, t ∈ T are chosen
uniformly within the interval [5 cents, 15 cents]. The nominal
power rating of the PV plant for each data center is chosen
uniformly within the interval [0.5 MW, 1 MW]. To obtain the
PV plant’s daily generation pattern for each data center, the
historical PV generation data for Ontario, Canada power grid
database from July 1, 2018 to July 10, 2018 [21] is used. Fig.
1(b) depicts the average PV generation. A data center offers
5 classes with the average workload arrival rates given in the
World Cup 98 web hits dataset [22]. We choose δc,d, c ∈
Cd, d ∈ D uniformly within the interval [0.01 sec, 600 sec]. In
a data center, the maximum number of virtual machines is
chosen uniformly within the interval [3500, 5000] with power
ratings P idle

d = 100 W and P peak
d = 200 W per time slot.
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Figure 1. (a) Tariff block rates; (b) Average PV generation during one day.

Parameters σc,d, c ∈ Cd, d ∈ D are chosen uniformly within
the interval [1 sec, 100 sec] under the condition that σc,d is
smaller for class c with smaller δc,d.

We evaluate the performance of Algorithm 1 in executing
the workload of a data center. In the scenario without workload
scheduling, data center d ∈ D sets the probabilities pc,d(t) to
0.01 for class c ∈ Cd and time slot t ∈ T . That is, with
probability of 99%, the SLA for the workload maximum exe-
cution time is met. In the scenario with workload scheduling
and complete information, the utility company solves prob-
lem P1(t). In the scenario with workload scheduling and
incomplete information, data centers use Algorithm 1 in a
decentralized fashion. The step sizes in (19) and (21) are set to
ξd(t) = 400/

√
t and ζd(t) = 10/

√
t, respectively. Figs. 2(a)

and (b) show the number of virtual machines in data center
1 in the aforementioned scenarios during day 1 and day 10,
respectively. With workload scheduling, the number of virtual
machines decreases during the time period with high price
block rates (between 5 pm and 10 pm). Using Algorithm 1, the
number of virtual machines tightly approximates the optimal
number of virtual machines obtained from solving problem
P1(t) with complete information. The approximation is tighter
in day 10 compared to day 1. That is, Algorithm 1 can better
follow the fluctuations in the optimal number of virtual ma-
chines. Fig. 2(c) shows that the probabilities pc,d(t) becomes
larger (up to 0.1) during the time period with high price block
rates. That is, reducing the number of virtual machines causes
the delay in workload execution exceeds the threshold value
with higher probability. The data center achieves a trade-
off between decreasing the power consumption during the
time period with high prices and the penalty for not meeting
the SLA requirements workload execution. Fig. 2(d) shows
that the data centers’ aggregate demand during peak hours
is reduced by about 12.4% (from 11.5 MW to 10.2 MW)
on average with workload scheduling. Decreasing the number
of virtual machines during off-peak hours is not beneficial,
since the penalty (15) becomes large for not meeting the SLA
requirements. Additionally, during 6 am to 5 pm, a data center
benefits from PV plant to partially supply its load demand.

A data center’s cost is reduced with workload scheduling.
Fig. 3(a) depicts the average daily cost of data center 1 in the
aforementioned cases during day 1 to day 10. When compared
with the scenario without workload scheduling, the daily cost
of data center 1 is reduced by 12.2% on average with workload
scheduling and complete information. Using Algorithm 1 in
the scenario with incomplete information, the daily cost is only
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Figure 2. (a) Average number of virtual machines in data center 1 during
day 1; (b) Average number of virtual machines in data center 1 during day 10;
(c) The probability of workload execution delay for data center 1 during one
day; (d) The average total power demand of all data centers during one day.

2.15% larger (on average) compared with the optimal daily
cost in the scenario with complete information. Fig.3(b) shows
the average cost per time slot of data center 1. It confirms that
the gap between the cost obtained from Algorithm 1 and the
optimal cost decreases gradually. In other words, the average
regret R(T ′)/T ′ converges to zero as T ′ increases from 1
to 960 time slots. Additionally, Fig. 3(c) depicts the average
regret for data center 1, which confirms the result of Remark 1
that the regret of a data center grows sublinearly in T ′.

Finally, we discuss the running time of Algorithm 1. The
algorithm’s running time per time slot is about 1.32 seconds
on average. Data centers execute Algorithm 1 in a distributed
and parallel manner. Thus, the running time per time slot of
Algorithm 1 is independent of the number of data centers.
In the centralized approach, however, the utility company
solves problem P2(t) on behalf of all data centers. Although
P2(t) is a convex optimization problem, it has a nonlinear
objective function due the exponential penalty function in
(15). Fig. 4 shows the required average running time to solve
problem P2(t) versus the number of data centers. The results
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Figure 3. (a) Average daily cost of data center 1 during day 1 to day 10;
(b) Average cost per time slot for data center 1; (c) Average regret of data
center 1 in time slots 1 to 960.
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Figure 4. Average running time of the centralized approach. Note that the
running time of Algorithm 1 is independent of the number of data centers.

indicate that implementing the centralized algorithm for online
workload scheduling can be impractical for a system with a
large number of data centers.

V. CONCLUDING REMARKS

In this paper, we studied the workload scheduling problem
for data centers in a demand response program. The deter-
ministic centralized workload scheduling was formulated as
a convex optimization problem, where the utility company
aims to jointly minimize the expected bill payment and the
penalty associated with delaying the workloads execution for
all data centers. We deployed an online convex optimization
framework to enable workload scheduling under uncertainty in
the workloads arrival rates and renewable generation. We also
developed an algorithm that enables data centers to schedule
their workloads in a decentralized manner. By simulations,
we showed that the data center demand response benefits the
utility company by 12.4% reduction in the aggregate power
demand during peak hours. A data center also can benefit from
12.2% reduction in its average daily cost. The proposed online
decentralized algorithm can tightly approximate the optimal
workload scheduling with complete information. In particular,
the difference between the total daily cost of data centers
with incomplete information and the optimal cost with com-
plete information is 2.15%. Results also verify the sublinear
growth of the data centers’ regret. The proposed decentralized

algorithm has the advantage of lower average running time
compared with the centralized approach. For future work, we
will consider the operating constraints imposed by the power
network in the system model.
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